Inverse Kinematics: Manipulators

ZA-2203 Robotic Systems

owh@ieee.org ZA-2203



Topics

* Approaches in inverse kinematics (IK)

e Analytical IK for 2R planar robot: geometry

* Analytical IK for 2R planar robot: algebra

e Analytical IK for 6R Puma robot

 Numerical IK: Newton-Raphson method for numerical IK
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Forward & Inverse Kinematics

» Kinematics — is the study of motion without regard to forces.

— Study of correspondence between actuator mechanisms (joint variables) and
resulting motion of effectors.

 Forward Kinematics (FK): for the given angular movement at each joint,
where will the end-effector reach?

* Inverse Kinematics (IK): for a desired position of the end-effector, how
much should each joint rotate?

M 3D position? M 3D position

6, 8,?

0, 0,?

C ¢ Ce ¢

owh@ieee.org SS-4311



Inverse Kinematics: three approaches

Three approaches:

— Analytical: geometry
— Analytical: algebra, i.e. solving equations usually from FK
— Numerical: iteratively find the solution using optimization algorithm

e More difficult than FK
 May have 0, 1 or multiple solutions, possibly infinite solutions

e Analytical closed-form solution(s) not always possible,
however it can find all possible solutions

e [terative numerical approach will find only one solution
depending on the initial guess

owh@ieee.org ZA-2203



2R planar open chain manipulator

~< -
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To reach:
- A position outside the
workspace, no solution
- A position at the boundary
of the workspace, one
solution
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2R planar open chain manipulator

@ To reach:
- A position outside the

workspace, no solution

- A position at the boundary
of the workspace, one
solution

- A position within the
workspace, multiple
solutions
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2R planar open chain manipulator

To reach:

- A position outside the
workspace, no solution

- A position at the boundary
of the workspace, one
solution

- A position within the
workspace, multiple
solutions
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2R planar robot: geometry

IK: Determine 64, 8, given pose of {b} in {s}

Given desired end-effector position
E=(x, y).

Let's consider the position only.
Usually, orientation can be treated
separately especially if wrist joint is
spherical, i.e. the wrist joint determine
the orientation.

Determine values of 8 = (64, 0,).
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2R planar robot: geometry

IK: Determine 64, 8, given pose of {b} in {s}

Given desired end-effector position
E=(x, y).

Determine values of 8 = (64, 0,).
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2R planar robot: geometry

IK: Determine 64, 8, given pose of {b} in {s}

Given desired end-effector position
E=(x, y).

Determine values of 8 = (64, 0,).

r? = x? + y? (Pythagoras Theorem)

¥ Yy = tan‘lg
§ To consider the quadrant of y:
_______ y = atan2(y, x)
{s} % X
r
y
Y
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2R planar robot: geometry

IK: Determine 64, 8, given pose of {b} in {s}

Given desired end-effector position
E=(x, y).

Determine values of 8 = (64, 0,).

r? =x?%+ y?

y = atan2(y, x)

r? =L%+ L% —2L{L, cospf
(Cosine Rule)
x% +y?=1L*+L,>—2LL,cosf

Rearrange:

I f = cos‘1<

L%+ L% — x? —y?
2041,
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2R planar robot: geometry

IK: Determine 64, 8, given pose of {b} in {s}

Given desired end-effector position
E=(x, y).

Determine values of 8 = (64, 0,).

r2 = x2 4 y2
y = atan2(y, x)
§ = cos1 (le tly —xPoy 2)
2L,L,

L,> =L* +1r%—2Lrcosa
L,> =L +x?+y%—2L,/x? +y?cosa

Rearrange:
(L% = L%+ x4 y?
a I Q = CoS
1 2L1+/x?% + y?
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2R planar robot: geometry

IK: Determine 64, 8, given pose of {b} in {s}

Given desired end-effector position
E=(x, y).

Determine values of 8 = (64, 0,).

y = atan2(y, x)

le + L22 —Xz _yZ
2L,L,

L% — Ly* 4+ x% 4+ y?

2L/ x?% + y?

