
owh@ieee.org ZA-2203 1

Inverse Kinematics: Manipulators

ZA-2203 Robotic Systems

Topics

• Approaches in inverse kinematics (IK)

• Analytical IK for 2R planar robot: geometry

• Analytical IK for 2R planar robot: algebra

• Analytical IK for 6R Puma robot

• Numerical IK: Newton-Raphson method for numerical IK

owh@ieee.org ZA-2203 2

Forward & Inverse Kinematics

• Kinematics – is the study of motion without regard to forces.

– Study of correspondence between actuator mechanisms (joint variables) and
resulting motion of effectors.

• Forward Kinematics (FK): for the given angular movement at each joint,
where will the end-effector reach?

• Inverse Kinematics (IK): for a desired position of the end-effector, how
much should each joint rotate?

owh@ieee.org SS-4311 3

3D position?

θ1

θ2

3D position

θ1?

θ2?

Inverse kinematics: three approaches

• Three approaches:
– Analytical: geometry

– Analytical: algebra, i.e. solving equations usually from FK

– Numerical: iteratively find the solution using optimization algorithm

• More difficult than FK

• May have 0, 1 or multiple solutions, possibly infinite solutions

• Analytical closed-form solution(s) not always possible,
however it can find all possible solutions

• Iterative numerical approach will find only one solution
depending on the initial guess

owh@ieee.org ZA-2203 4

2R planar open chain manipulator

owh@ieee.org ZA-2203 5

Workspace

To reach:
- A position outside the

workspace, no solution
- A position at the boundary

of the workspace, one
solution

2R planar open chain manipulator

owh@ieee.org ZA-2203 6

To reach:
- A position outside the

workspace, no solution
- A position at the boundary

of the workspace, one
solution

- A position within the
workspace, multiple
solutions

E

2R planar open chain manipulator

owh@ieee.org ZA-2203 7

E
To reach:
- A position outside the

workspace, no solution
- A position at the boundary

of the workspace, one
solution

- A position within the
workspace, multiple
solutions

2R planar robot: geometry

owh@ieee.org ZA-2203 8

IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

Given desired end-effector position
E=(x, y).

Let's consider the position only.
Usually, orientation can be treated
separately especially if wrist joint is
spherical, i.e. the wrist joint determine
the orientation.

Determine values of 𝜃 = 𝜃1, 𝜃2 .𝜃1

𝜃2

𝑥

𝑦

𝐿1

𝐿2

2R planar robot: geometry

owh@ieee.org ZA-2203 9

IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

Given desired end-effector position
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .

𝜃1

𝜃2

𝑥

𝑦

𝐿1

𝐿2

2R planar robot: geometry

owh@ieee.org ZA-2203 10

IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .

𝑟2 = 𝑥2 + 𝑦2 (Pythagoras Theorem)

𝛾 = tan−1
𝑦

𝑥
To consider the quadrant of 𝛾:

𝛾 = atan2 𝑦, 𝑥

𝑦

𝑥

𝑟

𝑟

𝛾

2R planar robot: geometry

owh@ieee.org ZA-2203 11

IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .

𝑟2 = 𝑥2 + 𝑦2

𝛾 = atan2 𝑦, 𝑥

𝑟2 = 𝐿1
2 + 𝐿2

2 − 2𝐿1𝐿2 cos 𝛽
(Cosine Rule)

𝑥2 + 𝑦2 = 𝐿1
2 + 𝐿2

2 − 2𝐿1𝐿2 cos 𝛽

Rearrange:

𝛽 = cos−1
𝐿1

2 + 𝐿2
2 − 𝑥2 − 𝑦2

2𝐿1𝐿2

𝑟

𝑟

𝐿1

𝐿2
𝛽

2R planar robot: geometry

owh@ieee.org ZA-2203 12

IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .

𝑟2 = 𝑥2 + 𝑦2

𝛾 = atan2 𝑦, 𝑥

𝛽 = cos−1
𝐿1

2 + 𝐿2
2 − 𝑥2 − 𝑦2

2𝐿1𝐿2

𝐿2
2 = 𝐿1

2 + 𝑟2 − 2𝐿1𝑟 cos 𝛼

𝐿2
2 = 𝐿1

2 + 𝑥2 + 𝑦2 − 2𝐿1 𝑥2 + 𝑦2 cos 𝛼

Rearrange:

𝛼 = cos−1
𝐿1

2 − 𝐿2
2 + 𝑥2 + 𝑦2

2𝐿1 𝑥2 + 𝑦2

𝑟

𝑟

𝐿1

𝐿2

𝛼

2R planar robot: geometry

owh@ieee.org ZA-2203 13

IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .

𝛾 = atan2 𝑦, 𝑥

𝛽 = cos−1
𝐿1

2 + 𝐿2
2 − 𝑥2 − 𝑦2

2𝐿1𝐿2

𝛼 = cos−1
𝐿1

2 − 𝐿2
2 + 𝑥2 + 𝑦2

2𝐿1 𝑥2 + 𝑦2

𝜃1 = 𝛾 − 𝛼 𝜃2 = 𝜋 − 𝛽

𝑟

𝛼
𝜃1

𝜃2

𝛽

𝛾

2R planar robot: geometry

owh@ieee.org ZA-2203 14

IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}
ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .

𝛾 = atan2 𝑦, 𝑥

𝛽 = cos−1
𝐿1

2 + 𝐿2
2 − 𝑥2 − 𝑦2

2𝐿1𝐿2

𝛼 = cos−1
𝐿1

2 − 𝐿2
2 + 𝑥2 + 𝑦2

2𝐿1 𝑥2 + 𝑦2

𝜃1 = 𝛾 + 𝛼 𝜃2 = − 𝜋 − 𝛽

𝑟

𝜃1

𝜃2

𝛾

𝛽

𝛼

2R planar robot: geometry

owh@ieee.org ZA-2203 15

IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s} ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .

