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Inverse Kinematics: Manipulators

ZA-2203 Robotic Systems



Topics

• Approaches in inverse kinematics (IK)

• Analytical IK for 2R planar robot: geometry

• Analytical IK for 2R planar robot: algebra

• Analytical IK for 6R Puma robot

• Numerical IK: Newton-Raphson method for numerical IK
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Forward & Inverse Kinematics

• Kinematics – is the study of motion without regard to forces.

– Study of correspondence between actuator mechanisms (joint variables) and 
resulting motion of effectors.

• Forward Kinematics (FK): for the given angular movement at each joint, 
where will the end-effector reach?

• Inverse Kinematics (IK): for a desired position of the end-effector, how 
much should each joint rotate?
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3D position?

θ1

θ2

3D position

θ1?

θ2?



Inverse kinematics: three approaches

• Three approaches:
– Analytical: geometry

– Analytical: algebra, i.e. solving equations usually from FK

– Numerical: iteratively find the solution using optimization algorithm

• More difficult than FK

• May have 0, 1 or multiple solutions, possibly infinite solutions

• Analytical closed-form solution(s) not always possible, 
however it can find all possible solutions

• Iterative numerical approach will find only one solution 
depending on the initial guess
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2R planar open chain manipulator 
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Workspace

To reach:
- A position outside the 

workspace, no solution
- A position at the boundary 

of the workspace, one 
solution



2R planar open chain manipulator 
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To reach:
- A position outside the 

workspace, no solution
- A position at the boundary 

of the workspace, one 
solution

- A position within the 
workspace, multiple 
solutions

E



2R planar open chain manipulator 
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E
To reach:
- A position outside the 

workspace, no solution
- A position at the boundary 

of the workspace, one 
solution

- A position within the 
workspace, multiple 
solutions



2R planar robot: geometry
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IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

Given desired end-effector position 
E=(x, y).

Let's consider the position only.
Usually, orientation can be treated 
separately especially if wrist joint is 
spherical, i.e. the wrist joint determine 
the orientation.

Determine values of 𝜃 = 𝜃1, 𝜃2 .𝜃1

𝜃2

𝑥

𝑦

𝐿1

𝐿2



2R planar robot: geometry
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IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

Given desired end-effector position 
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .

𝜃1

𝜃2

𝑥

𝑦

𝐿1

𝐿2



2R planar robot: geometry
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IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position 
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .

𝑟2 = 𝑥2 + 𝑦2 (Pythagoras Theorem)

𝛾 = tan−1
𝑦

𝑥
To consider the quadrant of 𝛾:

𝛾 = atan2 𝑦, 𝑥

𝑦

𝑥

𝑟

𝑟

𝛾



2R planar robot: geometry
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IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position 
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .

𝑟2 = 𝑥2 + 𝑦2

𝛾 = atan2 𝑦, 𝑥

𝑟2 = 𝐿1
2 + 𝐿2

2 − 2𝐿1𝐿2 cos 𝛽
(Cosine Rule)

𝑥2 + 𝑦2 = 𝐿1
2 + 𝐿2

2 − 2𝐿1𝐿2 cos 𝛽

Rearrange:

𝛽 = cos−1
𝐿1

2 + 𝐿2
2 − 𝑥2 − 𝑦2

2𝐿1𝐿2

𝑟

𝑟

𝐿1

𝐿2
𝛽



2R planar robot: geometry
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IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position 
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .

𝑟2 = 𝑥2 + 𝑦2

𝛾 = atan2 𝑦, 𝑥

𝛽 = cos−1
𝐿1

2 + 𝐿2
2 − 𝑥2 − 𝑦2

2𝐿1𝐿2

𝐿2
2 = 𝐿1

2 + 𝑟2 − 2𝐿1𝑟 cos 𝛼

𝐿2
2 = 𝐿1

2 + 𝑥2 + 𝑦2 − 2𝐿1 𝑥2 + 𝑦2 cos 𝛼

Rearrange:

𝛼 = cos−1
𝐿1

2 − 𝐿2
2 + 𝑥2 + 𝑦2

2𝐿1 𝑥2 + 𝑦2

𝑟

𝑟

𝐿1

𝐿2

𝛼



2R planar robot: geometry
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IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position 
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .

𝛾 = atan2 𝑦, 𝑥

𝛽 = cos−1
𝐿1

2 + 𝐿2
2 − 𝑥2 − 𝑦2

2𝐿1𝐿2

𝛼 = cos−1
𝐿1

2 − 𝐿2
2 + 𝑥2 + 𝑦2

2𝐿1 𝑥2 + 𝑦2

𝜃1 = 𝛾 − 𝛼 𝜃2 = 𝜋 − 𝛽

𝑟

𝛼
𝜃1

𝜃2

𝛽

𝛾



2R planar robot: geometry
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IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}
ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position 
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .

