Inverse Kinematics: Manipulators

ZA-2203 Robotic Systems

Topics

- Approaches in inverse kinematics (IK)
- Analytical IK for 2R planar robot: geometry
- Analytical IK for 2R planar robot: algebra
- Analytical IK for 6R Puma robot
- Numerical IK: Newton-Raphson method for numerical IK

Forward & Inverse Kinematics

- **Kinematics** is the study of motion without regard to forces.
 - Study of correspondence between actuator mechanisms (joint variables) and resulting motion of effectors.
- Forward Kinematics (FK): for the given angular movement at each joint, where will the end-effector reach?
- Inverse Kinematics (IK): for a desired position of the end-effector, how much should each joint rotate?

Inverse kinematics: three approaches

- Three approaches:
 - Analytical: geometry
 - Analytical: algebra, i.e. solving equations usually from FK
 - Numerical: iteratively find the solution using optimization algorithm
- More difficult than FK
- May have 0, 1 or multiple solutions, possibly infinite solutions
- Analytical closed-form solution(s) not always possible, however it can find all possible solutions
- Iterative numerical approach will find only one solution depending on the initial guess

2R planar open chain manipulator

2R planar open chain manipulator

To reach:

- A position outside the workspace, no solution
- A position at the boundary of the workspace, one solution
- A position within the workspace, multiple solutions

2R planar open chain manipulator

To reach:

- A position outside the workspace, no solution
- A position at the boundary of the workspace, one solution
- A position within the workspace, multiple solutions

IK: Determine θ_1 , θ_2 given pose of {b} in {s}

Given desired end-effector position E=(x, y).

Let's consider the position only. Usually, orientation can be treated separately especially if wrist joint is spherical, i.e. the wrist joint determine the orientation.

Determine values of $\theta = (\theta_1, \theta_2)$.

IK: Determine θ_1 , θ_2 given pose of {b} in {s}

Given desired end-effector position E=(x, y).

Determine values of $\theta = (\theta_1, \theta_2)$.

IK: Determine θ_1 , θ_2 given pose of {b} in {s}

Given desired end-effector position E=(x, y).

Determine values of $\theta = (\theta_1, \theta_2)$.

 $r^2 = x^2 + y^2$ (Pythagoras Theorem) $\gamma = \tan^{-1} \frac{y}{x}$ To consider the quadrant of γ : $\gamma = \tan^2(y, x)$

IK: Determine θ_1 , θ_2 given pose of {b} in {s}

Given desired end-effector position E=(x, y).

Determine values of $\theta = (\theta_1, \theta_2)$.

$$r^{2} = x^{2} + y^{2}$$

$$\gamma = \operatorname{atan2}(y, x)$$

$$r^{2} = L_{1}^{2} + L_{2}^{2} - 2L_{1}L_{2}\cos\beta$$
(Cosine Rule)

$$x^{2} + y^{2} = L_{1}^{2} + L_{2}^{2} - 2L_{1}L_{2}\cos\beta$$

Rearrange: $\beta = \cos^{-1} \left(\frac{L_1^2 + L_2^2 - x^2 - y^2}{2L_1 L_2} \right)$

IK: Determine θ_1 , θ_2 given pose of {b} in {s}

Given desired end-effector position E=(x, y).

Determine values of $\theta = (\theta_1, \theta_2)$.

$$r^{2} = x^{2} + y^{2}$$

$$\gamma = \operatorname{atan2}(y, x)$$

$$\beta = \cos^{-1}\left(\frac{L_{1}^{2} + L_{2}^{2} - x^{2} - y^{2}}{2L_{1}L_{2}}\right)$$

 $L_2^2 = L_1^2 + r^2 - 2L_1 r \cos \alpha$ $L_2^2 = L_1^2 + x^2 + y^2 - 2L_1 \sqrt{x^2 + y^2} \cos \alpha$

Rearrange:

$$\alpha = \cos^{-1} \left(\frac{L_1^2 - L_2^2 + x^2 + y^2}{2L_1 \sqrt{x^2 + y^2}} \right)$$

ZA-2203

IK: Determine θ_1 , θ_2 given pose of {b} in {s}

Given desired end-effector position E=(x, y).