𝛾 = atan2 𝑦, 𝑥

𝛽 = cos−1
𝐿1

2 + 𝐿2
2 − 𝑥2 − 𝑦2

2𝐿1𝐿2

𝛼 = cos−1
𝐿1

2 − 𝐿2
2 + 𝑥2 + 𝑦2

2𝐿1 𝑥2 + 𝑦2

Righty: 𝜃1 = 𝛾 − 𝛼 𝜃2 = 𝜋 − 𝛽
Lefty: 𝜃1 = 𝛾 + 𝛼 𝜃2 = 𝛽 − 𝜋

E
𝜃2

{b}

2R planar robot: algebra

owh@ieee.org ZA-2203 16

IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .
Forward kinematics:

𝑥 = 𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃1 + 𝜃2
𝑦 = 𝐿1 sin 𝜃1 + 𝐿2 sin 𝜃1 + 𝜃2

Two equations, two unknowns, solve
by algebra.

𝐿1

𝑟

𝜃1 + 𝜃2

𝐿2

𝜃1

𝜃1

2R planar robot: algebra

owh@ieee.org ZA-2203 17

IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .
Forward kinematics:

𝑥 = 𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃1 + 𝜃2
𝑦 = 𝐿1 sin 𝜃1 + 𝐿2 sin 𝜃1 + 𝜃2

Two equations, two unknowns, solve
by algebra.

𝑥2 + 𝑦2

= 𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃1 + 𝜃2
2

+ 𝐿1 sin 𝜃1 + 𝐿2 sin 𝜃1 + 𝜃2
2

𝑥2 + 𝑦2 = 𝐿1
2 + 𝐿2

2 + 2𝐿1𝐿2 cos 𝜃2

𝜃2 = cos−1
𝑥2 + 𝑦2 − 𝐿1

2 − 𝐿2
2

2𝐿1𝐿2

𝐿1

𝑟

𝜃1 + 𝜃2

𝐿2

𝜃1

𝜃1

2R planar robot: algebra

owh@ieee.org ZA-2203 18

IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Forward kinematics:
𝑥 = 𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃1 + 𝜃2
𝑦 = 𝐿1 sin 𝜃1 + 𝐿2 sin 𝜃1 + 𝜃2

Two equations, two unknowns, solve
by algebra.

𝑥 = 𝐿1𝑐1 + 𝐿2𝑐12
= 𝐿1𝑐1 + 𝐿2 𝑐1𝑐2 − 𝑠1𝑠2
𝑦 = 𝐿1𝑠1 + 𝐿2𝑠12
= 𝐿1𝑠1 + 𝐿2 𝑠1𝑐2 + 𝑐1𝑠2

𝑥 = 𝐿1 + 𝐿2𝑐2 𝑐1 − 𝐿2𝑠2𝑠1
𝑦 = 𝐿1 + 𝐿2𝑐2 𝑠1 + 𝐿2𝑠2𝑐1

𝑥 = 𝐿1 + 𝐿2𝑐2 cos 𝜃1 − 𝐿2𝑠2 sin 𝜃1
𝑦 = 𝐿1 + 𝐿2𝑐2 sin 𝜃1 + 𝐿2𝑠2 cos 𝜃1

𝐿1

𝑟

𝜃1 + 𝜃2

𝐿2

𝜃1

𝜃1

2R planar robot: algebra

owh@ieee.org ZA-2203 19

IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Forward kinematics:
𝑥 = 𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃1 + 𝜃2
𝑦 = 𝐿1 sin 𝜃1 + 𝐿2 sin 𝜃1 + 𝜃2

Two equations, two unknowns, solve
by algebra.

𝑥 = 𝐿1 + 𝐿2𝑐2 cos 𝜃1 − 𝐿2𝑠2 sin 𝜃1
𝑦 = 𝐿1 + 𝐿2𝑐2 sin 𝜃1 + 𝐿2𝑠2 cos 𝜃1

𝑥 = 𝐴 cos 𝜃1 − 𝐵 sin 𝜃1
𝑦 = 𝐴 sin 𝜃1 + 𝐵 cos 𝜃1

𝜃1 can be solved by:

For 𝑎 cos 𝜃 + 𝑏 sin 𝜃 = 𝑐,

𝜃 = tan−1
𝑐

𝑎2 + 𝑏2 − 𝑐
− tan−1

𝑎

𝑏

𝐿1

𝑟

𝜃1 + 𝜃2

𝐿2

𝜃1

𝜃1

6R PUMA-Type robot: analytical e.g.

owh@ieee.org ZA-2203 20

The pose of the end effector of an 6R robot can be represented as a
homogeneous transformation matrix

𝑇 𝜃 = 𝑒 𝒮1 𝜃1𝑒 𝒮2 𝜃2𝑒 𝒮3 𝜃3𝑒 𝒮4 𝜃4𝑒 𝒮5 𝜃5𝑒 𝒮6 𝜃6𝑀

For a desired pose of the end-effector 𝑇𝑠𝑑, the IK problem is to find solution 𝜃 ∈
ℝ6 satisfying 𝑇 𝜃 = 𝑇𝑠𝑑.

For this robot with a spherical wrist, the position and orientation can be
decoupled (kinematics decoupling): solve 𝜃1, 𝜃2, 𝜃3 for inverse position,
then solve 𝜃4, 𝜃5, 𝜃6 for inverse orientation.

This example uses geometry to solve for inverse position problem, and algebra
to solve for inverse orientation problem.

