Velocity Kinematics

ZA-2203 Robotic Systems

Topics

- Velocity kinematics
- Jacobian
- Singularities
- Manipulability ellipsoid
- Spatial Jacobian
- Body Jacobian

Velocity Kinematics

- In previous lecture, we studied the motion of the robot manipulator in terms of displacement (position and orientation). Specifically, we learned to determine the displacement (transformation) of the end-effector given the motion at the joints (joint variables either rotation or linear). This is forward kinematics.
- In this lecture, we will study the motion of the robot manipulator in terms of velocity (linear and rotational). Specifically, we will learn to determine the twist of the endeffector given the velocities and positions at the joints. This is velocity kinematics.

Jacobian

- If the pose of the end-effector is given by $q \in \mathbb{R}^{m}$, e.g. $q=$ $\left(q_{1}, \cdots, q_{6}\right)=\left(x, y, z, \phi_{y a w}, \phi_{\text {pitch }}, \phi_{\text {roll }}\right)$, the forward kinematics can be written as:

$$
q=f(\theta)
$$

- where $\theta=\left(\theta_{1}, \cdots, \theta_{n}\right) \in \mathbb{R}^{n}$ is the joint parameters.
- If the manipulator is moving, we can express the pose and joint parameters as functions of time:

$$
q(t)=f(\theta(t))
$$

- The time derivation of the above equation will give the velocities of the end-effector pose \dot{q} as a function of the joint velocities $\dot{\theta}$, i.e. velocity kinematics.

$$
\dot{q}=\frac{d q(t)}{d t}=\frac{d f(\theta(t))}{d t}=\frac{\partial f(\theta)}{\partial \theta} \frac{d \theta(t)}{d t}=\frac{\partial f(\theta)}{\partial \theta} \dot{\theta}=J(\theta) \dot{\theta}
$$

Jacobian

- $J(\theta) \in \mathbb{R}^{m \times n}$ is called the Jacobian. The Jacobian matrix represents the linear sensitivity of the end-effector velocity to the joint velocities $\dot{\theta}$.

$$
\dot{q}=J(\theta) \dot{\theta}
$$

(Jacobian maps joint velocity $\dot{\theta}$ to end-effector velocity \dot{q})
Forward kinematics (by geometry):

$$
\begin{gathered}
x_{1}=L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
x_{2}=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{gathered}
$$

Velocity kinematics (time derivative):

$$
\begin{gathered}
\dot{x_{1}}=-L_{1} \dot{\theta_{1}} \sin \theta_{1}-L_{2}\left(\dot{\theta_{1}}+\dot{\theta_{2}}\right) \sin \left(\theta_{1}+\theta_{2}\right) \\
\dot{x_{2}}=L_{1} \dot{\theta_{1}} \cos \theta_{1}+L_{2}\left(\dot{\theta_{1}}+\dot{\theta_{2}}\right) \cos \left(\theta_{1}+\theta_{2}\right)
\end{gathered}
$$

$$
q=\left(x_{1}, x_{2}\right), \theta=\left(\theta_{1}, \theta_{2}\right)
$$

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c:c}
-L_{1} \sin \theta_{1}-L_{2} \sin \left(\theta_{1}+\theta_{2}\right) & -L_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right) & L_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
J_{1}(\theta) & J_{2}(\theta)
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]
$$

tip velocity $v_{\text {tip }}=J_{1}(\theta) \dot{\theta}_{1}+J_{2}(\theta) \dot{\theta}_{2}$

Jacobian

- Let $L_{1}=L_{2}=1$, consider two nonsingular postures: $\theta=$ $(0, \pi / 4)$ and $\theta=(0,3 \pi / 4)$. The Jacobians $J(\theta)$ at these two configurations are

$$
\begin{gathered}
{\left[\begin{array}{c}
-L_{1} \sin \theta_{1}-L_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{array} \quad L_{2} \sin \left(\theta_{1}+\theta_{2}\right)\right.} \\
J\left(\left[\begin{array}{c}
0 \\
\pi / 4
\end{array}\right]\right)=\left[\begin{array}{cc}
-0.71 & -0.71 \\
1.71 & 0.71
\end{array}\right] \text { and } J\left(\left[\begin{array}{c}
0 \\
3 \pi / 4
\end{array}\right]\right)=\left[\begin{array}{cc}
-0.71 & -0.71 \\
0.29 & -0.71
\end{array}\right] \\
J_{1}(\theta) \\
J_{2}(\theta)
\end{gathered}
$$

