Inverse Kinematics: Manipulators

ZA-2203 Robotic Systems

Topics

- Approaches in inverse kinematics (IK)
- Analytical IK for 2R planar robot: geometry
- Analytical IK for 2R planar robot: algebra
- Analytical IK for 6R Puma robot
- Numerical IK: Newton-Raphson method for numerical IK

Forward \& Inverse Kinematics

- Kinematics - is the study of motion without regard to forces.
- Study of correspondence between actuator mechanisms (joint variables) and resulting motion of effectors.
- Forward Kinematics (FK): for the given angular movement at each joint, where will the end-effector reach?
- Inverse Kinematics (IK): for a desired position of the end-effector, how much should each joint rotate?

3D position?

Inverse kinematics: three approaches

- Three approaches:
- Analytical: geometry
- Analytical: algebra, i.e. solving equations usually from FK
- Numerical: iteratively find the solution using optimization algorithm
- More difficult than FK
- May have 0, 1 or multiple solutions, possibly infinite solutions
- Analytical closed-form solution(s) not always possible, however it can find all possible solutions
- Iterative numerical approach will find only one solution depending on the initial guess

2R planar open chain manipulator

To reach:

- A position outside the workspace, no solution
- A position at the boundary of the workspace, one solution

Workspace

2R planar open chain manipulator

To reach:

- A position outside the workspace, no solution
- A position at the boundary of the workspace, one solution
- A position within the workspace, multiple solutions

2R planar open chain manipulator

To reach:

- A position outside the workspace, no solution
- A position at the boundary of the workspace, one solution
- A position within the workspace, multiple solutions

2R planar robot: geometry

IK: Determine θ_{1}, θ_{2} given pose of $\{\mathrm{b}\}$ in $\{\mathbf{s}\}$

Given desired end-effector position $\mathrm{E}=(\mathrm{x}, \mathrm{y})$.

Let's consider the position only. Usually, orientation can be treated separately especially if wrist joint is spherical, i.e. the wrist joint determine the orientation.

Determine values of $\theta=\left(\theta_{1}, \theta_{2}\right)$.

2R planar robot: geometry

IK: Determine θ_{1}, θ_{2} given pose of $\{\mathbf{b}\}$ in $\{\mathbf{s}\}$

Given desired end-effector position $\mathrm{E}=(\mathrm{x}, \mathrm{y})$.

Determine values of $\theta=\left(\theta_{1}, \theta_{2}\right)$.

2R planar robot: geometry

IK: Determine θ_{1}, θ_{2} given pose of $\{\mathbf{b}\}$ in $\{\mathbf{s}\}$

Given desired end-effector position

$$
\mathrm{E}=(\mathrm{x}, \mathrm{y}) .
$$

Determine values of $\theta=\left(\theta_{1}, \theta_{2}\right)$.

$$
\begin{gathered}
r^{2}=x^{2}+y^{2}(\text { Pythagoras Theorem }) \\
\gamma=\tan ^{-1} \frac{y}{x}
\end{gathered}
$$

To consider the quadrant of γ :

$$
\gamma=\operatorname{atan} 2(y, x)
$$

2R planar robot: geometry

IK: Determine θ_{1}, θ_{2} given pose of $\{\mathrm{b}\}$ in $\{\mathrm{s}\}$

Given desired end-effector position $\mathrm{E}=(\mathrm{x}, \mathrm{y})$.

Determine values of $\theta=\left(\theta_{1}, \theta_{2}\right)$.

$$
\begin{gathered}
r^{2}=x^{2}+y^{2} \\
\gamma=\operatorname{atan} 2(y, x) \\
r^{2}=L_{1}{ }^{2}+L_{2}{ }^{2}-2 L_{1} L_{2} \cos \beta \\
\left(\text { Cosine }^{2}\right. \text { Rule) } \\
x^{2}+y^{2}=L_{1}{ }^{2}+L_{2}{ }^{2}-2 L_{1} L_{2} \cos \beta
\end{gathered}
$$

Rearrange:

$$
\beta=\cos ^{-1}\left(\frac{L_{1}^{2}+L_{2}^{2}-x^{2}-y^{2}}{2 L_{1} L_{2}}\right)
$$

2R planar robot: geometry

IK: Determine θ_{1}, θ_{2} given pose of $\{\mathrm{b}\}$ in $\{\mathrm{s}\}$

Given desired end-effector position

$$
E=(x, y) .
$$

Determine values of $\theta=\left(\theta_{1}, \theta_{2}\right)$.

$$
\begin{gathered}
r^{2}=x^{2}+y^{2} \\
\gamma=\operatorname{atan2} 2(y, x) \\
\beta=\cos ^{-1}\left(\frac{L_{1}{ }^{2}+L_{2}^{2}-x^{2}-y^{2}}{2 L_{1} L_{2}}\right) \\
L_{2}{ }^{2}=L_{1}{ }^{2}+r^{2}-2 L_{1} r \cos \alpha \\
L_{2}{ }^{2}=L_{1}{ }^{2}+x^{2}+y^{2}-2 L_{1} \sqrt{x^{2}+y^{2}} \cos \alpha
\end{gathered}
$$