Source: Modern Robotics

6R PUMA-Type robot: analytical e.g.

owh@ieee.org ZA-2203 21

We use geometry to solve the inverse position IK problem. We want to find

𝜃1, 𝜃2, 𝜃3 to achieve the desired position of the end-effector 𝒑𝑑 = 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧 .

𝜃1 = atan2 𝑝𝑦 , 𝑝𝑥 𝜃1 = atan2 𝑝𝑦 , 𝑝𝑥 + 𝜋

If 𝑝𝑥, 𝑝𝑦 ≠ 0
Singularity when 𝑝𝑥, 𝑝𝑦 =
0, infinite solutions for 𝜃1.

Source: Modern Robotics

Source: Modern Robotics

6R PUMA-Type robot: analytical e.g.

owh@ieee.org ZA-2203 22

Source: Modern Robotics

𝜃1 = 𝜙 − 𝛼

𝜙 = atan2 𝑝𝑦 , 𝑝𝑥

𝛼 = atan2 𝑑1, 𝑟2 − 𝑑1
2

𝜙
𝛼

𝜃1 = 𝜋 + 𝜙 + 𝛼

𝜙 = atan2 𝑝𝑦 , 𝑝𝑥

𝛼 = atan2 − 𝑟2 − 𝑑1
2, 𝑑1

If there is shoulder displacement, 𝑑1 ≠ 0,

Source: Modern Robotics

6R PUMA-Type robot: analytical e.g.

owh@ieee.org ZA-2203 24

Source: Modern Robotics

Solving for 𝜃2 and 𝜃3 is similar to solving the 2R planar IK on 𝑟 − 𝑧0 plane.
Adapting the solution for 2R planar robot, we have:

𝜃3 = cos−1
𝑟∗2 − 𝑎2

2 − 𝑎3
2

2𝑎2𝑎3

Likewise, we can adapt accordingly for to determine 𝜃2.

Recall:

𝑟2

6R PUMA-Type robot: analytical e.g.

owh@ieee.org ZA-2203 25

Source: Modern Robotics

Solving for 𝜃2 and 𝜃3 is similar to solving the 2R planar IK on 𝑟 − 𝑧0 plane.
Adapting the solution for 2R planar robot, we have:

𝜃3 = cos−1
𝑟∗2 − 𝑎2

2 − 𝑎3
2

2𝑎2𝑎3

Likewise, we can adapt accordingly for to determine 𝜃2.

Recall:

𝑟2

𝑟∗

𝑟∗

𝑟∗2 = 𝑝𝑥
2 + 𝑝𝑦

2 − 𝑑1
2 + 𝑝𝑧

2

6R PUMA-Type robot: analytical e.g.

owh@ieee.org ZA-2203 26

Four possible inverse (position) kinematics
solutions for the 6R PUMA-type arm with shoulder
offset

Source: Modern Robotics

6R PUMA-Type robot: analytical e.g.

owh@ieee.org ZA-2203 27

Recall: for a desired pose of the end-effector 𝑇𝑠𝑑, the IK problem is to find
solution 𝜃 ∈ ℝ6 satisfying 𝑇 𝜃 = 𝑇𝑠𝑑.

Note 𝑇𝑠𝑑 =
𝑅𝑑 𝒑𝑑

𝟎 1
, where 𝒑𝑑 is the desired position and 𝑅𝑑 is the desired

orientation of the end-effector.

Once we have found 𝜃1, 𝜃2, 𝜃3 for 𝒑𝑑, we can solve the inverse orientation
problem by algebra. We use the FK equation.

𝑇 𝜃 = 𝑇𝑠𝑑 = 𝑒 𝒮1 𝜃1𝑒 𝒮2 𝜃2𝑒 𝒮3 𝜃3𝑒 𝒮4 𝜃4𝑒 𝒮5 𝜃5𝑒 𝒮6 𝜃6𝑀
𝑒− 𝒮3 𝜃3𝑒− 𝒮2 𝜃2𝑒− 𝒮1 𝜃1𝑇𝑠𝑑𝑀−1 = 𝑒 𝒮4 𝜃4𝑒 𝒮5 𝜃5𝑒 𝒮6 𝜃6

𝐿 = 𝑒 𝒮4 𝜃4𝑒 𝒮5 𝜃5𝑒 𝒮6 𝜃6

Notice the left-hand side are now known, defined as 𝐿. We can solve for 𝜃4, 𝜃5,
𝜃6.

6R PUMA-Type robot: analytical e.g.

owh@ieee.org ZA-2203 28

Recall: for a desired pose of the end-effector 𝑇𝑠𝑑, the IK problem is to find
solution 𝜃 ∈ ℝ6 satisfying 𝑇 𝜃 = 𝑇𝑠𝑑.

Note 𝑇𝑠𝑑 =
𝑅𝑑 𝒑𝑑

𝟎 1
, where 𝒑𝑑 is the desired position and 𝑅𝑑 is the desired

orientation of the end-effector.

Alternatively, knowing the screw axes of 𝒮4, 𝒮5, 𝒮6, we can form the rotation
matrix. For the 6R PUMA robot, the 𝜔-components are

𝜔4 = 0,0,1 ,
𝜔5 = 0,1,0 ,
𝜔6 = 1,0,0 .

Which results in a combined rotation of 𝑅𝑜𝑡 Ƹ𝑧, 𝜃4 𝑅𝑜𝑡 ො𝑦, 𝜃5 𝑅𝑜𝑡 ො𝑥, 𝜃6 . We can
solve for 𝜃4, 𝜃5, 𝜃6.