$J_{i}(\theta)$ (each column) corresponds to the tip velocity when $\dot{\theta}_{i}=1$ and the other joint velocity is zero

Singularities

- As long as $J_{1}(\theta)$ and $J_{2}(\theta)$ are not collinear (on the same straight line), it is possible to generate a tip velocity $v_{\text {tip }}$ in any arbitrary direction in the $x_{1}-x_{2}$-plane by choosing appropriate joint velocities.
- If a configuration of a manipulator results in $J_{1}(\theta)$ and $J_{2}(\theta)$ being collinear, then such configuration is called singularity.
- A singularity is characterized by a situation where the robot tip is unable to generate velocities in certain directions.

Map bounds on joint velocity to tip velocity

The extreme points A, B, C, and D in the joint velocity space map to the extreme points A, B, C, and D in the end-effector velocity space.

Manipulability ellipsoid

Space Jacobian: by screw

- Let the forward kinematics of an n-link open chain be expressed in the following product of exponentials form:

$$
T(\theta)=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\delta_{n}\right] \theta_{n}} M
$$

- The space Jacobian $J_{s}(\theta) \in \mathbb{R}^{6 \times n}$ relates the joint rate vector $\dot{\theta} \in \mathbb{R}^{n}$ to the spatial twist \mathcal{V}_{s} via

$$
\mathcal{V}_{s}=J_{S}(\theta) \dot{\theta}
$$

- The i th column of $J_{S}(\theta)$ can be found by

$$
J_{s i}(\theta)=A d_{e^{\left[\delta_{1}\right] \theta_{1} \ldots e^{\left[\delta_{i-1}\right] \theta_{i-1}}}}\left(\mathcal{S}_{i}\right)
$$

for $i=2, \cdots, n$, with the first column $J_{s 1}=S_{1}$.

Space Jacobian: by screw

- To determine each column of the $\operatorname{Jacobian}_{J_{s}}(\theta)$

$$
J_{s i}(\theta)=A d_{e^{\left[s_{1}\right] \theta_{1} \ldots e} e^{\left[s_{i-1}\right] \theta_{i-1}}}\left(S_{i}\right)
$$

for $i=2, \cdots, n$, with the first column $J_{s 1}=\mathcal{S}_{1}$.

- Note $e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \ldots e^{\left[\delta_{i-1}\right] \theta_{i-1}}=T_{i-1}$, and $A d_{T_{i-1}}\left(\mathcal{S}_{i}\right)$ is therefore the screw axis describing the i th joint axis after it undergoes the rigid body displacement T_{i-1}.
- Physically this is the same as moving the first $i-1$ joints from their zero position to the current values $\theta_{1}, \cdots, \theta_{i-1}$. Therefore, the i th column $J_{s i}(\theta)$ of $J_{s}(\theta)$ is simply the screw vector describing joint axis i, expressed in fixed-frame coordinates, as a function of the joint variables $\theta_{1}, \cdots, \theta_{i-1}$.

Space Jacobian: by screw

- We can determine each column $J_{s i}(\theta)$ similar to the procedure for deriving the joint screws in the product of exponentials $e^{\left[\delta_{1}\right] \theta_{1}} \cdots e^{\left[\delta_{n}\right] \theta_{n}} M$: each column $J_{s i}(\theta)$ is the screw vector describing joint axis i, expressed in fixed-frame coordinates, but for arbitrary $\boldsymbol{\theta}$ rather than $\boldsymbol{\theta}=\mathbf{0}$.

Space Jacobian E.g.1: Spatial RRRP chain

Source: Modern Robotics

Consider an RRRP robotic arm in 3D (spatial).