Determine values of $\theta = (\theta_1, \theta_2)$.

$$\gamma = \operatorname{atan2}(y, x)$$

$$\beta = \cos^{-1}\left(\frac{L_1^2 + L_2^2 - x^2 - y^2}{2L_1L_2}\right)$$

$$\alpha = \cos^{-1}\left(\frac{L_1^2 - L_2^2 + x^2 + y^2}{2L_1\sqrt{x^2 + y^2}}\right)$$

$$\theta_1 = \gamma - \alpha \quad \theta_2 = \pi - \beta$$

IK: Determine θ_1 , θ_2 given pose of {b} in {s}

Given desired end-effector position E=(x, y).

Determine values of $\theta = (\theta_1, \theta_2)$.

$$\gamma = \operatorname{atan2}(y, x)$$

$$\beta = \cos^{-1}\left(\frac{L_1^2 + L_2^2 - x^2 - y^2}{2L_1L_2}\right)$$

$$\alpha = \cos^{-1}\left(\frac{L_1^2 - L_2^2 + x^2 + y^2}{2L_1\sqrt{x^2 + y^2}}\right)$$

$$\theta_1 = \gamma + \alpha \quad \theta_2 = -(\pi - \beta)$$

IK: Determine θ_1 , θ_2 given pose of {b} in {s}

Given desired end-effector position E=(x, y).

Determine values of $\theta = (\theta_1, \theta_2)$.

$$\gamma = \operatorname{atan2}(y, x)$$

$$\beta = \cos^{-1} \left(\frac{L_1^2 + L_2^2 - x^2 - y^2}{2L_1 L_2} \right)$$

$$\alpha = \cos^{-1} \left(\frac{L_1^2 - L_2^2 + x^2 + y^2}{2L_1 \sqrt{x^2 + y^2}} \right)$$

Righty: $\theta_1 = \gamma - \alpha$ $\theta_2 = \pi - \beta$ Lefty: $\theta_1 = \gamma + \alpha$ $\theta_2 = \beta - \pi$

IK: Determine θ_1 , θ_2 given pose of {b} in {s}

Given desired end-effector position E=(x, y).

Determine values of $\theta = (\theta_1, \theta_2)$. Forward kinematics: $x = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2)$ $y = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2)$

Two equations, two unknowns, solve by algebra.

IK: Determine θ_1 , θ_2 given pose of {b} in {s}

Given desired end-effector position E=(x, y).

Determine values of $\theta = (\theta_1, \theta_2)$. Forward kinematics: $x = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2)$ $y = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2)$

Two equations, two unknowns, solve by algebra.

$$x^{2} + y^{2} = (L_{1} \cos \theta_{1} + L_{2} \cos(\theta_{1} + \theta_{2}))^{2} + (L_{1} \sin \theta_{1} + L_{2} \sin(\theta_{1} + \theta_{2}))^{2}$$

$$x^{2} + y^{2} = L_{1}^{2} + L_{2}^{2} + 2L_{1}L_{2}\cos\theta_{2}$$

$$\theta_2 = \cos^{-1} \left(\frac{x^2 + y^2 - {L_1}^2 - {L_2}^2}{2L_1 L_2} \right)_{17}$$

IK: Determine θ_1 , θ_2 given pose of {b} in {s}

Forward kinematics: $x = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2)$ $y = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2)$

Two equations, two unknowns, solve by algebra.