𝑅𝑜𝑡 Ƹ𝑧, 𝜃4 𝑅𝑜𝑡 ො𝑦, 𝜃5 𝑅𝑜𝑡 ො𝑥, 𝜃6 = 𝑅𝑑

Numerical inverse kinematics

owh@ieee.org ZA-2203 29

Forward kinematics gives pose as a function of the joint variables:
𝜉 = 𝑓 𝜃

E.g.
𝑥
𝑦 =

𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃1 + 𝜃2

𝐿1 sin 𝜃1 + 𝐿2 sin 𝜃1 + 𝜃2

For more complex robots, it may not be possible to solve the FK equations
analytically to obtain the desired joint variable values in a given IK problem.

An alternative approach is to solve it using iterative numerical approach.

Numerical inverse kinematics

owh@ieee.org ZA-2203 30

E

{s} ො𝑥

ො𝑦

𝜃1

𝜃2

Ed

Try different values of 𝜃 so that
𝜉 → 𝜉𝑑

This is done in a systematic way by changing
the values of 𝜃 in the direction to minimize the
error of

𝜉𝑑 − 𝜉 = 𝜉𝑑 − 𝑓 𝜃 → 0

We expect if we have found 𝜃 = 𝜃𝑑, the error
𝜉𝑑 − 𝑓 𝜃𝑑 = 0

This is basically what optimization algorithms
do: find the set of parameters (variable
values) that minimize (or maximize) the cost
or error (or objective or utility).

𝜃∗ = arg min
𝜃

𝜉𝑑 − 𝑓 𝜃

If we manage to minimize the error to zero,
𝜃∗ = 𝜃𝑑.

Newton-Raphson method

owh@ieee.org ZA-2203 31

We basically want to find 𝜃 = 𝜃𝑑 such that

𝜉𝑑 − 𝑓 𝜃 = 0

I.e. we want to solve the above equation, in other words to find the root to the
above equation.

Newton-Raphson root finding method is a method we can use to solve an
equation 𝑔 𝜃 = 0 numerically provided 𝑔 is differentiable.

It gives an effective way to change the value of 𝜃 such that the error equation
will head towards zero.

Newton-Raphson method: scalar example

owh@ieee.org ZA-2203 32

Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃 is the actual function value at 𝜃.

Naively, we can try all possible
values of 𝜃 until we reach a
point of 𝑥𝑑 − 𝑓 𝜃 = 0. At this
point, 𝜃 = 𝜃𝑑.

Newton-Raphson method: scalar example

owh@ieee.org ZA-2203 33

Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃 is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃 Naively, we can try all possible
values of 𝜃 until we reach a
point of 𝑥𝑑 − 𝑓 𝜃 = 0. At this
point, 𝜃 = 𝜃𝑑.

We effectively drawn a graph
of 𝑥𝑑 − 𝑓 𝜃 against 𝜃.

What range of 𝜃 should we
try?

Newton-Raphson method: scalar example

owh@ieee.org ZA-2203 34

Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃 is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃 If 𝑥𝑑 − 𝑓 𝜃 is differentiable,
we can find its gradient at
every value of 𝜃.

We can use this gradient or
slope to guide us in choosing
the value of 𝜃 in the next
iteration.

𝜃𝑖

Newton-Raphson method: scalar example

owh@ieee.org ZA-2203 35

Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃 is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃 Let's not try all values of 𝜃
randomly.

Let’s start with any value, an
initial guess, 𝜃0.

Compute FK 𝑓 𝜃0 and error
function 𝑥𝑑 − 𝑓 𝜃0 .

𝜃0

𝑥𝑑 − 𝑓 𝜃0

Newton-Raphson method: scalar example

owh@ieee.org ZA-2203 36

Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃 is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃 Not zero?

We need to try another value
of 𝜃. We will use the slope at
𝜃0 to help decide the next
value of 𝜃 to try.

Compute the slope of 𝑥𝑑 −
𝑓 𝜃0 . Since 𝑥𝑑 is a constant

slope = −
𝜕𝑓

𝜕𝜃
𝜃0

𝜃0

𝑥𝑑 − 𝑓 𝜃0 slope = −
𝜕𝑓

𝜕𝜃
𝜃0

𝜃1

∆𝜃 =
𝜕𝑓

𝜕𝜃
𝜃0

−1

𝑥𝑑 − 𝑓 𝜃0

Newton-Raphson method: scalar example

owh@ieee.org ZA-2203 37

Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃 is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃 Continue the process to next
iteration with 𝜃1 that leads to 𝜃2
and so on.

𝜃2

𝑥𝑑 − 𝑓 𝜃1

slope = −
𝜕𝑓

𝜕𝜃
𝜃1

𝜃1

∆𝜃 =
𝜕𝑓

𝜕𝜃
𝜃1

−1

𝑥𝑑 − 𝑓 𝜃1

Newton-Raphson method: scalar example

owh@ieee.org ZA-2203 38

Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃 is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃 Continue the process to next
iteration with 𝜃1 that leads to 𝜃2
and so on.

Until we reach
𝑥𝑑 − 𝑓 𝜃 = 0

The value of 𝜃 would be the
desired 𝜃𝑑.

𝜃2𝜃1

𝜃𝑑

𝜃0

Newton-Raphson method: scalar example

owh@ieee.org ZA-2203 39

Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃 is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃
The update of 𝜃 in Newton-
Raphson method can be
expressed as:

𝜃𝑖+1 = 𝜃𝑖 −
𝜕𝑓

𝜕𝜃
𝜃𝑖

−1

𝑔 𝜃𝑖

where 𝑔 𝜃𝑖 = 𝑥𝑑 − 𝑓 𝜃𝑖 .

𝜃2𝜃1

𝜃𝑑

𝜃0

Newton-Raphson method: scalar example

owh@ieee.org ZA-2203 40

Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃 is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃 The solution depends on initial
guess of 𝜃0.

This guess should be near to a
solution. Otherwise, the
process may not converge.