Rearrange:

$$
\alpha=\cos ^{-1}\left(\frac{L_{1}^{2}-L_{2}^{2}+x^{2}+y^{2}}{2 L_{1} \sqrt{x^{2}+y^{2}}}\right)
$$

2R planar robot: geometry

IK: Determine θ_{1}, θ_{2} given pose of $\{\mathbf{b}\}$ in $\{\mathbf{s}\}$

Given desired end-effector position

$$
E=(x, y) .
$$

Determine values of $\theta=\left(\theta_{1}, \theta_{2}\right)$.

$$
\begin{gathered}
\gamma=\operatorname{atan} 2(y, x) \\
\beta=\cos ^{-1}\left(\frac{L_{1}{ }^{2}+L_{2}{ }^{2}-x^{2}-y^{2}}{2 L_{1} L_{2}}\right) \\
\alpha=\cos ^{-1}\left(\frac{L_{1}{ }^{2}-L_{2}{ }^{2}+x^{2}+y^{2}}{2 L_{1} \sqrt{x^{2}+y^{2}}}\right)
\end{gathered}
$$

$$
\theta_{1}=\gamma-\alpha \quad \theta_{2}=\pi-\beta
$$

2R planar robot: geometry

IK: Determine θ_{1}, θ_{2} given pose of $\{\mathrm{b}\}$ in $\{\mathrm{s}\}$

Given desired end-effector position

$$
E=(x, y) .
$$

Determine values of $\theta=\left(\theta_{1}, \theta_{2}\right)$.

$$
\begin{gathered}
\gamma=\operatorname{atan} 2(y, x) \\
\beta=\cos ^{-1}\left(\frac{L_{1}^{2}+L_{2}^{2}-x^{2}-y^{2}}{2 L_{1} L_{2}}\right) \\
\alpha=\cos ^{-1}\left(\frac{L_{1}{ }^{2}-L_{2}{ }^{2}+x^{2}+y^{2}}{2 L_{1} \sqrt{x^{2}+y^{2}}}\right) \\
\theta_{1}=\gamma+\alpha \quad \theta_{2}=-(\pi-\beta)
\end{gathered}
$$

2R planar robot: geometry

IK: Determine θ_{1}, θ_{2} given pose of $\{\mathrm{b}\}$ in $\{\mathrm{s}\}$
Given desired end-effector position

$$
E=(x, y) .
$$

Determine values of $\theta=\left(\theta_{1}, \theta_{2}\right)$.

$$
\begin{gathered}
\gamma=\operatorname{atan} 2(y, x) \\
\beta=\cos ^{-1}\left(\frac{L_{1}{ }^{2}+L_{2}{ }^{2}-x^{2}-y^{2}}{2 L_{1} L_{2}}\right) \\
\alpha=\cos ^{-1}\left(\frac{L_{1}{ }^{2}-L_{2}{ }^{2}+x^{2}+y^{2}}{2 L_{1} \sqrt{x^{2}+y^{2}}}\right)
\end{gathered}
$$

Righty: $\quad \theta_{1}=\gamma-\alpha \quad \theta_{2}=\pi-\beta$
Lefty: $\quad \theta_{1}=\gamma+\alpha \quad \theta_{2}=\beta-\pi$

2R planar robot: algebra

IK: Determine θ_{1}, θ_{2} given pose of $\{\mathbf{b}\}$ in $\{\mathbf{s}\}$

Given desired end-effector position $\mathrm{E}=(\mathrm{x}, \mathrm{y})$.

Determine values of $\theta=\left(\theta_{1}, \theta_{2}\right)$.
Forward kinematics:

$$
\begin{aligned}
& x=L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
& y=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

Two equations, two unknowns, solve by algebra.

2R planar robot: algebra

IK: Determine θ_{1}, θ_{2} given pose of $\{\mathbf{b}\}$ in $\{\mathbf{s}\}$

Given desired end-effector position
$\mathrm{E}=(\mathrm{x}, \mathrm{y})$.
Determine values of $\theta=\left(\theta_{1}, \theta_{2}\right)$.
Forward kinematics:

$$
\begin{gathered}
x=L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
y=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{gathered}
$$

Two equations, two unknowns, solve by algebra.

$$
\begin{aligned}
& x^{2}+y^{2} \\
& =\left(L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right)\right)^{2} \\
& +\left(L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)\right)^{2} \\
& x^{2}+y^{2}=L_{1}{ }^{2}+{L_{2}}^{2}+2 L_{1} L_{2} \cos \theta_{2} \\
& \theta_{2}=\cos ^{-1}\left(\frac{x^{2}+y^{2}-{L_{1}}^{2}-L_{2}^{2}}{2 L_{1} L_{2}}\right)
\end{aligned}
$$

2R planar robot: algebra

IK: Determine θ_{1}, θ_{2} given pose of $\{\mathbf{b}\}$ in $\{\mathbf{s}\}$

Forward kinematics:

$$
\begin{gathered}
x=L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
y=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{gathered}
$$