𝛾 = atan2 𝑦, 𝑥

𝛽 = cos−1
𝐿1

2 + 𝐿2
2 − 𝑥2 − 𝑦2

2𝐿1𝐿2

𝛼 = cos−1
𝐿1

2 − 𝐿2
2 + 𝑥2 + 𝑦2

2𝐿1 𝑥2 + 𝑦2

𝜃1 = 𝛾 + 𝛼 𝜃2 = − 𝜋 − 𝛽

𝑟

𝜃1

𝜃2

𝛾

𝛽

𝛼



2R planar robot: geometry
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IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s} ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position 
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .

𝛾 = atan2 𝑦, 𝑥

𝛽 = cos−1
𝐿1

2 + 𝐿2
2 − 𝑥2 − 𝑦2

2𝐿1𝐿2

𝛼 = cos−1
𝐿1

2 − 𝐿2
2 + 𝑥2 + 𝑦2

2𝐿1 𝑥2 + 𝑦2

Righty: 𝜃1 = 𝛾 − 𝛼 𝜃2 = 𝜋 − 𝛽
Lefty: 𝜃1 = 𝛾 + 𝛼 𝜃2 = 𝛽 − 𝜋

E
𝜃2

{b}



2R planar robot: algebra
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IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position 
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .
Forward kinematics:

𝑥 = 𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃1 + 𝜃2
𝑦 = 𝐿1 sin 𝜃1 + 𝐿2 sin 𝜃1 + 𝜃2

Two equations, two unknowns, solve 
by algebra.

𝐿1

𝑟

𝜃1 + 𝜃2

𝐿2

𝜃1

𝜃1



2R planar robot: algebra
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IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Given desired end-effector position 
E=(x, y).

Determine values of 𝜃 = 𝜃1, 𝜃2 .
Forward kinematics:

𝑥 = 𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃1 + 𝜃2
𝑦 = 𝐿1 sin 𝜃1 + 𝐿2 sin 𝜃1 + 𝜃2

Two equations, two unknowns, solve 
by algebra.

𝑥2 + 𝑦2

= 𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃1 + 𝜃2
2

+ 𝐿1 sin 𝜃1 + 𝐿2 sin 𝜃1 + 𝜃2
2

𝑥2 + 𝑦2 = 𝐿1
2 + 𝐿2

2 + 2𝐿1𝐿2 cos 𝜃2

𝜃2 = cos−1
𝑥2 + 𝑦2 − 𝐿1

2 − 𝐿2
2

2𝐿1𝐿2

𝐿1

𝑟

𝜃1 + 𝜃2

𝐿2

𝜃1

𝜃1



2R planar robot: algebra
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IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Forward kinematics:
𝑥 = 𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃1 + 𝜃2
𝑦 = 𝐿1 sin 𝜃1 + 𝐿2 sin 𝜃1 + 𝜃2

Two equations, two unknowns, solve 
by algebra.

𝑥 = 𝐿1𝑐1 + 𝐿2𝑐12
= 𝐿1𝑐1 + 𝐿2 𝑐1𝑐2 − 𝑠1𝑠2
𝑦 = 𝐿1𝑠1 + 𝐿2𝑠12
= 𝐿1𝑠1 + 𝐿2 𝑠1𝑐2 + 𝑐1𝑠2

𝑥 = 𝐿1 + 𝐿2𝑐2 𝑐1 − 𝐿2𝑠2𝑠1
𝑦 = 𝐿1 + 𝐿2𝑐2 𝑠1 + 𝐿2𝑠2𝑐1

𝑥 = 𝐿1 + 𝐿2𝑐2 cos 𝜃1 − 𝐿2𝑠2 sin 𝜃1
𝑦 = 𝐿1 + 𝐿2𝑐2 sin 𝜃1 + 𝐿2𝑠2 cos 𝜃1

𝐿1

𝑟

𝜃1 + 𝜃2

𝐿2

𝜃1

𝜃1



2R planar robot: algebra
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IK: Determine 𝜃1, 𝜃2 given pose of {b} in {s}

E

{s}

{b}

ො𝑥

ො𝑦

ො𝑥

ො𝑦

𝜃1

𝜃2

𝑥

𝑦

Forward kinematics:
𝑥 = 𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃1 + 𝜃2
𝑦 = 𝐿1 sin 𝜃1 + 𝐿2 sin 𝜃1 + 𝜃2

Two equations, two unknowns, solve 
by algebra.

𝑥 = 𝐿1 + 𝐿2𝑐2 cos 𝜃1 − 𝐿2𝑠2 sin 𝜃1
𝑦 = 𝐿1 + 𝐿2𝑐2 sin 𝜃1 + 𝐿2𝑠2 cos 𝜃1

𝑥 = 𝐴 cos 𝜃1 − 𝐵 sin 𝜃1
𝑦 = 𝐴 sin 𝜃1 + 𝐵 cos 𝜃1

𝜃1 can be solved by:

For  𝑎 cos 𝜃 + 𝑏 sin 𝜃 = 𝑐,

𝜃 = tan−1
𝑐

𝑎2 + 𝑏2 − 𝑐
− tan−1

𝑎

𝑏

𝐿1

𝑟

𝜃1 + 𝜃2

𝐿2

𝜃1

𝜃1



6R PUMA-Type robot: analytical e.g.
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The pose of the end effector of an 6R robot can be represented as a 
homogeneous transformation matrix

𝑇 𝜃 = 𝑒 𝒮1 𝜃1𝑒 𝒮2 𝜃2𝑒 𝒮3 𝜃3𝑒 𝒮4 𝜃4𝑒 𝒮5 𝜃5𝑒 𝒮6 𝜃6𝑀

For a desired pose of the end-effector 𝑇𝑠𝑑, the IK problem is to find solution 𝜃 ∈
ℝ6 satisfying 𝑇 𝜃 = 𝑇𝑠𝑑.