We see there are 4 joint variables, θ_{1}, $\theta_{2}, \theta_{3}, \theta_{4}$. Therefore $n=4$.

The Jacobian matrix therefore has 4 columns.

$$
J_{s}(\theta)=\left[\begin{array}{llll}
J_{s 1}(\theta) & J_{s 2}(\theta) & J_{s 3}(\theta) & J_{s 4}(\theta)
\end{array}\right]
$$

Each column is the screw axis at each joint. E.g. $J_{s 1}(\theta)$ is the screw axis at joint 1.

$$
J_{s 1}(\theta)=\left[\begin{array}{l}
\omega_{1} \\
v_{1}
\end{array}\right]=\left[\begin{array}{l}
\omega_{x 1} \\
\omega_{y 1} \\
\omega_{z 1} \\
v_{x 1} \\
v_{y 1} \\
v_{z 1}
\end{array}\right]
$$

Space Jacobian E.g.1: Spatial RRRP chain

To determine $J_{s 1}(\theta)$, we look at joint 1.
We see ω_{1} points in z_{s}-direction.
v_{1} is the linear velocity of a point at origin $\{\mathrm{s}\}$ when link 1 rotates around ω_{1}. There is no linear movement when rotating around ω_{1}.

$$
J_{s 1}(\theta)=\left[\begin{array}{l}
\omega_{1} \\
v_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Source: Modern Robotics

Space Jacobian E.g.1: Spatial RRRP chain

To determine $J_{s 2}(\theta)$, we look at joint 2.
We see ω_{2} points in z_{S}-direction. When considering ω_{2} we need to take into account of the effect of θ_{1}, i.e. we want to define ω_{2} for any arbitrary value of θ_{1}. However, we note the direction of ω_{2} is not affected by joint 1 movement $\left(\theta_{1}\right)$.

$$
\omega_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Source: Modern Robotics

Space Jacobian E.g.1: Spatial RRRP chain

v_{2} is the linear velocity of a point at

Space Jacobian E.g.1: Spatial RRRP chain

To determine $J_{s 2}(\theta)$, we look at joint 2.

$$
\omega_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \text { and } v_{2}=\left[\begin{array}{c}
L_{1} \sin \theta_{1} \\
-L_{1} \cos \theta_{1} \\
0
\end{array}\right]
$$

$$
J_{s 2}(\theta)=\left[\begin{array}{c}
\omega_{2} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
1 \\
L_{1} s_{1} \\
-L_{1} c_{1} \\
0
\end{array}\right]
$$

[^0]

Space Jacobian E.g.1: Spatial RRRP chain

To determine $J_{s 3}(\theta)$, we look at joint 3 . We need to consider the effect of θ_{1} and θ_{2} on ω_{3} and v_{3}.
ω_{3} is not affected by the movement of θ_{1} and θ_{2}.

$$
\omega_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Source: Modern Robotics

Space Jacobian E.g.1: Spatial RRRP chain

Source: Modern Robotics
ω_{3} points outward of screen

Space Jacobian E.g.1: Spatial RRRP chain

Base on RHR,

$$
v_{3}=-\omega_{3} \times q_{3}
$$

where

$$
\omega_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \text { and } q_{3}=\left[\begin{array}{c}
L_{1} c_{1}+L_{2} c_{12} \\
L_{1} s_{1}+L_{2} s_{12} \\
0
\end{array}\right]
$$

Giving $\quad v_{3}=\left[\begin{array}{c}L_{1} s_{1}+L_{2} s_{12} \\ -\left(L_{1} c_{1}+L_{2} c_{12}\right) \\ 0\end{array}\right]$

$$
J_{s 3}(\theta)=\left[\begin{array}{c}
\omega_{3} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
1 \\
L_{1} s_{1}+L_{2} s_{12} \\
-\left(L_{1} c_{1}+L_{2} c_{12}\right) \\
0
\end{array}\right]
$$

Source: Modern Robotics

> Recall

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \times\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]
$$

Space Jacobian E.g.1: Spatial RRRP chain

Source: Modern Robotics

To determine $J_{s 4}(\theta)$, we look at joint 4. We need to consider the effect of θ_{1}, θ_{2} and θ_{3} on ω_{4} and v_{4}.