Two equations, two unknowns, solve by algebra.

$$
\begin{gathered}
x=L_{1} c_{1}+L_{2} c_{12} \\
=L_{1} c_{1}+L_{2}\left(c_{1} c_{2}-s_{1} s_{2}\right) \\
y=L_{1} s_{1}+L_{2} s_{12} \\
=L_{1} s_{1}+L_{2}\left(s_{1} c_{2}+c_{1} s_{2}\right) \\
x=\left(L_{1}+L_{2} c_{2}\right) c_{1}-L_{2} s_{2} s_{1} \\
y=\left(L_{1}+L_{2} c_{2}\right) s_{1}+L_{2} s_{2} c_{1} \\
x=\left(L_{1}+L_{2} c_{2}\right) \cos \theta_{1}-L_{2} s_{2} \sin \theta_{1} \\
y=\left(L_{1}+L_{2} c_{2}\right) \sin \theta_{1}+L_{2} s_{2} \cos \theta_{1}
\end{gathered}
$$

2R planar robot: algebra

IK: Determine θ_{1}, θ_{2} given pose of $\{\mathbf{b}\}$ in $\{\mathbf{s}\}$

Forward kinematics:

$$
\begin{gathered}
x=L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
y=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{gathered}
$$

Two equations, two unknowns, solve by algebra.

$$
\begin{gathered}
x=\left(L_{1}+L_{2} c_{2}\right) \cos \theta_{1}-L_{2} s_{2} \sin \theta_{1} \\
y=\left(L_{1}+L_{2} c_{2}\right) \sin \theta_{1}+L_{2} s_{2} \cos \theta_{1} \\
x=A \cos \theta_{1}-B \sin \theta_{1} \\
y=A \sin \theta_{1}+B \cos \theta_{1}
\end{gathered}
$$

θ_{1} can be solved by:
$\begin{aligned} \text { For } & a \cos \theta+b \sin \theta=c, \\ \theta & =\tan ^{-1} \frac{c}{\sqrt{a^{2}+b^{2}-c}}-\tan ^{-1} \frac{a}{b}\end{aligned}$

6R PUMA-Type robot: analytical e.g.

The pose of the end effector of an 6R robot can be represented as a homogeneous transformation matrix

$$
T(\theta)=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} e^{\left[\delta_{2}\right] \theta_{2}} e^{\left[\mathcal{S}_{3}\right] \theta_{3}} e^{\left[\mathcal{S}_{4}\right] \theta_{4}} e^{\left[\mathcal{S}_{5}\right] \theta_{5}} e^{\left[\delta_{6}\right] \theta_{6}} M
$$

For a desired pose of the end-effector $T_{s d}$, the IK problem is to find solution $\theta \in$ \mathbb{R}^{6} satisfying $T(\theta)=T_{s d}$.

For this robot with a spherical wrist, the position and orientation can be decoupled (kinematics decoupling): solve $\theta_{1}, \theta_{2}, \theta_{3}$ for inverse position, then solve $\theta_{4}, \theta_{5}, \theta_{6}$ for inverse orientation.

This example uses geometry to solve for inverse position problem, and algebra to solve for inverse orientation problem.

6R PUMA-Type robot: analytical e.g.

We use geometry to solve the inverse position IK problem. We want to find $\theta_{1}, \theta_{2}, \theta_{3}$ to achieve the desired position of the end-effector $\boldsymbol{p}_{d}=\left(p_{x}, p_{y}, p_{z}\right)$.

Source: Modern Robotics

If $p_{x}, p_{y} \neq 0$

$$
\theta_{1}=\operatorname{atan} 2\left(p_{y}, p_{x}\right) \quad \theta_{1}=\operatorname{atan} 2\left(p_{y}, p_{x}\right)+\pi
$$

Singularity when $p_{x}, p_{y}=$ 0 , infinite solutions for θ_{1}.

6R PUMA-Type robot: analytical e.g.

If there is shoulder displacement, $d_{1} \neq 0$,

$$
\begin{array}{cc}
\theta_{1}=\phi-\alpha & \theta_{1}=\pi+\phi+\alpha \\
\phi=\operatorname{atan} 2\left(p_{y}, p_{x}\right) & \phi=\operatorname{atan} 2\left(p_{y}, p_{x}\right) \\
\alpha=\operatorname{atan} 2\left(d_{1}, \sqrt{r^{2}-d_{1}^{2}}\right) & \alpha=\operatorname{atan} 2\left(-\sqrt{r^{2}-d_{1}^{2}}, d_{1}\right)
\end{array}
$$

Source: Modern Robotics

6R PUMA-Type robot: analytical e.g.

Solving for θ_{2} and θ_{3} is similar to solving the 2R planar IK on $r-z_{0}$ plane. Adapting the solution for 2 R planar robot, we have:

$$
\theta_{3}=\cos ^{-1}\left(\frac{r^{* 2}-a_{2}^{2}-a_{3}^{2}}{2 a_{2} a_{3}}\right)
$$

Likewise, we can adapt accordingly for to determine θ_{2}.

6R PUMA-Type robot: analytical e.g.