For this robot with a spherical wrist, the position and orientation can be 
decoupled (kinematics decoupling): solve 𝜃1, 𝜃2, 𝜃3 for inverse position, 
then solve 𝜃4, 𝜃5, 𝜃6 for inverse orientation.

This example uses geometry to solve for inverse position problem, and algebra 
to solve for inverse orientation problem.

Source: Modern Robotics



6R PUMA-Type robot: analytical e.g.
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We use geometry to solve the inverse position IK problem. We want to find 

𝜃1, 𝜃2, 𝜃3 to achieve the desired position of the end-effector 𝒑𝑑 = 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧 .

𝜃1 = atan2 𝑝𝑦 , 𝑝𝑥 𝜃1 = atan2 𝑝𝑦 , 𝑝𝑥 + 𝜋

If 𝑝𝑥, 𝑝𝑦 ≠ 0
Singularity when 𝑝𝑥, 𝑝𝑦 =
0, infinite solutions for 𝜃1.

Source: Modern Robotics

Source: Modern Robotics



6R PUMA-Type robot: analytical e.g.
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Source: Modern Robotics

𝜃1 = 𝜙 − 𝛼

𝜙 = atan2 𝑝𝑦 , 𝑝𝑥

𝛼 = atan2 𝑑1, 𝑟2 − 𝑑1
2

𝜙
𝛼

𝜃1 = 𝜋 + 𝜙 + 𝛼

𝜙 = atan2 𝑝𝑦 , 𝑝𝑥

𝛼 = atan2 − 𝑟2 − 𝑑1
2, 𝑑1

If there is shoulder displacement, 𝑑1 ≠ 0,

Source: Modern Robotics



6R PUMA-Type robot: analytical e.g.
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Source: Modern Robotics

Solving for 𝜃2 and 𝜃3 is similar to solving the 2R planar IK on 𝑟 − 𝑧0 plane. 
Adapting the solution for 2R planar robot, we have:

𝜃3 = cos−1
𝑟∗2 − 𝑎2

2 − 𝑎3
2

2𝑎2𝑎3

Likewise, we can adapt accordingly for to determine 𝜃2.

Recall:

𝑟2



6R PUMA-Type robot: analytical e.g.
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Source: Modern Robotics

Solving for 𝜃2 and 𝜃3 is similar to solving the 2R planar IK on 𝑟 − 𝑧0 plane. 
Adapting the solution for 2R planar robot, we have:

𝜃3 = cos−1
𝑟∗2 − 𝑎2

2 − 𝑎3
2

2𝑎2𝑎3

Likewise, we can adapt accordingly for to determine 𝜃2.

Recall:

𝑟2

𝑟∗

𝑟∗

𝑟∗2 = 𝑝𝑥
2 + 𝑝𝑦

2 − 𝑑1
2 + 𝑝𝑧

2



6R PUMA-Type robot: analytical e.g.

owh@ieee.org ZA-2203 26

Four possible inverse (position) kinematics 
solutions for the 6R PUMA-type arm with shoulder 
offset

Source: Modern Robotics



6R PUMA-Type robot: analytical e.g.
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Recall: for a desired pose of the end-effector 𝑇𝑠𝑑, the IK problem is to find 
solution 𝜃 ∈ ℝ6 satisfying 𝑇 𝜃 = 𝑇𝑠𝑑.

Note 𝑇𝑠𝑑 =
𝑅𝑑 𝒑𝑑

𝟎 1
, where 𝒑𝑑 is the desired position and 𝑅𝑑 is the desired 

orientation of the end-effector.

Once we have found 𝜃1, 𝜃2, 𝜃3 for 𝒑𝑑, we can solve the inverse orientation 
problem by algebra. We use the FK equation.

𝑇 𝜃 = 𝑇𝑠𝑑 = 𝑒 𝒮1 𝜃1𝑒 𝒮2 𝜃2𝑒 𝒮3 𝜃3𝑒 𝒮4 𝜃4𝑒 𝒮5 𝜃5𝑒 𝒮6 𝜃6𝑀
𝑒− 𝒮3 𝜃3𝑒− 𝒮2 𝜃2𝑒− 𝒮1 𝜃1𝑇𝑠𝑑𝑀−1 = 𝑒 𝒮4 𝜃4𝑒 𝒮5 𝜃5𝑒 𝒮6 𝜃6

𝐿 = 𝑒 𝒮4 𝜃4𝑒 𝒮5 𝜃5𝑒 𝒮6 𝜃6

Notice the left-hand side are now known, defined as 𝐿. We can solve for 𝜃4, 𝜃5, 
𝜃6.