0,=y—a 6,=m—

1

B = cos™

1

a = COS
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2R planar robot: geometry

IK: Determine 64, 8, given pose of {b} in {s}

Given desired end-effector position
E=(x, y).

Determine values of 8 = (64, 0,).

y = atan2(y, x)

1 L12+L22—X2—y2

B = cos 2L,

(L =LA+ x? +y?

a = COS

2L/ x?% + y?

O=y+a O,=—(r—p)

owh@ieee.org ZA-2203
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2R planar robot: geometry

IK: Determine 64, 8, given pose of {b} in {s}

Given desired end-effector position
E=(x, y).

Determine values of 8 = (64, 0,).

y = atanZ(y, x)

_1 Ll +L2 —X -y

B = cos 2L1L2

a = COS
2L1\/x2 + y?

Righty: 6, =y —a«a
Lefty: 6O6,=y+a«

T —
b -

owh@ieee.org ZA-2203
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2R planar robot: algebra

IK: Determine 64, 8, given pose of {b} in {s}

Given desired end-effector position
E=(x, y).

Determine values of 8 = (64, 0,).
Forward kinematics:
x = Ly cos0; + L, cos(0; + 6,)
y = L,sin6; + L, sin(6; + 0,)

Two equations, two unknowns, solve
by algebra.

. 01 + 0,
owh@ieee.org ZA-2203
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2R planar robot: algebra

IK: Determine 64, 8, given pose of {b} in {s}

Given desired end-effector position
E=(x, y).

Determine values of 8 = (64, 0,).
Forward kinematics:
x = Ly cos0; + L, cos(0; + 6,)
y = L,sin6; + L, sin(6; + 0,)

Two equations, two unknowns, solve
by algebra.
x? + y?
= (L;cos Oy + L, cos(8; + 6,))?
+ (L sin@; + L, sin(8; + 6,))?

Ll I xz + yZ = L12 + L22 + 2L1L2 COS 92
2
01 x*+y% — L% — Ly
7 0, = cos‘1< 24 ! 2 )
91 + 92 2L1L2
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2R planar robot: algebra

IK: Determine 64, 8, given pose of {b} in {s}

Forward kinematics:
x = Ly cosB; + L, cos(6; + 6,)
y = L,sin6; + L, sin(6; + 0,)

Two equations, two unknowns, solve
by algebra.

X = L1C1 + L2C12
= Lic; + Ly(cicp — 5157)
Yy = LyS; + Lysy,
= L1S1 + Ly(s1¢3 + €153)

x = (Ly+ Lycy)cy — Lysysq
y = (Ly + Lycy)sy + Lysycq

LZ X = (Ll + L2C2) COS 91 - LzSz sin 91
61 7 Yy = (Ll + L2C2) sin 01 + L252 COS 91

. 01 + 0,
owh@ieee.org ZA-2203
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2R planar robot: algebra

IK: Determine 64, 8, given pose of {b} in {s}

Forward kinematics:
x = Ly cosB; + L, cos(6; + 6,)
y = L,sin6; + L, sin(6; + 0,)

Two equations, two unknowns, solve
by algebra.

x = (L;+ Lyc,)cosB; — L,s, sin 0,
y =(Ly + L,cy)sinf; + L,s, cos 6,

x =Acosf; —Bsinf,
y = Asin6; + B cos 0,4

6, can be solved by:

L, For acosf + bsinf = c,
c
01 7 0 =tan~?! —tan~ !
owh@ieee.org 1 2 ZA-2203
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6R PUMA-Type robot: analytical e.g.

The pose of the end effector of an 6R robot can be represented as a
homogeneous transformation matrix

TO) =e (511601 552162 5153103 5 [S4104 5 [S5105 56166

For a desired pose of the end-effector Ty,, the IK problem is to find solution 6 €
R satisfying T(8) = Tyg.

For this robot with a spherical wrist, the position and orientation can be
decoupled (kinematics decoupling): solve 64, 6,, 685 for inverse position,
then solve 6,, 6<, 6, for inverse orientation.

This example uses geometry to solve for inverse position problem, and algebra
to solve for inverse orientation problem.

) ﬂ/%?
oW

Source: Modern Robotics
owh@ieee.org 20




6R PUMA-Type robot: analytical e.g.