Solving for θ_{2} and θ_{3} is similar to solving the 2R planar IK on $r-z_{0}$ plane. Adapting the solution for 2 R planar robot, we have:

$$
\theta_{3}=\cos ^{-1}\left(\frac{r^{* 2}-a_{2}^{2}-a_{3}^{2}}{2 a_{2} a_{3}}\right)
$$

Likewise, we can adapt accordingly for to determine θ_{2}.

6R PUMA-Type robot: analytical e.g.

Four possible inverse (position) kinematics solutions for the 6R PUMA-type arm with shoulder offset

6R PUMA-Type robot: analytical e.g.

Recall: for a desired pose of the end-effector $T_{s d}$, the IK problem is to find solution $\theta \in \mathbb{R}^{6}$ satisfying $T(\theta)=T_{s d}$.

Note $T_{s d}=\left[\begin{array}{cc}R_{d} & \boldsymbol{p}_{d} \\ \mathbf{0} & 1\end{array}\right]$, where \boldsymbol{p}_{d} is the desired position and R_{d} is the desired orientation of the end-effector.

Once we have found $\theta_{1}, \theta_{2}, \theta_{3}$ for \boldsymbol{p}_{d}, we can solve the inverse orientation problem by algebra. We use the FK equation.

$$
\begin{gathered}
T(\theta)=T_{S d}=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} e^{\left[\mathcal{S}_{2}\right] \theta_{2}} e^{\left[\mathcal{S}_{3}\right] \theta_{3}} e^{\left[\mathcal{S}_{4}\right] \theta_{4}} e^{\left[\mathcal{S}_{5}\right] \theta_{5}} e^{\left[\mathcal{S}_{6}\right] \theta_{6} M} \\
e^{-\left[\mathcal{S}_{3}\right] \theta_{3}} e^{-\left[\delta_{2}\right] \theta_{2}} e^{-\left[\mathcal{S}_{1}\right] \theta_{1}} T_{S d} M^{-1}=e^{\left[\mathcal{S}_{4}\right] \theta_{4}} e^{\left[\mathcal{S}_{5}\right] \theta_{5}} e^{\left[\delta_{6}\right] \theta_{6}} \\
L=e^{\left[\mathcal{S}_{4}\right] \theta_{4}} e^{\left[\mathcal{S}_{5}\right] \theta_{5}} e^{\left[\mathcal{S}_{6}\right] \theta_{6}}
\end{gathered}
$$

Notice the left-hand side are now known, defined as L. We can solve for θ_{4}, θ_{5}, θ_{6}.

6R PUMA-Type robot: analytical e.g.

Recall: for a desired pose of the end-effector $T_{s d}$, the IK problem is to find solution $\theta \in \mathbb{R}^{6}$ satisfying $T(\theta)=T_{s d}$.

Note $T_{s d}=\left[\begin{array}{cc}R_{d} & \boldsymbol{p}_{d} \\ \mathbf{0} & 1\end{array}\right]$, where \boldsymbol{p}_{d} is the desired position and R_{d} is the desired orientation of the end-effector.

Alternatively, knowing the screw axes of $\mathcal{S}_{4}, \mathcal{S}_{5}, \mathcal{S}_{6}$, we can form the rotation matrix. For the 6R PUMA robot, the ω-components are

$$
\begin{aligned}
& \omega_{4}=(0,0,1), \\
& \omega_{5}=(0,1,0), \\
& \omega_{6}=(1,0,0)
\end{aligned}
$$

Which results in a combined rotation of $\operatorname{Rot}\left(\hat{z}, \theta_{4}\right) \operatorname{Rot}\left(\hat{y}, \theta_{5}\right) \operatorname{Rot}\left(\hat{x}, \theta_{6}\right)$. We can solve for $\theta_{4}, \theta_{5}, \theta_{6}$.

$$
\operatorname{Rot}\left(\hat{z}, \theta_{4}\right) \operatorname{Rot}\left(\hat{y}, \theta_{5}\right) \operatorname{Rot}\left(\hat{x}, \theta_{6}\right)=R_{d}
$$

Numerical inverse kinematics

Forward kinematics gives pose as a function of the joint variables:
E.g.

$$
\xi=f(\theta)
$$

$$
\binom{x}{y}=\binom{L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right)}{L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)}
$$

For more complex robots, it may not be possible to solve the FK equations analytically to obtain the desired joint variable values in a given IK problem.

An alternative approach is to solve it using iterative numerical approach.

Numerical inverse kinematics

Try different values of θ so that

$$
\xi \rightarrow \xi_{d}
$$

This is done in a systematic way by changing the values of θ in the direction to minimize the error of

$$
\xi_{d}-\xi=\xi_{d}-f(\theta) \rightarrow 0
$$

We expect if we have found $\theta=\theta_{d}$, the error

$$
\xi_{d}-f\left(\theta_{d}\right)=0
$$

This is basically what optimization algorithms do: find the set of parameters (variable values) that minimize (or maximize) the cost or error (or objective or utility).

$$
\theta^{*}=\underset{\theta}{\arg \min }\left(\xi_{d}-f(\theta)\right)
$$

If we manage to minimize the error to zero, $\theta^{*}=\theta_{d}$.