6R PUMA-Type robot: analytical e.g.
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Recall: for a desired pose of the end-effector 𝑇𝑠𝑑, the IK problem is to find 
solution 𝜃 ∈ ℝ6 satisfying 𝑇 𝜃 = 𝑇𝑠𝑑.

Note 𝑇𝑠𝑑 =
𝑅𝑑 𝒑𝑑

𝟎 1
, where 𝒑𝑑 is the desired position and 𝑅𝑑 is the desired 

orientation of the end-effector.

Alternatively, knowing the screw axes of 𝒮4, 𝒮5, 𝒮6, we can form the rotation 
matrix. For the 6R PUMA robot, the 𝜔-components are

𝜔4 = 0,0,1 ,
𝜔5 = 0,1,0 ,
𝜔6 = 1,0,0 .

Which results in a combined rotation of 𝑅𝑜𝑡 Ƹ𝑧, 𝜃4 𝑅𝑜𝑡 ො𝑦, 𝜃5 𝑅𝑜𝑡 ො𝑥, 𝜃6 . We can 
solve for 𝜃4, 𝜃5, 𝜃6.

𝑅𝑜𝑡 Ƹ𝑧, 𝜃4 𝑅𝑜𝑡 ො𝑦, 𝜃5 𝑅𝑜𝑡 ො𝑥, 𝜃6 = 𝑅𝑑



Numerical inverse kinematics
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Forward kinematics gives pose as a function of the joint variables:
𝜉 = 𝑓 𝜃

E.g.
𝑥
𝑦 =

𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃1 + 𝜃2

𝐿1 sin 𝜃1 + 𝐿2 sin 𝜃1 + 𝜃2

For more complex robots, it may not be possible to solve the FK equations 
analytically to obtain the desired joint variable values in a given IK problem.

An alternative approach is to solve it using iterative numerical approach. 



Numerical inverse kinematics
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E

{s} ො𝑥

ො𝑦

𝜃1

𝜃2

Ed

Try different values of 𝜃 so that
𝜉 → 𝜉𝑑

This is done in a systematic way by changing 
the values of 𝜃 in the direction to minimize the 
error of 

𝜉𝑑 − 𝜉 = 𝜉𝑑 − 𝑓 𝜃 → 0

We expect if we have found 𝜃 = 𝜃𝑑, the error
𝜉𝑑 − 𝑓 𝜃𝑑 = 0

This is basically what optimization algorithms 
do: find the set of parameters (variable 
values) that minimize (or maximize) the cost 
or error (or objective or utility).

𝜃∗ = arg min
𝜃

𝜉𝑑 − 𝑓 𝜃

If we manage to minimize the error to zero, 
𝜃∗ = 𝜃𝑑.



Newton-Raphson method

owh@ieee.org ZA-2203 31

We basically want to find 𝜃 = 𝜃𝑑 such that

𝜉𝑑 − 𝑓 𝜃 = 0

I.e. we want to solve the above equation, in other words to find the root to the 
above equation.

Newton-Raphson root finding method is a method we can use to solve an 
equation 𝑔 𝜃 = 0 numerically provided 𝑔 is differentiable.

It gives an effective way to change the value of 𝜃 such that the error equation 
will head towards zero.
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Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of 
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃  is the actual function value at 𝜃.

Naively, we can try all possible 
values of 𝜃 until we reach a 
point of 𝑥𝑑 − 𝑓 𝜃 = 0. At this 
point, 𝜃 = 𝜃𝑑. 
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Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of 
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃  is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃 Naively, we can try all possible 
values of 𝜃 until we reach a 
point of 𝑥𝑑 − 𝑓 𝜃 = 0. At this 
point, 𝜃 = 𝜃𝑑. 

We effectively drawn a graph 
of 𝑥𝑑 − 𝑓 𝜃  against 𝜃.

What range of 𝜃 should we 
try?
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Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of 
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃  is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃 If 𝑥𝑑 − 𝑓 𝜃  is differentiable, 
we can find its gradient at 
every value of 𝜃.

We can use this gradient or 
slope to guide us in choosing 
the value of 𝜃 in the next 
iteration.

𝜃𝑖
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Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of 
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃  is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃 Let's not try all values of 𝜃 
randomly.

Let’s start with any value, an 
initial guess, 𝜃0.

Compute FK 𝑓 𝜃0  and error 
function 𝑥𝑑 − 𝑓 𝜃0 .

𝜃0

𝑥𝑑 − 𝑓 𝜃0
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Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of 
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃  is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃 Not zero?

We need to try another value 
of 𝜃. We will use the slope at 
𝜃0 to help decide the next 
value of 𝜃 to try.

Compute the slope of 𝑥𝑑 −
𝑓 𝜃0 . Since 𝑥𝑑 is a constant

slope = −
𝜕𝑓

𝜕𝜃
𝜃0

𝜃0

𝑥𝑑 − 𝑓 𝜃0 slope = −
𝜕𝑓

𝜕𝜃
𝜃0

𝜃1

∆𝜃 =
𝜕𝑓

𝜕𝜃
𝜃0

−1

𝑥𝑑 − 𝑓 𝜃0
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Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of 
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃  is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃 Continue the process to next 
iteration with 𝜃1 that leads to 𝜃2 
and so on.