We take note that joint 4 is a prismatic joint, it has no angular velocity.

For prismatic joint, v_{4} is the direction of the prismatic motion. In this case, it is in the direction of z_{s}-direction.

$$
\begin{gathered}
\omega_{4}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { and } v_{4}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
J_{s 4}(\theta)=\left[\begin{array}{l}
\omega_{4} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

Space Jacobian E.g.1: Spatial RRRP chain

Space Jacobian E.g.2: Spatial RRPRRR chain

[^1]For $J_{s 1}(\theta)$, we look at joint 1.
ω_{1} is in the direction of $z_{S^{-}}$ direction.

There is no linear motion when rotating around this axis.

$$
\begin{gathered}
\omega_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \text { and } v_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
J_{s 1}(\theta)=\left[\begin{array}{l}
\omega_{1} \\
v_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

Space Jacobian E.g.2: Spatial RRPRRR chain

For $J_{s 2}(\theta)$, we look at joint 2 with consideration of change in θ_{1}.
ω_{2} is on $x_{z}-y_{s}$ plane, however the direction depends on θ_{1}. Take note of the zero configuration position of θ_{1} to ensure we get the sign correct.

$$
\omega_{2}=\left[\begin{array}{c}
-\cos \theta_{1} \\
-\sin \theta_{1} \\
0
\end{array}\right]
$$

[^2]
Space Jacobian E.g.2: Spatial RRPRRR chain

Source: Modern Robotics

For $J_{s 2}(\theta)$, we look at joint 2 with consideration of change in θ_{1}.

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \times\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]
$$

$$
\begin{gathered}
v_{2}=-\omega_{2} \times q_{2} \\
\omega_{2}=\left[\begin{array}{c}
-\cos \theta_{1} \\
-\sin \theta_{1} \\
0
\end{array}\right], q_{2}=\left[\begin{array}{l}
0 \\
0 \\
L_{1}
\end{array}\right] \\
v_{2}=\left[\begin{array}{c}
L_{1} s_{1} \\
-L_{1} c_{1} \\
0
\end{array}\right] \\
J_{s 2}(\theta)=\left[\begin{array}{c}
\omega_{2} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \\
0 \\
L_{1} s_{1} \\
-L_{1} c_{1} \\
0
\end{array}\right]
\end{gathered}
$$

Space Jacobian E.g.2: Spatial RRPRRR chain

For $J_{s 3}(\theta)$, we look at joint 3 with consideration of changes in θ_{1}, θ_{2}.

Joint 3 is prismatic, so there is no angular velocity.

$$
\omega_{3}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Source: Modern Robotics

Space Jacobian E.g.2: Spatial RRPRRR chain

v_{3} defines the direction of the linear motion. It is affected by θ_{1}, θ_{2}.

We can draw in 3D to determine the coordinates of v_{3} by geometry and cross product.

Alternative we can perform rotations of θ_{1} and θ_{2} on the initial position (zero configuration) of v_{3}. Note v_{3} is along \hat{y}_{s} in zero configuration.

$$
v_{3}^{0}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

θ_{2} rotates v_{3}^{0} around $-\hat{x}_{S^{-}}$axis (or around \hat{x}_{s} in negative direction according to RHR). θ_{1} rotates v_{3}^{0} around $\hat{z}_{s}-$ axis. We visualize the order of rotation around the axes in $\{\mathrm{s}\}$ and use pre-multiplication.

$$
v_{3}=\operatorname{Rot}\left(\hat{z}_{s}, \theta_{1}\right) \operatorname{Rot}\left(\hat{x}_{s},-\theta_{2}\right)\left[\begin{array}{l}
0 \\
1 \\
0 \mathrm{ZA}-2203
\end{array}\right]=\left[\begin{array}{c}
-s_{1} c_{2} \\
c_{1} c_{2} \\
-s_{2}
\end{array}\right]
$$

Space Jacobian E.g.2: Spatial RRPRRR chain

Axes of joints 4,5 and 6 intersect at the same point. They are the 3 dof of the wrist joint to provide the orientation of the end-effector.