𝜃0𝜃0 𝜃0

Newton-Raphson method: vector

owh@ieee.org ZA-2203 42

We generalize the formulation to non-scalar pose, i.e. 𝜉 = 𝑓 𝜃 is a vector (not
just an 𝑥 coordinate). We can write the FK function 𝑓 𝜃 differentiable at 𝜃𝑖 as a
Taylor series:

𝜉 = 𝑓 𝜃 = 𝑓 𝜃𝑖 +
𝜕𝑓

𝜕𝜃
𝜃𝑖 𝜃 − 𝜃𝑖 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠

At 𝜃 = 𝜃𝑑, we have:

𝜉𝑑 = 𝑓 𝜃𝑑 = 𝑓 𝜃𝑖 +
𝜕𝑓

𝜕𝜃
𝜃𝑖 𝜃𝑑 − 𝜃𝑖 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠

 𝐽 𝜃𝑖 ∆𝜃

Think of this as the FK function of the desired pose 𝜉𝑑 = 𝑓 𝜃𝑑 at joint variables
𝜃𝑑 expressed as a function of current iteration joint variables 𝜃𝑖 and the slope
𝜕𝑓

𝜕𝜃
𝜃𝑖 at this point.

We can rearrange and write above equation as below:

𝜉𝑑 − 𝑓 𝜃𝑖 = 𝐽 𝜃𝑖 ∆𝜃 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠

Recall 𝐽 𝜃 =
𝜕𝑓 𝜃

𝜕𝜃

Newton-Raphson method: vector

owh@ieee.org ZA-2203 43

We can use the Taylor series to help us determine the ∆𝜃 to determine the next
𝜃𝑖+1.

𝜉𝑑 − 𝑓 𝜃𝑖 = 𝐽 𝜃𝑖 ∆𝜃 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 (ℎ. 𝑜. 𝑡)

𝜃

𝜉𝑑 − 𝑓 𝜃

𝜃𝑖

𝜉𝑑 − 𝑓 𝜃𝑖

𝜃𝑑

Using scalar 𝜉𝑑 for illustration purpose.

∆𝜃 involves h.o.t

Newton-Raphson method: vector

owh@ieee.org ZA-2203 44

If we ignore higher order terms, the ∆𝜃 we will obtain is not exactly 𝜃𝑑 − 𝜃𝑖,

𝜉𝑑 − 𝑓 𝜃𝑖 = 𝐽 𝜃𝑖 ∆𝜃∗

where ∆𝜃∗ = 𝜃𝑖+1 − 𝜃𝑖.

𝜃

𝜉𝑑 − 𝑓 𝜃

𝜃𝑖

𝜉𝑑 − 𝑓 𝜃𝑖 slope = 𝐽 𝜃𝑖

𝜃𝑖+1 𝜃𝑑

∆𝜃

∆𝜃∗

𝜃𝑖+1 = 𝜃𝑖 + ∆𝜃∗

Newton-Raphson method: vector

owh@ieee.org ZA-2203 45

If we ignore higher order terms, the ∆𝜃 we will obtain is not exactly 𝜃𝑑 − 𝜃𝑖,

𝜉𝑑 − 𝑓 𝜃𝑖 = 𝐽 𝜃𝑖 ∆𝜃∗

where ∆𝜃∗ = 𝜃𝑖+1 − 𝜃𝑖. Rearrange to determine ∆𝜃∗,

∆𝜃∗ =
𝜉𝑑 − 𝑓 𝜃𝑖

𝐽 𝜃𝑖
= 𝐽−1 𝜃𝑖 𝜉𝑑 − 𝑓 𝜃𝑖

𝐽 𝜃𝑖 may not always be invertible, e.g. if it is not a square matrix and at

singularity point. We can use a mathematical tool, matrix pseudoinverse to

obtain the inverse of 𝐽 𝜃𝑖 for such cases. It will also work if 𝐽 𝜃𝑖 is invertible.

We donate pseudoinverse of 𝐽 𝜃𝑖 as 𝐽+ 𝜃𝑖 .

∆𝜃∗ = 𝐽+ 𝜃𝑖 𝜉𝑑 − 𝑓 𝜃𝑖

We can update 𝜃𝑖+1 = 𝜃𝑖 + ∆𝜃∗ iteratively until we reach 𝜃𝑖+1 = 𝜃𝑑 where 𝜉𝑑 −
𝑓 𝜃𝑑 = 0.

𝜃𝑖+1 = 𝜃𝑖 + 𝐽+ 𝜃𝑖 𝜉𝑑 − 𝑓 𝜃𝑖

Newton-Raphson numerical IK: 𝜉𝑑 steps

owh@ieee.org ZA-2203 46

Given a desired pose expressed in minimal coordinates (usually position and

orientation) 𝜉𝑑 ∈ ℝ𝑚 and the FK of the robot 𝜉 = 𝑓 𝜃 , we solve the IK problem

to determine the required joint variable values 𝜃𝑑 ∈ ℝ𝑛 by following the steps

below:

1. Set 𝑖 = 0, make an initial guess 𝜃0 ∈ ℝ𝑛. Decide the value of 𝜖 (max error).

2. Compute error ℯ = 𝜉𝑑 − 𝑓 𝜃0 .

3. While ℯ > 𝜖 for some small value of 𝜖:

3.1 Compute next value 𝜃𝑖+1 = 𝜃𝑖 + 𝐽+ 𝜃𝑖 ℯ

3.2 𝑖 = 𝑖 + 1

3.3 Compute error ℯ = 𝜉𝑑 − 𝑓 𝜃𝑖+1

Newton-Raphson numerical IK: 𝑇𝑠𝑑

owh@ieee.org ZA-2203 47

In the case when the desired pose of the end-effector is given in the form of a

homogeneous transformation matrix 𝑇𝑠𝑑, we can modify the Newton-

Raphson numerical IK steps accordingly.