𝜃2

𝑥𝑑 − 𝑓 𝜃1

slope = −
𝜕𝑓

𝜕𝜃
𝜃1

𝜃1

∆𝜃 =
𝜕𝑓

𝜕𝜃
𝜃1

−1

𝑥𝑑 − 𝑓 𝜃1
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Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of 
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃  is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃 Continue the process to next 
iteration with 𝜃1 that leads to 𝜃2 
and so on.

Until we reach 
𝑥𝑑 − 𝑓 𝜃 = 0

The value of 𝜃 would be the 
desired 𝜃𝑑.

𝜃2𝜃1

𝜃𝑑

𝜃0
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Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of 
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃  is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃
The update of 𝜃 in Newton-
Raphson method can be 
expressed as:

𝜃𝑖+1 = 𝜃𝑖 −
𝜕𝑓

𝜕𝜃
𝜃𝑖

−1

𝑔 𝜃𝑖

where 𝑔 𝜃𝑖 = 𝑥𝑑 − 𝑓 𝜃𝑖 .

𝜃2𝜃1

𝜃𝑑

𝜃0
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Consider a single coordinate pose (scalar), 𝜉𝑑 = 𝑥𝑑. We want to find the root of 
below equation numerically:

𝑥𝑑 − 𝑓 𝜃 = 0

𝑥𝑑 is the desired value, 𝑓 𝜃  is the actual function value at 𝜃.

𝜃

𝑥𝑑 − 𝑓 𝜃 The solution depends on initial 
guess of 𝜃0.

This guess should be near to a 
solution. Otherwise, the 
process may not converge.

𝜃0𝜃0 𝜃0
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We generalize the formulation to non-scalar pose, i.e. 𝜉 = 𝑓 𝜃  is a vector (not 
just an 𝑥 coordinate). We can write the FK function 𝑓 𝜃  differentiable at 𝜃𝑖 as a 
Taylor series:

𝜉 = 𝑓 𝜃 = 𝑓 𝜃𝑖 +
𝜕𝑓

𝜕𝜃
𝜃𝑖 𝜃 − 𝜃𝑖 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠

At 𝜃 = 𝜃𝑑, we have:

𝜉𝑑 = 𝑓 𝜃𝑑 = 𝑓 𝜃𝑖 +
𝜕𝑓

𝜕𝜃
𝜃𝑖 𝜃𝑑 − 𝜃𝑖 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠

         𝐽 𝜃𝑖        ∆𝜃

Think of this as the FK function of the desired pose 𝜉𝑑 = 𝑓 𝜃𝑑  at joint variables 
𝜃𝑑 expressed as a function of current iteration joint variables 𝜃𝑖 and the slope 
𝜕𝑓

𝜕𝜃
𝜃𝑖  at this point.

We can rearrange and write above equation as below:

𝜉𝑑 − 𝑓 𝜃𝑖 = 𝐽 𝜃𝑖 ∆𝜃 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠

Recall 𝐽 𝜃 =
𝜕𝑓 𝜃

𝜕𝜃
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We can use the Taylor series to help us determine the ∆𝜃 to determine the next 
𝜃𝑖+1.

𝜉𝑑 − 𝑓 𝜃𝑖 = 𝐽 𝜃𝑖 ∆𝜃 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 (ℎ. 𝑜. 𝑡)

𝜃

𝜉𝑑 − 𝑓 𝜃

𝜃𝑖

𝜉𝑑 − 𝑓 𝜃𝑖

𝜃𝑑

Using scalar 𝜉𝑑 for illustration purpose.

∆𝜃 involves h.o.t
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If we ignore higher order terms, the ∆𝜃 we will obtain is not exactly 𝜃𝑑 − 𝜃𝑖,

𝜉𝑑 − 𝑓 𝜃𝑖 = 𝐽 𝜃𝑖 ∆𝜃∗

where ∆𝜃∗ = 𝜃𝑖+1 − 𝜃𝑖. 

𝜃

𝜉𝑑 − 𝑓 𝜃

𝜃𝑖

𝜉𝑑 − 𝑓 𝜃𝑖 slope = 𝐽 𝜃𝑖

𝜃𝑖+1 𝜃𝑑

∆𝜃

∆𝜃∗

𝜃𝑖+1 = 𝜃𝑖 + ∆𝜃∗
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If we ignore higher order terms, the ∆𝜃 we will obtain is not exactly 𝜃𝑑 − 𝜃𝑖,

𝜉𝑑 − 𝑓 𝜃𝑖 = 𝐽 𝜃𝑖 ∆𝜃∗

where ∆𝜃∗ = 𝜃𝑖+1 − 𝜃𝑖. Rearrange to determine ∆𝜃∗,

∆𝜃∗ =
𝜉𝑑 − 𝑓 𝜃𝑖

𝐽 𝜃𝑖
= 𝐽−1 𝜃𝑖 𝜉𝑑 − 𝑓 𝜃𝑖

𝐽 𝜃𝑖  may not always be invertible, e.g. if it is not a square matrix and at 

singularity point. We can use a mathematical tool, matrix pseudoinverse to 

obtain the inverse of 𝐽 𝜃𝑖  for such cases. It will also work if 𝐽 𝜃𝑖  is invertible. 