We can obtain ω_{4}, ω_{5} and ω_{6} by performing rotations of the joints before each of them.

Source: Modern Robotics

$$
\begin{gathered}
\omega_{4}=\operatorname{Rot}\left(\hat{z}_{s}, \theta_{1}\right) \operatorname{Rot}\left(\hat{x}_{s},-\theta_{2}\right) \omega_{4}^{0}=R\left(\hat{z}_{s}, \theta_{1}\right) R\left(\hat{x}_{s},-\theta_{2}\right)\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
\omega_{5}=R\left(\hat{z}_{s}, \theta_{1}\right) R\left(\hat{x}_{s},-\theta_{2}\right) R\left(\hat{z}_{s}, \theta_{4}\right) \omega_{5}^{0} \text { where } \omega_{5}^{0}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

$$
\omega_{6}=R\left(\hat{z}_{s}, \theta_{1}\right) R\left(\hat{x}_{s},-\theta_{2}\right) R\left(\hat{z}_{s}, \theta_{4}\right) R\left(\hat{x}_{s},-\theta_{5}\right) \omega_{6}^{0} \text { where } \omega_{6}^{0}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Space Jacobian E.g.2: Spatial RRPRRR chain

Body Jacobian: by screw

- Let the forward kinematics of an n-link open chain be expressed in the following product of exponentials form:

$$
T(\theta)=M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{B}_{n}\right] \theta_{n}}
$$

- The body Jacobian $J_{b}(\theta) \in \mathbb{R}^{6 \times n}$ relates the joint rate vector $\dot{\theta} \in \mathbb{R}^{n}$ to the spatial twist \mathcal{V}_{s} via

$$
v_{b}=J_{b}(\theta) \dot{\theta}
$$

- The i th column of $J_{b}(\theta)$ can be found by

$$
J_{b i}(\theta)=A d_{e^{-\left[\mathcal{B}_{n}\right] \theta_{n} \ldots e^{-\left[\mathcal{B}_{i+1}\right] \theta_{i+1}}}}\left(\mathcal{B}_{i}\right)
$$

- for $i=n-1, \cdots, 1$, with the last column $J_{b n}=\mathcal{B}_{n}$.
- The i th column $J_{b i}(\theta)$ is the screw vector for joint axis i, expressed in the body (end-effector) coordinate frame, as a function of the joint variables $\theta_{i-1}, \cdots, \theta_{n}$.

Summary (1/2)

- Velocity kinematics is about determining the twist of the endeffector given the velocities and positions at the joints.
- Jacobian is the linear sensitivity of the end-effector velocity to the joint velocity $\dot{\theta}$.

$$
\text { tip velocity } v_{t i p}=J_{1}(\theta) \dot{\theta}_{1}+\cdots+J_{n}(\theta) \dot{\theta}_{n}
$$

- Jacobian matrix maps the joint velocity space to the endeffector velocity space.
- Jacobian can map a unit spherical joint velocity boundary to the end-effector manipulability ellipsoid.
- The manipulability ellipsoid can quantify closeness of a configuration to singularity.

Summary (2/2)

- Spatial Jacobian uses similar screw axis (expressed in space frame) technique in power of exponentials (forward kinematics) to determine the columns of a Jacobian matrix.
- Body Jacobian uses similar screw axis (express in body frame) technique in power of exponentials (forward kinematics) to determine the columns of a Jacobian matrix.
- Jacobian matrix will be used in solving inverse kinematics problems.

Reading List

- Read Chapter 5.1 of Modern Robotics

To Do List

- Watch Chapter 5 videos of Modern Robotics on Coursera, or on YouTube
https://www.youtube.com/playlist?list=PLggLP4frq02vX00QQ5vrCxbJrzamYDfx

[^0]: Source: Modern Robotics

[^1]: Source: Modern Robotics

[^2]: Source: Modern Robotics