$$x = L_1c_1 + L_2c_{12}$$

= $L_1c_1 + L_2(c_1c_2 - s_1s_2)$
 $y = L_1s_1 + L_2s_{12}$
= $L_1s_1 + L_2(s_1c_2 + c_1s_2)$

$$x = (L_1 + L_2c_2)c_1 - L_2s_2s_1$$

$$y = (L_1 + L_2c_2)s_1 + L_2s_2c_1$$

$$x = (L_1 + L_2 c_2) \cos \theta_1 - L_2 s_2 \sin \theta_1 y = (L_1 + L_2 c_2) \sin \theta_1 + L_2 s_2 \cos \theta_1$$

ZA-2203

IK: Determine θ_1 , θ_2 given pose of {b} in {s}

Forward kinematics: $x = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2)$ $y = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2)$

Two equations, two unknowns, solve by algebra.

$$x = (L_1 + L_2 c_2) \cos \theta_1 - L_2 s_2 \sin \theta_1$$

$$y = (L_1 + L_2 c_2) \sin \theta_1 + L_2 s_2 \cos \theta_1$$

$$x = A \cos \theta_1 - B \sin \theta_1$$

$$y = A \sin \theta_1 + B \cos \theta_1$$

 θ_1 can be solved by:

For
$$a\cos\theta + b\sin\theta = c$$
,
 $\theta = \tan^{-1}\frac{c}{\sqrt{a^2 + b^2 - c}} - \tan^{-1}\frac{a}{b}$

ZA-2203

The pose of the end effector of an 6R robot can be represented as a homogeneous transformation matrix

 $T(\theta) = e^{[\mathcal{S}_1]\theta_1} e^{[\mathcal{S}_2]\theta_2} e^{[\mathcal{S}_3]\theta_3} e^{[\mathcal{S}_4]\theta_4} e^{[\mathcal{S}_5]\theta_5} e^{[\mathcal{S}_6]\theta_6} M$

For a desired pose of the end-effector T_{sd} , the IK problem is to find solution $\theta \in \mathbb{R}^6$ satisfying $T(\theta) = T_{sd}$.

For this robot with a spherical wrist, the position and orientation can be decoupled (**kinematics decoupling**): solve θ_1 , θ_2 , θ_3 for **inverse position**, then solve θ_4 , θ_5 , θ_6 for **inverse orientation**.

This example uses **geometry** to solve for inverse position problem, and **algebra** to solve for inverse orientation problem.

We use **geometry** to solve the **inverse position IK** problem. We want to find θ_1 , θ_2 , θ_3 to achieve the desired position of the end-effector $p_d = (p_x, p_y, p_z)$.

Source: Modern Robotics

If $p_x, p_y \neq 0$ $\theta_1 = \operatorname{atan2}(p_y, p_x) \qquad \theta_1 = \operatorname{atan2}(p_y, p_x) + \pi$

Singularity when p_x , $p_y = 0$, infinite solutions for θ_1 .

Source: Modern Robotics

Solving for θ_2 and θ_3 is similar to solving the 2R planar IK on $r - z_0$ plane. Adapting the solution for 2R planar robot, we have:

$$\theta_3 = \cos^{-1}\left(\frac{r^{*2} - a_2^2 - a_3^2}{2a_2a_3}\right)$$

Likewise, we can adapt accordingly for to determine θ_2 .

owh@ieee.org

ZA-2203

Solving for θ_2 and θ_3 is similar to solving the 2R planar IK on $r - z_0$ plane. Adapting the solution for 2R planar robot, we have:

$$\theta_3 = \cos^{-1}\left(\frac{{r^*}^2 - {a_2}^2 - {a_3}^2}{2a_2a_3}\right)$$

Likewise, we can adapt accordingly for to determine θ_2 .

owh@ieee.org

Source: Modern Robotics

Four possible inverse (position) kinematics solutions for the 6R PUMA-type arm with shoulder offset

Recall: for a desired pose of the end-effector T_{sd} , the IK problem is to find solution $\theta \in \mathbb{R}^6$ satisfying $T(\theta) = T_{sd}$.