We donate pseudoinverse of 𝐽 𝜃𝑖  as 𝐽+ 𝜃𝑖 .

∆𝜃∗ = 𝐽+ 𝜃𝑖 𝜉𝑑 − 𝑓 𝜃𝑖

We can update 𝜃𝑖+1 = 𝜃𝑖 + ∆𝜃∗ iteratively until we reach 𝜃𝑖+1 = 𝜃𝑑 where 𝜉𝑑 −
𝑓 𝜃𝑑 = 0.

𝜃𝑖+1 = 𝜃𝑖 + 𝐽+ 𝜃𝑖 𝜉𝑑 − 𝑓 𝜃𝑖
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Given a desired pose expressed in minimal coordinates (usually position and 

orientation) 𝜉𝑑 ∈ ℝ𝑚 and the FK of the robot 𝜉 = 𝑓 𝜃 , we solve the IK problem 

to determine the required joint variable values 𝜃𝑑 ∈ ℝ𝑛 by following the steps 

below:

1. Set 𝑖 = 0, make an initial guess 𝜃0 ∈ ℝ𝑛. Decide the value of 𝜖 (max error).

2. Compute error ℯ = 𝜉𝑑 − 𝑓 𝜃0 .

3. While ℯ > 𝜖 for some small value of 𝜖:

3.1 Compute next value 𝜃𝑖+1 = 𝜃𝑖 + 𝐽+ 𝜃𝑖 ℯ

3.2 𝑖 = 𝑖 + 1

3.3 Compute error ℯ = 𝜉𝑑 − 𝑓 𝜃𝑖+1
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In the case when the desired pose of the end-effector is given in the form of a 

homogeneous transformation matrix 𝑇𝑠𝑑, we can modify the Newton-

Raphson numerical IK steps accordingly.

Given a desired pose expressed in minimal coordinates (usually position and 

orientation) 𝜉𝑑 ∈ ℝ𝑚 and the FK of the robot 𝜉 = 𝑓 𝜃 , we solve the IK problem 

to determine the required joint variable values 𝜃𝑑 ∈ ℝ𝑛 by following the steps 

below:

1. Set 𝑖 = 0, make an initial guess 𝜃0 ∈ ℝ𝑛. Decide the value of 𝜖.

2. Compute error ℯ = 𝜉𝑑 − 𝑓 𝜃0 .

3. While ℯ > 𝜖 for some small value of 𝜖:

3.1 Compute next value 𝜃𝑖+1 = 𝜃𝑖 + 𝐽+ 𝜃𝑖 ℯ

3.2 𝑖 = 𝑖 + 1

3.3 Compute error ℯ = 𝜉𝑑 − 𝑓 𝜃𝑖+1

𝑇𝑠𝑑 ∈ ℝ4×4 𝑇 𝜃 = 𝑒 𝒮1 𝜃1 ⋯ 𝑀

ℯ = 𝑇𝑠𝑑 − 𝑇 𝜃



Representing error as velocity in unit time

owh@ieee.org ZA-2203 48

𝜃

ℯ 𝜃 = 𝜉𝑑 − 𝑓 𝜃

𝜃𝑖

ℯ 𝜃𝑖 slope

𝜃𝑖+1 𝜃𝑑

∆𝜃∗

𝜃𝑖+1 = 𝜃𝑖 + ∆𝜃∗

We can interpret ℯ 𝜃𝑖  as the change in pose required to get from 𝑓 𝜃𝑖  to 𝜉𝑑.

Given ∆𝜃∗ is a change in 𝜃 in one unit time step to change from 𝑓 𝜃𝑖  to 𝜉𝑑, 

we can interpret ℯ 𝜃𝑖  as the required change in pose in one unit time from 

𝑓 𝜃𝑖  to 𝜉𝑑.

𝑓 𝜃𝑖

𝜉𝑑 0

𝜉𝑑 − 𝑓 𝜃

𝜉𝑑
𝑓 𝜃𝑖
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We can interpret ℯ 𝜃𝑖  as the required change in pose in one unit time from 

𝑓 𝜃𝑖  to 𝜉𝑑.

We can think of representing ℯ 𝜃𝑖  as the velocity that if the end-effector 

follow it in unit time, it will change from 𝑇 𝜃𝑖  (≡ 𝑓 𝜃𝑖 ) to 𝑇𝑠𝑑 (≡ 𝜉𝑑). In other 

words, we can find the twist 𝒱 that will change the effector pose from 𝑇 𝜃𝑖  to 

𝑇𝑠𝑑 in unit time.

Recall twist 𝒱 is the velocity of the pose (angular and linear combined).