Given a desired pose expressed in minimal coordinates (usually position and

orientation) 𝜉𝑑 ∈ ℝ𝑚 and the FK of the robot 𝜉 = 𝑓 𝜃 , we solve the IK problem

to determine the required joint variable values 𝜃𝑑 ∈ ℝ𝑛 by following the steps

below:

1. Set 𝑖 = 0, make an initial guess 𝜃0 ∈ ℝ𝑛. Decide the value of 𝜖.

2. Compute error ℯ = 𝜉𝑑 − 𝑓 𝜃0 .

3. While ℯ > 𝜖 for some small value of 𝜖:

3.1 Compute next value 𝜃𝑖+1 = 𝜃𝑖 + 𝐽+ 𝜃𝑖 ℯ

3.2 𝑖 = 𝑖 + 1

3.3 Compute error ℯ = 𝜉𝑑 − 𝑓 𝜃𝑖+1

𝑇𝑠𝑑 ∈ ℝ4×4 𝑇 𝜃 = 𝑒 𝒮1 𝜃1 ⋯ 𝑀

ℯ = 𝑇𝑠𝑑 − 𝑇 𝜃

Representing error as velocity in unit time

owh@ieee.org ZA-2203 48

𝜃

ℯ 𝜃 = 𝜉𝑑 − 𝑓 𝜃

𝜃𝑖

ℯ 𝜃𝑖 slope

𝜃𝑖+1 𝜃𝑑

∆𝜃∗

𝜃𝑖+1 = 𝜃𝑖 + ∆𝜃∗

We can interpret ℯ 𝜃𝑖 as the change in pose required to get from 𝑓 𝜃𝑖 to 𝜉𝑑.

Given ∆𝜃∗ is a change in 𝜃 in one unit time step to change from 𝑓 𝜃𝑖 to 𝜉𝑑,

we can interpret ℯ 𝜃𝑖 as the required change in pose in one unit time from

𝑓 𝜃𝑖 to 𝜉𝑑.

𝑓 𝜃𝑖

𝜉𝑑 0

𝜉𝑑 − 𝑓 𝜃

𝜉𝑑
𝑓 𝜃𝑖

Representing error as velocity in unit time

owh@ieee.org ZA-2203 49

We can interpret ℯ 𝜃𝑖 as the required change in pose in one unit time from

𝑓 𝜃𝑖 to 𝜉𝑑.

We can think of representing ℯ 𝜃𝑖 as the velocity that if the end-effector

follow it in unit time, it will change from 𝑇 𝜃𝑖 (≡ 𝑓 𝜃𝑖) to 𝑇𝑠𝑑 (≡ 𝜉𝑑). In other

words, we can find the twist 𝒱 that will change the effector pose from 𝑇 𝜃𝑖 to

𝑇𝑠𝑑 in unit time.

Recall twist 𝒱 is the velocity of the pose (angular and linear combined).

𝑇𝑠𝑑
𝑇 𝜃𝑖

Representing error as velocity in unit time

owh@ieee.org ZA-2203 50

𝑇𝑠𝑑
𝑇 𝜃𝑖

{s}

{b}

{d}

Representing error as velocity in unit time

owh@ieee.org ZA-2203 51

𝑇𝑠𝑑
𝑇 𝜃𝑖

{s}

{b}

{d}

𝑇 𝜃𝑖 = 𝑇𝑠𝑏

𝑇𝑠𝑑

𝑇𝑏𝑑 ≡ 𝑒 𝒱𝑏

𝑇𝑏𝑑 = 𝑇𝑏𝑠𝑇𝑠𝑑 = 𝑇𝑠𝑏
−1𝑇𝑠𝑑

𝒱𝑏 = log 𝑒 𝒱𝑏 = log 𝑇𝑏𝑑 = log 𝑇𝑠𝑏
−1𝑇𝑠𝑑 = log 𝑇−1 𝜃𝑖 𝑇𝑠𝑑

Newton-Raphson numerical IK: 𝑇𝑠𝑑 steps

owh@ieee.org ZA-2203 52

Given a desired pose expressed in minimal coordinates (usually position and

orientation) 𝑇𝑠𝑑 ∈ ℝ4×4 and the FK of the robot 𝑇 𝜃 = 𝑒 𝒮1 𝜃1 ⋯ 𝑀 or 𝑇 𝜃 =

𝑀𝑒 ℬ1 𝜃1 ⋯, we solve the IK problem to determine the required joint variable

values 𝜃𝑑 ∈ ℝ𝑛 by following the steps below:

1. Set 𝑖 = 0, make an initial guess 𝜃0 ∈ ℝ𝑛. Decide the values of 𝜖𝑤 and 𝜖𝑣

(max errors).

2. Compute error 𝒱𝑏 = log 𝑇−1 𝜃0 𝑇𝑠𝑑 .

3. While 𝜔𝑏 > 𝜖𝑤 or 𝑣𝑏 > 𝜖𝑣 for some small value of 𝜖𝑤 and 𝜖𝑣:

3.1 Compute next value 𝜃𝑖+1 = 𝜃𝑖 + 𝐽𝑏
+ 𝜃𝑖 𝒱𝑏

3.2 𝑖 = 𝑖 + 1

3.3 Compute error 𝒱𝑏 = log 𝑇−1 𝜃𝑖+1 𝑇𝑠𝑑

𝒱𝑏 ∈ ℝ6 is the body twist. 𝐽𝑏 ∈ ℝ6×𝑛 is the body Jacobian.

Alternative, we can use space twist 𝒱𝑠 and space Jacobian 𝐽𝑠.

Initial guess for Newton-Raphson

• The result of Newton-Raphson depends on the initial guess.