Note $T_{sd} = \begin{bmatrix} R_d & p_d \\ 0 & 1 \end{bmatrix}$, where p_d is the desired position and R_d is the desired orientation of the end-effector.

Once we have found θ_1 , θ_2 , θ_3 for p_d , we can solve the **inverse orientation** problem by **algebra**. We use the FK equation.

$$T(\theta) = T_{sd} = e^{[S_1]\theta_1} e^{[S_2]\theta_2} e^{[S_3]\theta_3} e^{[S_4]\theta_4} e^{[S_5]\theta_5} e^{[S_6]\theta_6} M$$

$$e^{-[S_3]\theta_3} e^{-[S_2]\theta_2} e^{-[S_1]\theta_1} T_{sd} M^{-1} = e^{[S_4]\theta_4} e^{[S_5]\theta_5} e^{[S_6]\theta_6}$$

$$L = e^{[S_4]\theta_4} e^{[S_5]\theta_5} e^{[S_6]\theta_6}$$

Notice the left-hand side are now known, defined as *L*. We can solve for θ_4 , θ_5 , θ_6 .

Recall: for a desired pose of the end-effector T_{sd} , the IK problem is to find solution $\theta \in \mathbb{R}^6$ satisfying $T(\theta) = T_{sd}$.

Note $T_{sd} = \begin{bmatrix} R_d & p_d \\ 0 & 1 \end{bmatrix}$, where p_d is the desired position and R_d is the desired orientation of the end-effector.

Alternatively, knowing the screw axes of S_4 , S_5 , S_6 , we can form the rotation matrix. For the 6R PUMA robot, the ω -components are

$$\omega_4 = (0,0,1),$$

 $\omega_5 = (0,1,0),$
 $\omega_6 = (1,0,0).$

Which results in a combined rotation of $Rot(\hat{z}, \theta_4)Rot(\hat{y}, \theta_5)Rot(\hat{x}, \theta_6)$. We can solve for θ_4 , θ_5 , θ_6 .

$$Rot(\hat{z}, \theta_4)Rot(\hat{y}, \theta_5)Rot(\hat{x}, \theta_6) = R_d$$

Numerical inverse kinematics

Forward kinematics gives pose as a function of the joint variables: $\xi = f(\theta)$ E.g. $\binom{x}{y} = \binom{L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2)}{L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2)}$

For more complex robots, it may not be possible to solve the FK equations analytically to obtain the desired joint variable values in a given IK problem.

An alternative approach is to solve it using iterative numerical approach.

Numerical inverse kinematics

This is done in a systematic way by changing the values of θ in the direction to minimize the error of

$$\xi_d-\xi=\xi_d-f(\theta)\to 0$$

We expect if we have found $\theta = \theta_d$, the error $\xi_d - f(\theta_d) = 0$

This is basically what optimization algorithms do: find the set of parameters (variable values) that minimize (or maximize) the cost or error (or objective or utility). $\theta^* = \arg \min(\xi_d - f(\theta))$

If we manage to minimize the error to zero, $\theta^* = \theta_d$.

ZA-2203

Newton-Raphson method

We basically want to find $\theta = \theta_d$ such that

$$\xi_d - f(\theta_{-}) = 0$$

I.e. we want to solve the above equation, in other words to **find the root** to the above equation.

Newton-Raphson root finding method is a method we can use to solve an equation $g(\theta) = 0$ numerically provided g is differentiable.

It gives an effective way to change the value of θ such that the error equation will head towards zero.

Consider a single coordinate pose (scalar), $\xi_d = x_d$. We want to find the root of below equation numerically:

 $x_d - f(\theta) = 0$

 x_d is the desired value, $f(\theta)$ is the actual function value at θ .

Naively, we can try all possible values of θ until we reach a point of $x_d - f(\theta) = 0$. At this point, $\theta = \theta_d$.