We use geometry to solve the inverse position IK problem. We want to find
0, 65, 5 to achieve the desired position of the end-effector py = (py, py, p2).

Zo

X0 Source: Modern Robotics

Source: Modern Robotics

TP py # 0 Singularity when p,, p,,
0, = atanZ(py,px) 0, = atanZ(py, px) + 1 0, infinite solutions for 6.
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6R PUMA-Type robot: analytical e.g.

If there is shoulder displacement, d; + 0,

| | Yo4 Yo ¢
Py

! ----_,l' %\
I‘IJ 1'\ ;.J.Il.’l
T A

- r/-' ’j : -
Pz Xp ﬁ1k | d P X0
@ Source: Modern Robotics !
91:¢—a 91=7T+¢+a
<
Q\H ¢ = atanZ(py,px) ¢ = atanZ(py,Px)
O
l a = atan2 (dl, /rz — d12> a = atan2 <— /‘rz — dlz,d1>

Source: Modern Robotics
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6R PUMA-Type robot: analytical e.g.

S Recall:
Z() /,/"”l )

X
() Source: Modern Robotics

Solving for 8, and 65 is similar to solving the 2R planar IK on r — z, plane.
Adapting the solution for 2R planar robot, we have:

*2 2 2
1 (7T — Az —as
65 = cos
20,05

Likewise, we can adapt accordingly for to determine 6,.
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6R PUMA-Type robot: analytical e.g.

S Recall:
Z() /,/"”l )

Source: Modern Robotics

*2 2
r =px2+py2_d1 +pzz

Solving for 8, and 65 is similar to solving the 2R planar IK on r — z, plane.
Adapting the solution for 2R planar robot, we have:

*2 2 2
1 (7T — Az —as
65 = cos
20,05

Likewise, we can adapt accordingly for to determine 6,.
owh@ieee.org ZA-2203
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6R PUMA-Type robot: analytical e.g.

Source: Modern Robotics

Four possible inverse (position) kinematics
solutions for the 6R PUMA-type arm with shoulder
offset
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6R PUMA-Type robot: analytical e.g.

Recall: for a desired pose of the end-effector T4, the IK problem is to find
solution @ € R® satisfying T(0) = Tyg.

Note T,y = [I;d pld], where p, is the desired position and R, is the desired
orientation of the end-effector.

Once we have found 64, 9,, 685 for p;, we can solve the inverse orientation
problem by algebra. We use the FK equation.

TO) =Ty = 151101 51521602 553165 5154104 o [S5105 5 [S6166 g
e—[53]93e—[sz]eze—[gl]elTde—l — 8[54]943[55]953[56]96
I = el541045(S5165 5[S6166

Notice the left-hand side are now known, defined as L. We can solve for 8,, 6,
O
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6R PUMA-Type robot: analytical e.g.

Recall: for a desired pose of the end-effector T4, the IK problem is to find
solution @ € R® satisfying T(0) = Tyg.

Note T,y = [I;d pld], where p, is the desired position and R, is the desired
orientation of the end-effector.

Alternatively, knowing the screw axes of S,, S5, S, we can form the rotation
matrix. For the 6R PUMA robot, the w-components are

w, = (0,0,1),
ws = (0,1,0),
Wg = (1,0,0)

Which results in a combined rotation of Rot(zZ, 8,)Rot(y,0:)Rot(x,0;). We can
solve for 6,, Oz, 6.

Rot(Z,0,)Rot(y,0s)Rot(X,0,) = Ry

owh@ieee.org ZA-2203 28



Numerical inverse kinematics

Forward kinematics gives pose as a function of the joint variables:

§=f(0)

(x) _ (Ll cos 8, + L, cos(6; + 92))
y N Ll sin 91 + Lz Sin(gl + 82)

E.Q.

For more complex robots, it may not be possible to solve the FK equations
analytically to obtain the desired joint variable values in a given IK problem.