Newton-Raphson method

We basically want to find $\theta=\theta_{d}$ such that

$$
\xi_{d}-f(\theta \quad)=0
$$

I.e. we want to solve the above equation, in other words to find the root to the above equation.

Newton-Raphson root finding method is a method we can use to solve an equation $g(\theta)=0$ numerically provided g is differentiable.

It gives an effective way to change the value of θ such that the error equation will head towards zero.

Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), $\xi_{d}=x_{d}$. We want to find the root of below equation numerically:

$$
x_{d}-f(\theta)=0
$$

x_{d} is the desired value, $f(\theta)$ is the actual function value at θ.
Naively, we can try all possible values of θ until we reach a point of $x_{d}-f(\theta)=0$. At this point, $\theta=\theta_{d}$.

Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), $\xi_{d}=x_{d}$. We want to find the root of below equation numerically:

$$
x_{d}-f(\theta)=0
$$

x_{d} is the desired value, $f(\theta)$ is the actual function value at θ.

Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), $\xi_{d}=x_{d}$. We want to find the root of below equation numerically:

$$
x_{d}-f(\theta)=0
$$

x_{d} is the desired value, $f(\theta)$ is the actual function value at θ.

If $x_{d}-f(\theta)$ is differentiable, we can find its gradient at every value of θ.

We can use this gradient or slope to guide us in choosing the value of θ in the next iteration.

Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), $\xi_{d}=x_{d}$. We want to find the root of below equation numerically:

$$
x_{d}-f(\theta)=0
$$

x_{d} is the desired value, $f(\theta)$ is the actual function value at θ.

Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), $\xi_{d}=x_{d}$. We want to find the root of below equation numerically:

$$
x_{d}-f(\theta)=0
$$

x_{d} is the desired value, $f(\theta)$ is the actual function value at θ.

Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), $\xi_{d}=x_{d}$. We want to find the root of below equation numerically:

$$
x_{d}-f(\theta)=0
$$

x_{d} is the desired value, $f(\theta)$ is the actual function value at θ.

Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), $\xi_{d}=x_{d}$. We want to find the root of below equation numerically:

$$
x_{d}-f(\theta)=0
$$

x_{d} is the desired value, $f(\theta)$ is the actual function value at θ.

Continue the process to next iteration with θ_{1} that leads to θ_{2} and so on.

Until we reach

$$
x_{d}-f(\theta)=0
$$

The value of θ would be the desired θ_{d}.

Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), $\xi_{d}=x_{d}$. We want to find the root of below equation numerically:

$$
x_{d}-f(\theta)=0
$$

x_{d} is the desired value, $f(\theta)$ is the actual function value at θ.

Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), $\xi_{d}=x_{d}$. We want to find the root of below equation numerically:

$$
x_{d}-f(\theta)=0
$$

x_{d} is the desired value, $f(\theta)$ is the actual function value at θ.

The solution depends on initial guess of θ_{0}.

This guess should be near to a solution. Otherwise, the process may not converge.

Newton-Raphson method: vector

We generalize the formulation to non-scalar pose, i.e. $\xi=f(\theta)$ is a vector (not just an x coordinate). We can write the FK function $f(\theta)$ differentiable at θ^{i} as a Taylor series:

$$
\xi=f(\theta)=f\left(\theta^{i}\right)+\frac{\partial f}{\partial \theta}\left(\theta^{i}\right)\left(\theta-\theta^{i}\right)+\text { higher order terms }
$$

At $\theta=\theta_{d}$, we have:

$$
\begin{aligned}
& \xi_{d}=f\left(\theta_{d}\right)=f\left(\theta^{i}\right)+\underbrace{\frac{\partial f}{\partial \theta}\left(\theta^{i}\right)}_{J\left(\theta^{i}\right)} \underbrace{\left(\theta_{d}-\theta^{i}\right)}_{\Delta \theta} \text { + higher order terms } \\
& \text { Recall } J(\theta)=\frac{\partial f(\theta)}{\partial \theta} \longrightarrow
\end{aligned}
$$

Think of this as the FK function of the desired pose $\xi_{d}=f\left(\theta_{d}\right)$ at joint variables θ_{d} expressed as a function of current iteration joint variables θ^{i} and the slope $\frac{\partial f}{\partial \theta}\left(\theta^{i}\right)$ at this point.

We can rearrange and write above equation as below:

$$
\xi_{d}-f\left(\theta^{i}\right)=J\left(\theta^{i}\right) \Delta \theta+\text { higher order terms }
$$

Newton-Raphson method: vector

We can use the Taylor series to help us determine the $\Delta \theta$ to determine the next θ^{i+1}.

$$
\xi_{d}-f\left(\theta^{i}\right)=J\left(\theta^{i}\right) \Delta \theta+\text { higher order terms (h.o.t) }
$$

Using scalar ξ_{d} for illustration purpose.