Consider a single coordinate pose (scalar), $\xi_d = x_d$. We want to find the root of below equation numerically:

$$x_d - f(\theta) = 0$$

Consider a single coordinate pose (scalar), $\xi_d = x_d$. We want to find the root of below equation numerically:

$$x_d - f(\theta) = 0$$

 x_d is the desired value, $f(\theta)$ is the actual function value at θ .

If $x_d - f(\theta)$ is differentiable, we can find its gradient at every value of θ .

We can use this gradient or slope to guide us in choosing the value of θ in the next iteration.

Consider a single coordinate pose (scalar), $\xi_d = x_d$. We want to find the root of below equation numerically:

$$x_d - f(\theta) = 0$$

Consider a single coordinate pose (scalar), $\xi_d = x_d$. We want to find the root of below equation numerically:

$$x_d - f(\theta) = 0$$

Consider a single coordinate pose (scalar), $\xi_d = x_d$. We want to find the root of below equation numerically:

$$x_d - f(\theta) = 0$$

Consider a single coordinate pose (scalar), $\xi_d = x_d$. We want to find the root of below equation numerically:

$$x_d - f(\theta) = 0$$

Consider a single coordinate pose (scalar), $\xi_d = x_d$. We want to find the root of below equation numerically:

$$x_d - f(\theta) = 0$$

Consider a single coordinate pose (scalar), $\xi_d = x_d$. We want to find the root of below equation numerically:

$$x_d - f(\theta) = 0$$

We generalize the formulation to non-scalar pose, i.e. $\xi = f(\theta)$ is a vector (not just an x coordinate). We can write the FK function $f(\theta)$ differentiable at θ^i as a **Taylor series**:

$$\xi = f(\theta) = f(\theta^{i}) + \frac{\partial f}{\partial \theta}(\theta^{i})(\theta - \theta^{i}) + higher \text{ order terms}$$

At $\theta = \theta_d$, we have:

$$\xi_{d} = f(\theta_{d}) = f(\theta^{i}) + \frac{\partial f}{\partial \theta} (\theta^{i}) (\theta_{d} - \theta^{i}) + higher \text{ order terms}$$

$$\text{Recall } J(\theta) = \frac{\partial f(\theta)}{\partial \theta} \longrightarrow J(\theta^{i}) \qquad \Delta \theta$$

Think of this as the FK function of the desired pose $\xi_d = f(\theta_d)$ at joint variables θ_d expressed as a function of current iteration joint variables θ^i and the slope $\frac{\partial f}{\partial \theta}(\theta^i)$ at this point.

We can rearrange and write above equation as below: $\xi_d - f(\theta^i) = J(\theta^i)\Delta\theta + higher order terms$

owh@ieee.org

ZA-2203

We can use the Taylor series to help us determine the $\Delta\theta$ to determine the next θ^{i+1} .

$$\xi_d - f(\theta^i) = J(\theta^i)\Delta\theta + higher order terms (h.o.t)$$

 θ^i

θ

 θ^d

 $\Delta\theta$ involves h.o.t

If we ignore higher order terms, the $\Delta\theta$ we will obtain is not exactly $\theta_d - \theta^i$,

$$\xi_d - f(\theta^i) = J(\theta^i) \Delta \theta^*$$

where $\Delta \theta^* = \theta^{i+1} - \theta^i$.