• The initial guess 𝜃0 should be as close to a solution 𝜃𝑑 as
possible in order for the numerical IK to converge.

• We can start the robot from an initial home configuration
where both the actual end-effector configuration and the
joint angles are known and ensuring that the requested end-
effector position 𝑇𝑠𝑑 changes slowly (moves in small steps)
relative to the frequency of the calculation of the inverse
kinematics.

• Then, for the rest of the robot’s run, the calculated 𝜃𝑑 at the
previous arm move serves as the initial guess 𝜃0 for the new
𝑇𝑠𝑑 at the next arm move.

owh@ieee.org ZA-2203 53

Planar 2R robot: numerical IK example

owh@ieee.org ZA-2203 54

Given desired end-effector position is

𝑥, 𝑦 = 0.366 𝑚, 1.366 𝑚
and end-effector orientation is

𝜙 = 120°

Determine 𝜃𝑑 = 𝜃1, 𝜃2 to achieve the above pose. Use

transformation matrix for your solution.

We need to have 𝑇𝑠𝑑 and the FK equation.

𝑇𝑠𝑑 =
𝑅 𝑝
0 1

 where 𝑅 =
cos 𝜙 − sin 𝜙 0
sin 𝜙 cos 𝜙 0

0 0 1

 and 𝑝 =
𝑥
𝑦
0

𝑇𝑠𝑑 =

−0.5
0.866

0
0

−0.866
−0.5

0
0

0
0
1
0

0.366
1.366

0
1

𝜃1

𝜃2

ො𝑥

ො𝑦
1 m

1 m

𝜙 = 120°

𝜙

Source: Modern Robotics

Planar 2R robot: numerical IK example

owh@ieee.org ZA-2203 55

Given desired end-effector position is

𝑥, 𝑦 = 0.366 𝑚, 1.366 𝑚
and end-effector orientation is

𝜙 = 120°

Determine 𝜃𝑑 = 𝜃1, 𝜃2 to achieve the above pose. Use

transformation matrix for your solution.

We need to have 𝑇𝑠𝑑 and the FK equation.

𝑀 =

1
0
0
0

0
1
0
0

0
0
1
0

2
0
0
1

, ℬ1 =

0
0
1
0
2
0

 , ℬ2 =

0
0
1
0
1
0

ℬ1 =

0
1
0
0

−1
0
0
0

0
0
0
0

0
2
0
0

ℬ2 =

0
1
0
0

−1
0
0
0

0
0
0
0

0
1
0
0

ℬ = 𝜔 𝑣
0 0

𝜔 =

0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0

Recall:

𝜙

Source: Modern Robotics

Planar 2R robot: numerical IK example

owh@ieee.org ZA-2203 56

𝑀 =

1
0
0
0

0
1
0
0

0
0
1
0

2
0
0
1

Forward kinematics: 𝑇 𝜃 = 𝑀𝑒 ℬ1 𝜃1𝑒 ℬ2 𝜃2

ℬ1 =

0
1
0
0

−1
0
0
0

0
0
0
0

0
2
0
0

ℬ2 =

0
1
0
0

−1
0
0
0

0
0
0
0

0
1
0
0

Desired pose: 𝑇𝑠𝑑 =

−0.5
0.866

0
0

−0.866
−0.5

0
0

0
0
1
0

0.366
1.366

0
1

Given 𝑇𝑠𝑑 ∈ ℝ4×4 and the FK of the robot 𝑇 𝜃 = 𝑀𝑒 ℬ1 𝜃1𝑒 ℬ2 𝜃2.

1. Set 𝑖 = 0, make an initial guess 𝜃0 ∈ ℝ𝑛. Decide the values of 𝜖𝑤 and 𝜖𝑣 (max

errors).

2. Compute error 𝒱𝑏 = log 𝑇−1 𝜃0 𝑇𝑠𝑑 .

3. While 𝜔𝑏 > 𝜖𝑤 or 𝑣𝑏 > 𝜖𝑣 for some small value of𝜖𝑤 and 𝜖𝑣:

3.1 Compute next value 𝜃𝑖+1 = 𝜃𝑖 + 𝐽𝑏
+ 𝜃𝑖 𝒱𝑏

3.2 𝑖 = 𝑖 + 1

3.3 Compute error 𝒱𝑏 = log 𝑇−1 𝜃𝑖+1 𝑇𝑠𝑑

Planar 2R robot: numerical IK example

owh@ieee.org ZA-2203 57

1. Set 𝑖 = 0, make an initial guess 𝜃0 ∈ ℝ𝑛. Decide the values of 𝜖𝑤 and 𝜖𝑣 (max

errors).

Let 𝜃0 = 0,30° , and

allowable error in angular 𝜖𝑤 = 0.001 𝑟𝑎𝑑 0.057° and linear 𝜖𝑣 =
10−4 𝑚 100 𝑚𝑖𝑐𝑟𝑜𝑛𝑠 .

2. Compute FK 𝑇 𝜃0 = 𝑀𝑒 ℬ1 𝜃1𝑒 ℬ2 𝜃2, then compute error 𝒱𝑏 =
𝜔𝑏

𝑣𝑏
=

log 𝑇−1 𝜃0 𝑇𝑠𝑑 .

3. If 𝜔𝑏 > 𝜖𝑤 or 𝑣𝑏 > 𝜖𝑣, then update 𝜃𝑖+1 = 𝜃𝑖 + 𝐽𝑏
+ 𝜃𝑖 𝒱𝑏.

Iterate until error is less than the set values.

The above computations are best done with computer.