$\Delta \theta$ involves h.o.t

Newton-Raphson method: vector

If we ignore higher order terms, the $\Delta \theta$ we will obtain is not exactly $\theta_{d}-\theta^{i}$,

$$
\xi_{d}-f\left(\theta^{i}\right)=J\left(\theta^{i}\right) \Delta \theta^{*}
$$

where $\Delta \theta^{*}=\theta^{i+1}-\theta^{i}$.

Newton-Raphson method: vector

If we ignore higher order terms, the $\Delta \theta$ we will obtain is not exactly $\theta_{d}-\theta^{i}$,

$$
\xi_{d}-f\left(\theta^{i}\right)=J\left(\theta^{i}\right) \Delta \theta^{*}
$$

where $\Delta \theta^{*}=\theta^{i+1}-\theta^{i}$. Rearrange to determine $\Delta \theta^{*}$,

$$
\Delta \theta^{*}=\frac{\xi_{d}-f\left(\theta^{i}\right)}{J\left(\theta^{i}\right)}=J^{-1}\left(\theta^{i}\right)\left(\xi_{d}-f\left(\theta^{i}\right)\right)
$$

$J\left(\theta^{i}\right)$ may not always be invertible, e.g. if it is not a square matrix and at singularity point. We can use a mathematical tool, matrix pseudoinverse to obtain the inverse of $J\left(\theta^{i}\right)$ for such cases. It will also work if $J\left(\theta^{i}\right)$ is invertible. We donate pseudoinverse of $J\left(\theta^{i}\right)$ as $J^{+}\left(\theta^{i}\right)$.

$$
\Delta \theta^{*}=J^{+}\left(\theta^{i}\right)\left(\xi_{d}-f\left(\theta^{i}\right)\right)
$$

We can update $\theta^{i+1}=\theta^{i}+\Delta \theta^{*}$ iteratively until we reach $\theta^{i+1}=\theta_{d}$ where $\xi_{d}-$ $f\left(\theta_{d}\right)=0$.

$$
\theta^{i+1}=\theta^{i}+J^{+}\left(\theta^{i}\right)\left(\xi_{d}-f\left(\theta^{i}\right)\right)
$$

Newton-Raphson numerical IK: ξ_{d} steps

Given a desired pose expressed in minimal coordinates (usually position and orientation) $\xi_{d} \in \mathbb{R}^{m}$ and the FK of the robot $\xi=f(\theta)$, we solve the IK problem to determine the required joint variable values $\theta_{d} \in \mathbb{R}^{n}$ by following the steps below:

1. Set $i=0$, make an initial guess $\theta^{0} \in \mathbb{R}^{n}$. Decide the value of ϵ (max error).
2. Compute error $e=\xi_{d}-f\left(\theta^{0}\right)$.
3. While $\|e\|>\epsilon$ for some small value of ϵ :
3.1 Compute next value $\theta^{i+1}=\theta^{i}+J^{+}\left(\theta^{i}\right) e$
$3.2 i=i+1$
3.3 Compute error $e=\xi_{d}-f\left(\theta^{i+1}\right)$

Newton-Raphson numerical IK: $T_{s d}$

In the case when the desired pose of the end-effector is given in the form of a homogeneous transformation matrix $T_{s d}$, we can modify the NewtonRaphson numerical IK steps accordingly.

$$
T_{s d} \in \mathbb{R}^{4 \times 4} \quad T(\theta)=e^{\left[\delta_{1}\right] \theta_{1} \cdots M}
$$

Given a desired pose expressed in minimal coordinates (usually position and orientatio() $\xi_{d} \in \mathbb{R}^{m}$ and the FK of the robo $\xi=f(\theta)$, ye solve the IK problem to determine the required joint variable values $\theta_{d} \in \mathbb{R}^{\prime}$ by following the steps below:

1. Set $i=0$, make an initial guess $\theta^{0} \in \mathbb{R}^{n}$. Decide the value of ϵ.
2. Compute error $e=\xi_{d}-f\left(\theta^{0}\right)$.
3. While $\|e\|>\epsilon$ tor some smail value of s :
3.1 Compute next value $\theta^{i+1}=\theta^{i}+J^{+}\left(\theta^{i}\right) e$
$3.2 i=i+1$
3.3 Compute er or $e=\xi_{d}-f\left(\theta^{i+1}\right)$

Representing error as velocity in unit time

We can interpret $e\left(\theta^{i}\right)$ as the change in pose required to get from $f\left(\theta^{i}\right)$ to ξ_{d}. Given $\Delta \theta^{*}$ is a change in θ in one unit time step to change from $f\left(\theta^{i}\right)$ to ξ_{d}, we can interpret $e\left(\theta^{i}\right)$ as the required change in pose in one unit time from $f\left(\theta^{i}\right)$ to ξ_{d}.

slope

Representing error as velocity in unit time

We can interpret $e\left(\theta^{i}\right)$ as the required change in pose in one unit time from $f\left(\theta^{i}\right)$ to ξ_{d}.