ZA-2203

If we ignore higher order terms, the $\Delta\theta$ we will obtain is not exactly $\theta_d - \theta^i$,

$$\xi_d - f(\theta^i) = J(\theta^i) \Delta \theta^*$$

where $\Delta \theta^* = \theta^{i+1} - \theta^i$. Rearrange to determine $\Delta \theta^*$,

$$\Delta \theta^* = \frac{\xi_d - f(\theta^i)}{J(\theta^i)} = J^{-1}(\theta^i) \left(\xi_d - f(\theta^i)\right)$$

 $J(\theta^i)$ may not always be invertible, e.g. if it is not a square matrix and at singularity point. We can use a mathematical tool, **matrix pseudoinverse** to obtain the inverse of $J(\theta^i)$ for such cases. It will also work if $J(\theta^i)$ is invertible. We donate pseudoinverse of $J(\theta^i)$ as $J^+(\theta^i)$.

$$\Delta \theta^* = J^+(\theta^i) \left(\xi_d - f(\theta^i)\right)$$

We can update $\theta^{i+1} = \theta^i + \Delta \theta^*$ iteratively until we reach $\theta^{i+1} = \theta_d$ where $\xi_d - f(\theta_d) = 0$. $\theta^{i+1} = \theta^i + J^+(\theta^i) (\xi_d - f(\theta^i))$

Newton-Raphson numerical IK: ξ_{d} steps

Given a desired pose expressed in minimal coordinates (usually position and orientation) $\xi_d \in \mathbb{R}^m$ and the FK of the robot $\xi = f(\theta)$, we solve the IK problem to determine the required joint variable values $\theta_d \in \mathbb{R}^n$ by following the steps below:

1. Set i = 0, make an initial guess $\theta^0 \in \mathbb{R}^n$. Decide the value of ϵ (max error).

2. Compute error
$$e = \xi_d - f(\theta^0)$$
.

3. While $||e|| > \epsilon$ for some small value of ϵ :

3.1 Compute next value $\theta^{i+1} = \theta^i + J^+(\theta^i)e$

$$3.2 i = i + 1$$

3.3 Compute error $e = \xi_d - f(\theta^{i+1})$

Newton-Raphson numerical IK: *T_{sd}*

In the case when the desired pose of the end-effector is given in the form of a **homogeneous transformation matrix** T_{sd} , we can modify the Newton-Raphson numerical IK steps accordingly.

 $T_{sd} \in \mathbb{R}^{4 \times 4}$ Given a desired pose expressed in minimal coordinates (usually position and orientation) $\xi_d \in \mathbb{R}^m$ and the FK of the robot $\xi = f(\theta)$, we solve the IK problem to determine the required joint variable values $\theta_d \in \mathbb{R}^n$ by following the steps below:

1. Set i = 0, make an initial guess $\theta^0 \in \mathbb{R}^n$. Decide the value of ϵ . 2. Compute error $e = \xi_d - f(\theta^0)$. 3. While $||e|| > \epsilon$ for some small value of ϵ : 3.1 Compute next value $\theta^{i+1} = \theta^i + J^+(\theta^i)e$ 3.2 i = i + 13.3 Compute error $e = \xi_d - f(\theta^{i+1})$

We can interpret $e(\theta^i)$ as the **change in pose** required to get from $f(\theta^i)$ to ξ_d . Given $\Delta \theta^*$ is a change in θ in **one unit time** step to change from $f(\theta^i)$ to ξ_d , we can interpret $e(\theta^i)$ as the required **change in pose in one unit time** from $f(\theta^i)$ to ξ_d .

owh@ieee.org

ZA-2203

We can interpret $e(\theta^i)$ as the required **change in pose in one unit time** from $f(\theta^i)$ to ξ_d .

We can think of representing $e(\theta^i)$ as the velocity that if the end-effector follow it in unit time, it will change from $T(\theta^i) (\equiv f(\theta^i))$ to $T_{sd} (\equiv \xi_d)$. In other words, we can find the twist \mathcal{V} that will change the effector pose from $T(\theta^i)$ to T_{sd} in unit time.