An alternative approach is to solve it using iterative numerical approach.
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Numerical inverse kinematics

owh@ieee.org

Try different values of 8 so that

§ = &g

This is done in a systematic way by changing
the values of 8 in the direction to minimize the
error of

$a—§=8a—f(8) >0

We expect if we have found 6 = 6,4, the error

$a— f(0q) =0

This is basically what optimization algorithms
do: find the set of parameters (variable
values) that minimize (or maximize) the cost
or error (or objective or utility).

0" = argemin(fd — f(@))

If we manage to minimize the error to zero,
0* = Hd'
ZA-2203 30



Newton-Raphson method

We basically want to find 8 = 6, such that

Sa—f(O )=0

l.e. we want to solve the above equation, in other words to find the root to the
above equation.

Newton-Raphson root finding method is a method we can use to solve an
equation g(8) = 0 numerically provided g is differentiable.

It gives an effective way to change the value of 8 such that the error equation
will head towards zero.

owh@ieee.org ZA-2203 31



Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), £; = x;. We want to find the root of
below equation numerically:
xqg— f(6) =0

x4 IS the desired value, f(0) is the actual function value at 6.

Naively, we can try all possible
values of 8 until we reach a
point of x; — f(6) = 0. At this
point, 8 = 6.
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Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), £; = x;. We want to find the root of

below equation numerically:
xqg— f(6) =0

x4 IS the desired value, f(0) is the actual function value at 6.

x; — f(0) 4 Naively, we can try all possible
values of 8 until we reach a
point of x; — f(6) = 0. At this
point, 8 = 6.

We effectively drawn a graph
of x; — f(8) against 6.

What range of 8 should we

’0 try?

owh@ieee.org ZA-2203 33



Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), £; = x;. We want to find the root of
below equation numerically:
xqg— f(6) =0

x4 IS the desired value, f(0) is the actual function value at 6.

x; —f(6) 4 If x4 — f(6) is differentiable,
we can find its gradient at
every value of 6.

We can use this gradient or
slope to guide us in choosing
the value of @ in the next
iteration.

owh@ieee.org ZA-2203 34



Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), £; = x;. We want to find the root of
below equation numerically:
xqg— f(6) =0

x4 IS the desired value, f(0) is the actual function value at 6.

x; — f(0) 4 Let's not try all values of 6
randomly.

Let’s start with any value, an
initial guess, 6,.

xa—fO) |

Compute FK f(6,) and error
function x; — f(6,).

owh@ieee.org ZA-2203 35



Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), £; = x;. We want to find the root of
below equation numerically:
xqg— f(6) =0

x4 IS the desired value, f(0) is the actual function value at 6.

xqg—f(0) 4 Not zero?

We need to try another value
of 8. We will use the slope at
8, to help decide the next

xq — f(8y) value of 6 to try.

Compute the slope of x; —
f(6,). Since x4 is a constant

6, 6, 4 of

I -~ slope = — 38 (6,)
0
AD = <£ (90)> (xd - f(go)) 36
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Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), £; = x;. We want to find the root of
below equation numerically:
xqg— f(6) =0

x4 IS the desired value, f(0) is the actual function value at 6.

xg — f(6) 4 Continue the process to next
iteration with 6, that leads to 6,
and so on.

islo e——i(e)
xd_f(gl) e P 06 1

>

5 0
0, 0,

o
—-1
%,
Af = (% (91)> (xd - f(91)) 37
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Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), £; = x;. We want to find the root of
below equation numerically:
xqg— f(6) =0

x4 IS the desired value, f(0) is the actual function value at 6.

xg — f(6) 4 Continue the process to next
iteration with 6, that leads to 6,
and so on.

Until we reach

xqg—f(6)=0
| The value of 6 would be the
a:d desired 6.
| >9
6, 6, 0,
s
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Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), £; = x;. We want to find the root of
below equation numerically:
xqg— f(6) =0
x4 IS the desired value, f(0) is the actual function value at 6.
The update of 8 in Newton-

A
xq — f(6) Raphson method can be
expressed as:

ri=o-(L9) o

aid where g(6) = x4 — (8.
>

6, 6. 6, 4

——t—t>
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Newton-Raphson method: scalar example

Consider a single coordinate pose (scalar), £; = x;. We want to find the root of
below equation numerically:

xqg— f(6) =0

x4 IS the desired value, f(0) is the actual function value at 6.

x; — f(0) 4 The solution depends on initial
guess of 6,.