We can think of representing $e\left(\theta^{i}\right)$ as the velocity that if the end-effector follow it in unit time, it will change from $T\left(\theta^{i}\right)\left(\equiv f\left(\theta^{i}\right)\right)$ to $T_{\text {sd }}\left(\equiv \xi_{d}\right)$. In other words, we can find the twist \mathcal{V} that will change the effector pose from $T\left(\theta^{i}\right)$ to $T_{s d}$ in unit time.

Recall twist \mathcal{V} is the velocity of the pose (angular and linear combined).

Representing error as velocity in unit time

Representing error as velocity in unit time

$$
T_{b d}=T_{b s} T_{s d}=T_{s b}{ }^{-1} T_{s d}
$$

$\left[\mathcal{V}_{b}\right]=\log e^{\left[\mathcal{V}_{b}\right]}=\log T_{b d}=\log \left(T_{s b}{ }^{-1} T_{s d}\right)=\log \left(T^{-1}\left(\theta^{i}\right) T_{s d}\right)$

Newton-Raphson numerical IK: $T_{S d}$ steps

Given a desired pose expressed in minimal coordinates (usually position and orientation) $T_{s d} \in \mathbb{R}^{4 \times 4}$ and the FK of the robot $T(\theta)=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \ldots M$ or $T(\theta)=$ $M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots$, we solve the IK problem to determine the required joint variable values $\theta_{d} \in \mathbb{R}^{n}$ by following the steps below:

1. Set $i=0$, make an initial guess $\theta^{0} \in \mathbb{R}^{n}$. Decide the values of ϵ_{w} and ϵ_{v} (max errors).
2. Compute error $\left[\mathcal{V}_{b}\right]=\log \left(T^{-1}\left(\theta^{0}\right) T_{s d}\right)$.
3. While $\left\|\omega_{b}\right\|>\epsilon_{w}$ or $\left\|v_{b}\right\|>\epsilon_{v}$ for some small value of ϵ_{w} and ϵ_{v} :
3.1 Compute next value $\theta^{i+1}=\theta^{i}+J_{b}{ }^{+}\left(\theta^{i}\right) \nu_{b}$
$3.2 i=i+1$
3.3 Compute error $\left[V_{b}\right]=\log \left(T^{-1}\left(\theta^{i+1}\right) T_{s d}\right)$
$\nu_{b} \in \mathbb{R}^{6}$ is the body twist. $J_{b} \in \mathbb{R}^{6 \times n}$ is the body Jacobian.
Alternative, we can use space twist \mathcal{V}_{s} and space Jacobian J_{s}.

Initial guess for Newton-Raphson

- The result of Newton-Raphson depends on the initial guess.
- The initial guess θ^{0} should be as close to a solution θ_{d} as possible in order for the numerical IK to converge.
- We can start the robot from an initial home configuration where both the actual end-effector configuration and the joint angles are known and ensuring that the requested endeffector position $T_{s d}$ changes slowly (moves in small steps) relative to the frequency of the calculation of the inverse kinematics.
- Then, for the rest of the robot's run, the calculated θ_{d} at the previous arm move serves as the initial guess θ^{0} for the new $T_{s d}$ at the next arm move.

Planar 2R robot: numerical IK example

Given desired end-effector position is

$$
(x, y)=(0.366 m, 1.366 m)
$$

and end-effector orientation is

$$
\phi=120^{\circ}
$$

Determine $\theta_{d}=\left(\theta_{1}, \theta_{2}\right)$ to achieve the above pose. Use transformation matrix for your solution.

We need to have $T_{s d}$ and the FK equation.

$$
\begin{gathered}
T_{s d}=\left[\begin{array}{ll}
R & p \\
0 & 1
\end{array}\right] \text { where } R=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } p=\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right] \\
T_{s d}=\left[\begin{array}{cccc}
-0.5 & -0.866 & 0 & 0.366 \\
0.866 & -0.5 & 0 & 1.366 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Planar 2R robot: numerical IK example

We need to have $T_{s d}$ and the FK equation.

$$
\begin{array}{r}
M=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \mathcal{B}_{1}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
2 \\
0
\end{array}\right], \quad \mathcal{B}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right] \\
{\left[\mathcal{B}_{1}\right]=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
\text { owh@ieee.org }
\end{array}
$$

Recall:

$$
\begin{aligned}
{[\mathcal{B}] } & =\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \\
{[\omega] } & =\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
\end{aligned}
$$

$$
\left[\mathcal{B}_{2}\right]=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Planar 2R robot: numerical IK example

Desired pose: $T_{s d}=\left[\begin{array}{cccc}-0.5 & -0.866 & 0 & 0.366 \\ 0.866 & -0.5 & 0 & 1.366 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
Forward kinematics: $\quad T(\theta)=M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} e^{\left[\mathcal{B}_{2}\right] \theta_{2}}$

$$
M=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[\mathcal{B}_{1}\right]=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[\mathcal{B}_{2}\right]=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Given $T_{s d} \in \mathbb{R}^{4 \times 4}$ and the FK of the robot $T(\theta)=M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} e^{\left[\mathcal{B}_{2}\right] \theta_{2}}$.