𝑇𝑠𝑑
𝑇 𝜃𝑖
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𝑇𝑠𝑑
𝑇 𝜃𝑖

{s}

{b}

{d}
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𝑇𝑠𝑑
𝑇 𝜃𝑖

{s}

{b}

{d}

𝑇 𝜃𝑖 = 𝑇𝑠𝑏

𝑇𝑠𝑑

𝑇𝑏𝑑 ≡ 𝑒 𝒱𝑏

𝑇𝑏𝑑 = 𝑇𝑏𝑠𝑇𝑠𝑑 = 𝑇𝑠𝑏
−1𝑇𝑠𝑑

𝒱𝑏 = log 𝑒 𝒱𝑏 = log 𝑇𝑏𝑑 = log 𝑇𝑠𝑏
−1𝑇𝑠𝑑 = log 𝑇−1 𝜃𝑖 𝑇𝑠𝑑



Newton-Raphson numerical IK: 𝑇𝑠𝑑 steps

owh@ieee.org ZA-2203 52

Given a desired pose expressed in minimal coordinates (usually position and 

orientation) 𝑇𝑠𝑑 ∈ ℝ4×4 and the FK of the robot 𝑇 𝜃 = 𝑒 𝒮1 𝜃1 ⋯ 𝑀 or 𝑇 𝜃 =

𝑀𝑒 ℬ1 𝜃1 ⋯, we solve the IK problem to determine the required joint variable 

values 𝜃𝑑 ∈ ℝ𝑛 by following the steps below:

1. Set 𝑖 = 0, make an initial guess 𝜃0 ∈ ℝ𝑛. Decide the values of 𝜖𝑤 and 𝜖𝑣 

(max errors).

2. Compute error 𝒱𝑏 = log 𝑇−1 𝜃0 𝑇𝑠𝑑 .

3. While 𝜔𝑏 > 𝜖𝑤 or 𝑣𝑏 > 𝜖𝑣 for some small value of 𝜖𝑤 and 𝜖𝑣:

3.1 Compute next value 𝜃𝑖+1 = 𝜃𝑖 + 𝐽𝑏
+ 𝜃𝑖 𝒱𝑏

3.2 𝑖 = 𝑖 + 1

3.3 Compute error 𝒱𝑏 = log 𝑇−1 𝜃𝑖+1 𝑇𝑠𝑑

𝒱𝑏 ∈ ℝ6 is the body twist. 𝐽𝑏 ∈ ℝ6×𝑛 is the body Jacobian.

Alternative, we can use space twist 𝒱𝑠 and space Jacobian 𝐽𝑠.



Initial guess for Newton-Raphson

• The result of Newton-Raphson depends on the initial guess.

• The initial guess 𝜃0 should be as close to a solution 𝜃𝑑 as 
possible in order for the numerical IK to converge.

• We can start the robot from an initial home configuration 
where both the actual end-effector configuration and the 
joint angles are known and ensuring that the requested end-
effector position 𝑇𝑠𝑑 changes slowly (moves in small steps) 
relative to the frequency of the calculation of the inverse 
kinematics.

• Then, for the rest of the robot’s run, the calculated 𝜃𝑑 at the 
previous arm move serves as the initial guess 𝜃0 for the new 
𝑇𝑠𝑑 at the next arm move.
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Given desired end-effector position is 

𝑥, 𝑦 = 0.366 𝑚, 1.366 𝑚
and end-effector orientation is 

𝜙 = 120°

Determine 𝜃𝑑 = 𝜃1, 𝜃2  to achieve the above pose. Use 

transformation matrix for your solution.

We need to have 𝑇𝑠𝑑 and the FK equation.

𝑇𝑠𝑑 =
𝑅 𝑝
0 1

 where 𝑅 =
cos 𝜙 − sin 𝜙 0
sin 𝜙 cos 𝜙 0

0 0 1

 and 𝑝 =
𝑥
𝑦
0

𝑇𝑠𝑑 =

−0.5
0.866

0
0

−0.866
−0.5

0
0

0
0
1
0

0.366
1.366

0
1

𝜃1

𝜃2

ො𝑥

ො𝑦
1 m

1 m

𝜙 = 120°

𝜙

Source: Modern Robotics
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Given desired end-effector position is 

𝑥, 𝑦 = 0.366 𝑚, 1.366 𝑚
and end-effector orientation is 

𝜙 = 120°

Determine 𝜃𝑑 = 𝜃1, 𝜃2  to achieve the above pose. Use 

transformation matrix for your solution.

We need to have 𝑇𝑠𝑑 and the FK equation.