Recall twist \mathcal{V} is the velocity of the pose (angular and linear combined).

$$T_{bd} = T_{bs}T_{sd} = T_{sb}^{-1}T_{sd}$$
$$[\mathcal{V}_b] = \log e^{[\mathcal{V}_b]} = \log T_{bd} = \log(T_{sb}^{-1}T_{sd}) = \log(T^{-1}(\theta^i)T_{sd})$$

ZA-2203

Newton-Raphson numerical IK: T_{sd} steps

Given a desired pose expressed in minimal coordinates (usually position and orientation) $T_{sd} \in \mathbb{R}^{4 \times 4}$ and the FK of the robot $T(\theta) = e^{[S_1]\theta_1} \cdots M$ or $T(\theta) = Me^{[B_1]\theta_1} \cdots$, we solve the IK problem to determine the required joint variable values $\theta_d \in \mathbb{R}^n$ by following the steps below:

1. Set i = 0, make an initial guess $\theta^0 \in \mathbb{R}^n$. Decide the values of ϵ_w and ϵ_v (max errors).

2. Compute error $[\mathcal{V}_b] = \log(T^{-1}(\theta^0)T_{sd})$. 3. While $\|\omega_b\| > \epsilon_w$ or $\|v_b\| > \epsilon_v$ for some small value of ϵ_w and ϵ_v : 3.1 Compute next value $\theta^{i+1} = \theta^i + J_b^{+}(\theta^i)\mathcal{V}_b$ 3.2 i = i + 13.3 Compute error $[\mathcal{V}_b] = \log(T^{-1}(\theta^{i+1})T_{sd})$

 $\mathcal{V}_b \in \mathbb{R}^6$ is the body twist. $J_b \in \mathbb{R}^{6 \times n}$ is the body Jacobian. Alternative, we can use space twist \mathcal{V}_s and space Jacobian J_s .

Initial guess for Newton-Raphson

- The result of Newton-Raphson depends on the initial guess.
- The initial guess θ^0 should be as close to a solution θ_d as possible in order for the numerical IK to converge.
- We can start the robot from an initial home configuration where both the actual end-effector configuration and the joint angles are known and ensuring that the requested endeffector position T_{sd} changes slowly (moves in small steps) relative to the frequency of the calculation of the inverse kinematics.
- Then, for the rest of the robot's run, the calculated θ_d at the previous arm move serves as the initial guess θ^0 for the new T_{sd} at the next arm move.

Given desired end-effector position is (x, y) = (0.366 m, 1.366 m)and end-effector orientation is $\phi = 120^{\circ}$

Determine $\theta_d = (\theta_1, \theta_2)$ to achieve the above pose. Use transformation matrix for your solution.

We need to have T_{sd} and the FK equation.

$$T_{sd} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \text{ where } R = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } p = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \qquad \hat{y} \qquad 1 \text{ m} \qquad \theta_{2}$$

$$T_{sd} = \begin{bmatrix} -0.5 & -0.866 & 0 & 0.366 \\ 0.866 & -0.5 & 0 & 1.366 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad 1 \text{ m} \qquad \theta_{1}$$

Given desired end-effector position is (x, y) = (0.366 m, 1.366 m)and end-effector orientation is $\phi = 120^{\circ}$

Determine $\theta_d = (\theta_1, \theta_2)$ to achieve the above pose. Use transformation matrix for your solution.

Source: Modern Robotics

We need to have T_{sd} and the FK equation.

Recall:

Desired pose:
$$T_{sd} = \begin{bmatrix} -0.5 & -0.866 & 0 & 0.366 \\ 0.866 & -0.5 & 0 & 1.366 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward kinematics: $T(\theta) = Me^{[\mathcal{B}_1]\theta_1}e^{[\mathcal{B}_2]\theta_2}$ $M = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad [\mathcal{B}_1] = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad [\mathcal{B}_2] = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Given $T_{sd} \in \mathbb{R}^{4 \times 4}$ and the FK of the robot $T(\theta) = Me^{[\mathcal{B}_1]\theta_1}e^{[\mathcal{B}_2]\theta_2}$.