This guess should be near to a
solution. Otherwise, the
process may not converge.
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Newton-Raphson method: vector

We generalize the formulation to non-scalar pose, i.e. £ = f(8) is a vector (not
just an x coordinate). We can write the FK function f(8) differentiable at 8 as a
Taylor series:

. 0 . .
E=f(0) = f(9‘) + %(9‘)(9 — 9‘) + higher order terms
At 8 = 6,4, we have:

&= f(6q) = f(6") + % (01)(64 — 6%) + higher order terms

J | J
. Y
Recall J(6) =a;;_(9m — J(6') Ae

Think of this as the FK function of the desired pose ¢; = f(6,) at joint variables
0, expressed as a function of current iteration joint variables 6* and the slope

f (i .
~(6") at this point.

We can rearrange and write above equation as below:
g — f(H‘) = ](9‘)A9 + higher order terms

owh@ieee.org ZA-2203 42



Newton-Raphson method: vector

We can use the Taylor series to help us determine the A8 to determine the next

0i+1_
Ea— f(6Y) =J(6Y)A0 + higher order terms (h.o.t)

Using scalar &, for illustration purpose.

E.—f(0) 4

=10 |

»
| -

owh@ieee.org 7A-2203 A6 involves h.o.t
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Newton-Raphson method: vector

If we ignore higher order terms, the A8 we will obtain is not exactly 8, — 6,
Ea— f(6Y) =J(6Y)A6"

where AG* = 91 — gt

&.—f(6) 4
'Ed - f(ei) e —— SlOpe =](9i)
| ﬁ—’ gi+l — gi 4 AQ*
| I >
gi pgitl gd 0
AO*
ro

owh@ieee.org ZA-2203 44



Newton-Raphson method: vector

If we ignore higher order terms, the A8 we will obtain is not exactly 8, — 6,
Ea— f(6Y) =J(6Y)A6"

where A6* = 9'*1 — g'. Rearrange to determine A6*,

AO* = fd]_(gi()ei) =J71(6") (fd - f(Qi))

](Hi) may not always be invertible, e.qg. if it is not a square matrix and at
singularity point. We can use a mathematical tool, matrix pseudoinverse to
obtain the inverse of J(6¢) for such cases. It will also work if /(8') is invertible.

We donate pseudoinverse of /(6%) as J*(6).
26" = J*(6%) (§a - £(6Y))

We can update 6'*1 = 9* + A@* iteratively until we reach 8'** = 6, where &, —
f(84) = 0. | | | |
gitl — gi +]+(el) (gd —f(@l))



Newton-Raphson numerical IK: &, steps

Given a desired pose expressed in minimal coordinates (usually position and
orientation) {; € R™ and the FK of the robot £ = f(8), we solve the IK problem
to determine the required joint variable values 6,; € R" by following the steps
below:

1. Set i = 0, make an initial guess 8° € R". Decide the value of € (max error).
2. Compute error e = &; — f(6°).
3. While ||e|| > € for some small value of e:

3.1 Compute next value '+ = 9% + J*(0%)e

32i=i+1

3.3 Compute error e = §; — (1)

owh@ieee.org ZA-2203 46



Newton-Raphson numerical IK: T4

In the case when the desired pose of the end-effector is given in the form of a
homogeneous transformation matrix T,;, we can modify the Newton-
Raphson numerical IK steps accordingly.