𝒊 𝜽𝟏, 𝜽𝟐 𝒙, 𝒚 𝓥𝒃 = 𝝎𝒛𝒃, 𝒗𝒙𝒃, 𝒗𝒚𝒃 𝝎𝒃 𝒗𝒃

0 0.00,30.00° 1.866,0.500 1.571,0.498,1.858 1.571 1.924

1 34.23°, 79.18° 0.429,1.480 0.115, −0.074,0.108 0.115 0.131

2 29.98°, 90.22° 0.363,1,364 −0.004,0.000, −0.004 0.004 0.004

3 30.00°, 90.00° 0.366,1.366 0.000,0.000,0.000 0.000 0.000

Summary (1/2)

• Inverse Kinematics (IK) is finding the required joint variable
values 𝜃𝑑 to achieve a given desired pose (position and
orientation) 𝜉𝑑 (expressed as vector of coordinates) or 𝑇𝑠𝑑

(expressed as homogeneous transformation matrix).

• There may be 0 (not reachable), 1 (at the boundary of the
workspace) or multiple solutions.

• IK can be solved analytically or numerically.

• Analytical approach uses geometry and solves FK equations in
𝜉 = 𝑓 𝜃 .

• Analytical approach can find all possible solutions so that we
can choose which solution to use (e.g. righty, lefty, elbow-up,
elbow-down).

owh@ieee.org ZA-2203 63

Summary (2/2)

• However, analytical approach may not always be possible, or
may be very difficult for complex mechanisms.

• Numerical approach uses Newton-Raphson method to
iteratively predict the value of 𝜃𝑖+1 until it found the𝜃𝑖+1 =
𝜃𝑑 such that the error 𝜉𝑑 − 𝑓 𝜃𝑖 (or twist 𝒱𝑏) is zero.

• Newton-Raphson numerical IK problem can be represented
in the forms for vector or homogeneous transformation
matrix.

• The initial guess 𝜃0 for the Newton-Raphson numerical IK
needs to be close to a solution.

• If we move the robotic arm in small steps, in each step, the
previous known configuration of 𝜃 can serve as a good initial
guess 𝜃0 for the next move step.

owh@ieee.org ZA-2203 64

Reading List

• Read Chapter 6 of Modern Robotics

owh@ieee.org ZA-2203 65

To Do List

• Watch Chapter 6 videos of Modern Robotics on Coursera, or
on YouTube
https://www.youtube.com/playlist?list=PLggLP4f-
rq02vX0OQQ5vrCxbJrzamYDfx

owh@ieee.org ZA-2203 66

https://www.youtube.com/playlist?list=PLggLP4f-rq02vX0OQQ5vrCxbJrzamYDfx
https://www.youtube.com/playlist?list=PLggLP4f-rq02vX0OQQ5vrCxbJrzamYDfx

	Slide 1: Inverse Kinematics: Manipulators
	Slide 2: Topics
	Slide 3: Forward & Inverse Kinematics
	Slide 4: Inverse kinematics: three approaches
	Slide 5: 2R planar open chain manipulator
	Slide 6: 2R planar open chain manipulator
	Slide 7: 2R planar open chain manipulator
	Slide 8: 2R planar robot: geometry
	Slide 9: 2R planar robot: geometry
	Slide 10: 2R planar robot: geometry
	Slide 11: 2R planar robot: geometry
	Slide 12: 2R planar robot: geometry
	Slide 13: 2R planar robot: geometry
	Slide 14: 2R planar robot: geometry
	Slide 15: 2R planar robot: geometry
	Slide 16: 2R planar robot: algebra
	Slide 17: 2R planar robot: algebra
	Slide 18: 2R planar robot: algebra
	Slide 19: 2R planar robot: algebra
	Slide 20: 6R PUMA-Type robot: analytical e.g.
	Slide 21: 6R PUMA-Type robot: analytical e.g.
	Slide 22: 6R PUMA-Type robot: analytical e.g.
	Slide 24: 6R PUMA-Type robot: analytical e.g.
	Slide 25: 6R PUMA-Type robot: analytical e.g.
	Slide 26: 6R PUMA-Type robot: analytical e.g.
	Slide 27: 6R PUMA-Type robot: analytical e.g.
	Slide 28: 6R PUMA-Type robot: analytical e.g.
	Slide 29: Numerical inverse kinematics
	Slide 30: Numerical inverse kinematics
	Slide 31: Newton-Raphson method
	Slide 32: Newton-Raphson method: scalar example
	Slide 33: Newton-Raphson method: scalar example
	Slide 34: Newton-Raphson method: scalar example
	Slide 35: Newton-Raphson method: scalar example
	Slide 36: Newton-Raphson method: scalar example
	Slide 37: Newton-Raphson method: scalar example
	Slide 38: Newton-Raphson method: scalar example
	Slide 39: Newton-Raphson method: scalar example
	Slide 40: Newton-Raphson method: scalar example
	Slide 42: Newton-Raphson method: vector
	Slide 43: Newton-Raphson method: vector
	Slide 44: Newton-Raphson method: vector
	Slide 45: Newton-Raphson method: vector
	Slide 46: Newton-Raphson numerical IK: xi sub d steps
	Slide 47: Newton-Raphson numerical IK: cap T sub s d
	Slide 48: Representing error as velocity in unit time
	Slide 49: Representing error as velocity in unit time
	Slide 50: Representing error as velocity in unit time
	Slide 51: Representing error as velocity in unit time
	Slide 52: Newton-Raphson numerical IK: cap T sub s d steps
	Slide 53: Initial guess for Newton-Raphson
	Slide 54: Planar 2R robot: numerical IK example
	Slide 55: Planar 2R robot: numerical IK example
	Slide 56: Planar 2R robot: numerical IK example
	Slide 57: Planar 2R robot: numerical IK example
	Slide 63: Summary (1/2)
	Slide 64: Summary (2/2)
	Slide 65: Reading List
	Slide 66: To Do List