1. Set i = 0, make an initial guess $\theta^0 \in \mathbb{R}^n$. Decide the values of ϵ_w and ϵ_v (max errors).

2. Compute error $[\mathcal{V}_b] = \log(T^{-1}(\theta^0)T_{sd})$.

3. While $\|\omega_b\| > \epsilon_w$ or $\|v_b\| > \epsilon_v$ for some small value of ϵ_w and ϵ_v :

3.1 Compute next value $\theta^{i+1} = \theta^i + J_b^+(\theta^i)\mathcal{V}_b$

3.2 i = i + 1

3.3 Compute error
$$[\mathcal{V}_b] = \log(T^{-1}(\theta^{i+1})T_{sd})$$

owh@ieee.org

1. Set i = 0, make an initial guess $\theta^0 \in \mathbb{R}^n$. Decide the values of ϵ_w and ϵ_v (max errors). Let $\theta^0 = (0,30^\circ)$, and allowable error in angular $\epsilon_w = 0.001 \ rad \ (0.057^\circ)$ and linear $\epsilon_v = 10^{-4} \ m \ (100 \ microns)$. 2. Compute FK $T(\theta^0) = Me^{[\mathcal{B}_1]\theta_1}e^{[\mathcal{B}_2]\theta_2}$, then compute error $[\mathcal{V}_b] = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix} = \log(T^{-1}(\theta^0)T_{sd})$. 3. If $\|\omega_b\| > \epsilon_w$ or $\|v_b\| > \epsilon_v$, then update $\theta^{i+1} = \theta^i + J_b^+(\theta^i)\mathcal{V}_b$. Iterate until error is less than the set values.

The above computations are best done with computer.

i	$(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2)$	(x , y)	$\mathcal{V}_b = (\omega_{zb}, v_{xb}, v_{yb})$	$\ \boldsymbol{\omega}_{b}\ $	$\ v_b\ $
0	(0.00,30.00°)	(1.866,0.500)	(1.571,0.498,1.858)	1.571	1.924
1	(34.23°, 79.18°)	(0.429,1.480)	(0.115, -0.074, 0.108)	0.115	0.131
2	(29.98°, 90.22°)	(0.363,1,364)	(-0.004,0.000, -0.004)	0.004	0.004
3	(30.00°, 90.00°)	(0.366,1.366)	(0.000,0.000,0.000)	0.000	0.000

owh@ieee.org

Summary (1/2)

- Inverse Kinematics (IK) is finding the required joint variable values θ_d to achieve a given desired pose (position and orientation) ξ_d (expressed as vector of coordinates) or T_{sd} (expressed as homogeneous transformation matrix).
- There may be **0** (not reachable), **1** (at the boundary of the workspace) or **multiple solutions**.
- IK can be solved **analytically** or **numerically**.
- Analytical approach uses geometry and solves FK equations in $\xi = f(\theta)$.
- Analytical approach can find all possible solutions so that we can choose which solution to use (e.g. righty, lefty, elbow-up, elbow-down).

Summary (2/2)

- However, analytical approach may not always be possible, or may be very difficult for complex mechanisms.
- Numerical approach uses Newton-Raphson method to iteratively predict the value of θ^{i+1} until it found the $\theta^{i+1} = \theta_d$ such that the error $\xi_d f(\theta^i)$ (or twist \mathcal{V}_b) is zero.
- Newton-Raphson numerical IK problem can be represented in the forms for vector or homogeneous transformation matrix.
- The **initial guess** θ^0 for the Newton-Raphson numerical IK needs to be close to a solution.
- If we move the robotic arm in **small steps**, in each step, the previous known configuration of θ can serve as a good initial guess θ^0 for the next move step.

Reading List

• Read Chapter 6 of Modern Robotics

To Do List

 Watch Chapter 6 videos of Modern Robotics on Coursera, or on YouTube

https://www.youtube.com/playlist?list=PLggLP4frq02vX0OQQ5vrCxbJrzamYDfx