𝑀 =

1
0
0
0

0
1
0
0

0
0
1
0

2
0
0
1

, ℬ1 =

0
0
1
0
2
0

 , ℬ2 =

0
0
1
0
1
0

ℬ1 =

0
1
0
0

−1
0
0
0

0
0
0
0

0
2
0
0

ℬ2 =

0
1
0
0

−1
0
0
0

0
0
0
0

0
1
0
0

ℬ = 𝜔 𝑣
0 0

𝜔 =

0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0

Recall:

𝜙

Source: Modern Robotics
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𝑀 =

1
0
0
0

0
1
0
0

0
0
1
0

2
0
0
1

Forward kinematics: 𝑇 𝜃 = 𝑀𝑒 ℬ1 𝜃1𝑒 ℬ2 𝜃2

ℬ1 =

0
1
0
0

−1
0
0
0

0
0
0
0

0
2
0
0

ℬ2 =

0
1
0
0

−1
0
0
0

0
0
0
0

0
1
0
0

Desired pose: 𝑇𝑠𝑑 =

−0.5
0.866

0
0

−0.866
−0.5

0
0

0
0
1
0

0.366
1.366

0
1

Given 𝑇𝑠𝑑 ∈ ℝ4×4 and the FK of the robot 𝑇 𝜃 = 𝑀𝑒 ℬ1 𝜃1𝑒 ℬ2 𝜃2.

1. Set 𝑖 = 0, make an initial guess 𝜃0 ∈ ℝ𝑛. Decide the values of 𝜖𝑤 and 𝜖𝑣 (max 

errors).

2. Compute error 𝒱𝑏 = log 𝑇−1 𝜃0 𝑇𝑠𝑑 .

3. While 𝜔𝑏 > 𝜖𝑤 or 𝑣𝑏 > 𝜖𝑣 for some small value of𝜖𝑤 and 𝜖𝑣:

3.1 Compute next value 𝜃𝑖+1 = 𝜃𝑖 + 𝐽𝑏
+ 𝜃𝑖 𝒱𝑏

3.2 𝑖 = 𝑖 + 1

3.3 Compute error 𝒱𝑏 = log 𝑇−1 𝜃𝑖+1 𝑇𝑠𝑑
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1. Set 𝑖 = 0, make an initial guess 𝜃0 ∈ ℝ𝑛. Decide the values of 𝜖𝑤 and 𝜖𝑣 (max 

errors).

Let 𝜃0 = 0,30° , and

allowable error in angular 𝜖𝑤 = 0.001 𝑟𝑎𝑑 0.057°  and linear 𝜖𝑣 =
10−4 𝑚 100 𝑚𝑖𝑐𝑟𝑜𝑛𝑠 .

2. Compute FK 𝑇 𝜃0 = 𝑀𝑒 ℬ1 𝜃1𝑒 ℬ2 𝜃2, then compute error 𝒱𝑏 =
𝜔𝑏

𝑣𝑏
=

log 𝑇−1 𝜃0 𝑇𝑠𝑑 .

3. If 𝜔𝑏 > 𝜖𝑤 or 𝑣𝑏 > 𝜖𝑣, then update 𝜃𝑖+1 = 𝜃𝑖 + 𝐽𝑏
+ 𝜃𝑖 𝒱𝑏.

Iterate until error is less than the set values.

The above computations are best done with computer.

𝒊 𝜽𝟏, 𝜽𝟐 𝒙, 𝒚 𝓥𝒃 = 𝝎𝒛𝒃, 𝒗𝒙𝒃, 𝒗𝒚𝒃 𝝎𝒃 𝒗𝒃

0 0.00,30.00° 1.866,0.500 1.571,0.498,1.858 1.571 1.924

1 34.23°, 79.18° 0.429,1.480 0.115, −0.074,0.108 0.115 0.131

2 29.98°, 90.22° 0.363,1,364 −0.004,0.000, −0.004 0.004 0.004

3 30.00°, 90.00° 0.366,1.366 0.000,0.000,0.000 0.000 0.000



Summary (1/2)

• Inverse Kinematics (IK) is finding the required joint variable 
values 𝜃𝑑 to achieve a given desired pose (position and 
orientation) 𝜉𝑑 (expressed as vector of coordinates) or 𝑇𝑠𝑑

(expressed as homogeneous transformation matrix).

• There may be 0 (not reachable), 1 (at the boundary of the 
workspace) or multiple solutions.

• IK can be solved analytically or numerically.

• Analytical approach uses geometry and solves FK equations in 
𝜉 = 𝑓 𝜃 .

• Analytical approach can find all possible solutions so that we 
can choose which solution to use (e.g. righty, lefty, elbow-up, 
elbow-down).
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Summary (2/2)

• However, analytical approach may not always be possible, or 
may be very difficult for complex mechanisms.

• Numerical approach uses Newton-Raphson method to 
iteratively predict the value of 𝜃𝑖+1 until it found the𝜃𝑖+1 =
𝜃𝑑 such that the error 𝜉𝑑 − 𝑓 𝜃𝑖 (or twist 𝒱𝑏) is zero.

• Newton-Raphson numerical IK problem can be represented 
in the forms for vector or homogeneous transformation 
matrix.

• The initial guess 𝜃0 for the Newton-Raphson numerical IK 
needs to be close to a solution.

• If we move the robotic arm in small steps, in each step, the 
previous known configuration of 𝜃 can serve as a good initial 
guess 𝜃0 for the next move step.
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Reading List

• Read Chapter 6 of Modern Robotics
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To Do List

• Watch Chapter 6 videos of Modern Robotics on Coursera, or 
on YouTube
https://www.youtube.com/playlist?list=PLggLP4f-
rq02vX0OQQ5vrCxbJrzamYDfx
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