TSd € R4X4 T(G) — 8[51]91 M

Given a desireg-pase expressed in minimal coereirates (usually position and
orientatio nd the FK of the robo @ e solve the IK problem
to determiné-tive-required joint variable values 7K™ by following the steps
below:

1. Set i = 0, make an-initial-guess ° € R™. Decide the value of e.
2. Compute erfor e = &; — £(6°).
3. While ||e|| > € tOorseme-simaii \alue-of c:
3.1 Compute next value 91 = §* + J*(9%)e
32i=i+1
3.3 Compute erfor e = §; — f(6'*1)

e =T. < T(O)

owh@ieee.org ZA-2203 47



Representing error as velocity in unit time

We can interpret e(6') as the change in pose required to get from f(6%) to &,.
Given AG* is a change in 8 in one unit time step to change from f(@i) to &4,
we can interpret e(Hi) as the required change in pose in one unit time from

f(6Y) to &,
£ F6)
e(0) =& —f(6) 4

- f(6)

F0) ey o(0) | E

slope

ﬁ o'+t = 0! + AG*
gd __# 0 ! I >
Hi 9i+1 Qd o
>
AG”

owh@ieee.org ZA-2203 48



Representing error as velocity in unit time

We can interpret e(@i) as the required change in pose in one unit time from

f(6Y) to &,
We can think of representing e(@i) as the velocity that if the end-effector
follow it in unit time, it will change from T(8%) (= £(6")) to Tsq (= &4)- In other

words, we can find the twist V that will change the effector pose from T(6%) to
Ts4 In unit time.

Recall twist V is the velocity of the pose (angular and linear combined).

T(6¢
Tsd % ( )
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Representing error as velocity in unit time

T, _
‘ \< . T(6")
{d)

{s}

owh@ieee.org ZA-2203
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Representing error as velocity in unit time

T ,
¢ \< Ty = elV! {b}é T(Ql)
{d}
Tsd

| T(0') = Ty
{s} <

Toa = TpsTsq = Tsp " Tsq
[V,] = log elVnl = logTyy = log(st_lTsd) = log(T_l(Hi)Tsd)
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Newton-Raphson numerical IK: T, steps

Given a desired pose expressed in minimal coordinates (usually position and
orientation) T, € R*** and the FK of the robot T(8) = el$1101 ... pf or T(9) =
Me!B1lf1 ... we solve the IK problem to determine the required joint variable
values 6, € R" by following the steps below:

1. Set i = 0, make an initial guess 8° € R™. Decide the values of €, and ¢,
(max errors).
2. Compute error [V,] = log(T~1(6°)Tyy).
3. While ||w, || > €, or ||v,]| > €, for some small value of €,, and €,,:
3.1 Compute next value 8+ = 9% + J,* (01,
32i=i+1
3.3 Compute error [V,] = log(T~1(6'+1)Tsq)

PV, € R® is the body twist. J, € R®*" is the body Jacobian.
Alternative, we can use space twist V, and space Jacobian J.
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[nitial guess for Newton-Raphson

 The result of Newton-Raphson depends on the initial guess.

« The initial guess 8 should be as close to a solution 8, as
possible in order for the numerical IK to converge.

 We can start the robot from an initial home configuration
where both the actual end-effector configuration and the
joint angles are known and ensuring that the requested end-
effector position T, changes slowly (moves in small steps)
relative to the frequency of the calculation of the inverse
kinematics.

e Then, for the rest of the robot’s run, the calculated 6, at the
previous arm move serves as the initial guess 0° for the new
T, at the next arm move.
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Planar 2R robot: numerical IK example

Given desired end-effector position is
(x,y) = (0.366 m,1.366 m)
and end-effector orientation is
¢ = 120°

Determine 6, = (684, 8,) to achieve the above pose. Use
transformation matrix for your solution.

Source: Modern Robotics

We need to have T,; and the FK equation.

cos¢p —singp O X
sinp cos¢ O‘ andp=[)’]

Tsqg = [g ﬂ where R = ! ° X ’

[—0.5 —0.866 0 0.366]
r  —|0866 —05 0 1.366
sd 0 0 1 0
0 0 0 1
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Planar 2R robot: numerical IK example

Given desired end-effector position is
(x,y) = (0.366 m,1.366 m)
and end-effector orientation is
¢ = 120°

Determine 6, = (684, 8,) to achieve the above pose. Use
transformation matrix for your solution.