1. Set $i=0$, make an initial guess $\theta^{0} \in \mathbb{R}^{n}$. Decide the values of ϵ_{w} and ϵ_{v} (max errors).
2. Compute error $\left[\mathcal{V}_{b}\right]=\log \left(T^{-1}\left(\theta^{0}\right) T_{s d}\right)$.
3. While $\left\|\omega_{b}\right\|>\epsilon_{w}$ or $\left\|v_{b}\right\|>\epsilon_{v}$ for some small value of ϵ_{w} and ϵ_{v} :
3.1 Compute next value $\theta^{i+1}=\theta^{i}+J_{b}{ }^{+}\left(\theta^{i}\right) v_{b}$
$3.2 i=i+1$
3.3 Compute error $\left[V_{b}\right]=\log \left(T^{-1}\left(\theta^{i+1}\right) T_{s d}\right)$

Planar 2R robot: numerical IK example

1. Set $i=0$, make an initial guess $\theta^{0} \in \mathbb{R}^{n}$. Decide the values of ϵ_{w} and ϵ_{v} (max errors).
Let $\theta^{0}=\left(0,30^{\circ}\right)$, and
allowable error in angular $\epsilon_{w}=0.001 \mathrm{rad}\left(0.057^{\circ}\right)$ and linear $\epsilon_{v}=$ $10^{-4} \mathrm{~m}$ (100 microns).
2. Compute FK $T\left(\theta^{0}\right)=M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} e^{\left[\mathcal{B}_{2}\right] \theta_{2}}$, then compute error $\left[\mathcal{V}_{b}\right]=\left[\begin{array}{l}\omega_{b} \\ v_{b}\end{array}\right]=$ $\log \left(T^{-1}\left(\theta^{0}\right) T_{s d}\right)$.
3. If $\left\|\omega_{b}\right\|>\epsilon_{w}$ or $\left\|v_{b}\right\|>\epsilon_{v}$, then update $\theta^{i+1}=\theta^{i}+J_{b}^{+}\left(\theta^{i}\right) \nu_{b}$.

Iterate until error is less than the set values.
The above computations are best done with computer.

\boldsymbol{i}	$\left(\boldsymbol{\theta}_{\mathbf{1}}, \boldsymbol{\theta}_{\mathbf{2}}\right)$	$(\boldsymbol{x}, \boldsymbol{y})$	$\boldsymbol{\nu}_{\boldsymbol{b}}=\left(\boldsymbol{\omega}_{\boldsymbol{z} \boldsymbol{b}}, \boldsymbol{v}_{\boldsymbol{x} \boldsymbol{b}}, \boldsymbol{v}_{\boldsymbol{y b}}\right)$	$\left\\|\boldsymbol{\omega}_{\boldsymbol{b}}\right\\|$	$\left\\|\boldsymbol{v}_{\boldsymbol{b}}\right\\|$
0	$\left(0.00,30.00^{\circ}\right)$	$(1.866,0.500)$	$(1.571,0.498,1.858)$	1.571	1.924
1	$\left(34.23^{\circ}, 79.18^{\circ}\right)$	$(0.429,1.480)$	$(0.115,-0.074,0.108)$	0.115	0.131
2	$\left(29.98^{\circ}, 90.22^{\circ}\right)$	$(0.363,1,364)$	$(-0.004,0.000,-0.004)$	0.004	0.004
3	$\left(30.00^{\circ}, 90.00^{\circ}\right)$	$(0.366,1.366)$	$(0.000,0.000,0.000)$	0.000	0.000

Summary (1/2)

- Inverse Kinematics (IK) is finding the required joint variable values θ_{d} to achieve a given desired pose (position and orientation) ξ_{d} (expressed as vector of coordinates) or $T_{s d}$ (expressed as homogeneous transformation matrix).
- There may be $\mathbf{0}$ (not reachable), $\mathbf{1}$ (at the boundary of the workspace) or multiple solutions.
- IK can be solved analytically or numerically.
- Analytical approach uses geometry and solves FK equations in $\xi=f(\theta)$.
- Analytical approach can find all possible solutions so that we can choose which solution to use (e.g. righty, lefty, elbow-up, elbow-down).

Summary (2/2)

- However, analytical approach may not always be possible, or may be very difficult for complex mechanisms.
- Numerical approach uses Newton-Raphson method to iteratively predict the value of θ^{i+1} until it found the $\theta^{i+1}=$ θ_{d} such that the error $\xi_{d}-f\left(\theta^{i}\right)$ (or twist \mathcal{V}_{b}) is zero.
- Newton-Raphson numerical IK problem can be represented in the forms for vector or homogeneous transformation matrix.
- The initial guess θ^{0} for the Newton-Raphson numerical IK needs to be close to a solution.
- If we move the robotic arm in small steps, in each step, the previous known configuration of θ can serve as a good initial guess θ^{0} for the next move step.

Reading List

- Read Chapter 6 of Modern Robotics

To Do List

- Watch Chapter 6 videos of Modern Robotics on Coursera, or on YouTube
https://www.youtube.com/playlist?list=PLggLP4frq02vX00QQ5vrCxbJrzamYDfx