Source: Modern Robotics

_ Recall:
We need to have T,; and the FK equation. i
0] 0 8] = |l Y]
] ] L0 0
1 0 0 2 0 0 0 —w o
10 1 0 O 11 11 3 2
M = 0 0 1 ol Bl - 0l BZ — 0 [(1)] = w3 0 —wW1
0 0 0 1) 2 1 —wy w0
L0 0
0 -1 0 0 0 —1 0 O]
_|1 0 0 2 |1 0 0 1
Bd=10 0 o of Bd=|o0 0 0 o
0O 0 0 O 0O 0 0 O
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Planar 2R robot: numerical IK example

[ —0.5 —0.866 0 0.366]
Desired pose: Ty = 0-%66 —8-5 (1) 1-3066
0 0 0 1

Forward kinematics: T(8) = Me!B1l91¢[B216:

10 0 2 0 -1 0 0 0 -1 0 0
o1 0 0 1 0 o 2 1 o0 o0 1
M=Is 01 0o Bd=lo o o of Bl=]0 0 0 o

0 0 0 1 0 0 0 o 0 0 0 o

Given T,y € R*** and the FK of the robot T(8) = Me!B1l01¢[B2102.
1. Set i = 0, make an initial guess 8° € R"™. Decide the values of ¢,, and €, (max
errors).
2. Compute error [V,] = log(T~1(6%)Ty,).
3. While ||w, || > €, or ||v,]| > €, for some small value ofe,,, and €,,:
3.1 Compute next value 8'*1 = 9% + J,* (81,
32i=i+1
3.3 Compute error [V,] = log(T~1(0"1)Tsq)
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Planar 2R robot: numerical IK example

1. Set i = 0, make an initial guess 8° € R". Decide the values of ¢,, and €, (max
errors).

Let 6° = (0,30°), and

allowable error in angular €,, = 0.001 rad (0.057°) and linear ¢, =

10~* m (100 microns).

2. Compute FK T(8°) = Me!B1l91¢1B2192 then compute error [V,,] = [ ] =

log(T~1(6%)Tsq).
3. If lwp |l > €, or |lvpl > €,, then update 81+ = 6% + J,*(01)V,.
Iterate until error is less than the set values.

The above computations are best done with computer.

i (64,0,) (x,5) Vy = (@45, Vip, Vyp) | ll@pll | [Vl
0 | (0.0030.00° | (1.866,0500) | (1.571,0.498,1.858) |1.571 | 1.924
1 (34.23°,79.18°) | (0.429,1.480) | (0.115,—0.074,0.108) | 0.115 | 0.131
2 (29.98°,90.22°) | (0.363,1,364) | (—0.004,0.000,—0.004) | 0.004 | 0.004

3 (30.00°,90.00°) | (0.366,1.366) (0.000,0.000,0.000) 0.000 | 0.000
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Summary (1/2)

Inverse Kinematics (1K) is finding the required joint variable
values 6, to achieve a given desired pose (position and
orientation) ¢, (expressed as vector of coordinates) or T4
(expressed as homogeneous transformation matrix).

There may be 0 (not reachable), 1 (at the boundary of the
workspace) or multiple solutions.

IK can be solved analytically or numerically.
Analytical approach uses geometry and solves FK equations in

§ = f(6).

Analytical approach can find all possible solutions so that we
can choose which solution to use (e.g. righty, lefty, elbow-up,
elbow-down).
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Summary (2/2)

However, analytical approach may not always be possible, or
may be very difficult for complex mechanisms.

Numerical approach uses Newto_n-Raphson method to
iteratively predict the value of 8**1 until it found the@!*! =
8,4 such that the error {; — f(@‘) (or twist V) is zero.

Newton-Raphson numerical IK problem can be represented
in the forms for vector or homogeneous transformation
matrix.

The initial guess 0° for the Newton-Raphson numerical IK
needs to be close to a solution.

If we move the robotic arm in small steps, in each step, the
previous known configuration of 8 can serve as a good initial
guess 00 for the next move step.
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Reading List

 Read Chapter 6 of Modern Robotics
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To Do List

 Watch Chapter 6 videos of Modern Robotics on Coursera, or
on YouTube
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https://www.youtube.com/playlist?list=PLggLP4f-rq02vX0OQQ5vrCxbJrzamYDfx
https://www.youtube.com/playlist?list=PLggLP4f-rq02vX0OQQ5vrCxbJrzamYDfx
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