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Velocity Kinematics

ZA-2203 Robotic Systems



Topics

• Velocity kinematics

• Jacobian

• Singularities

• Manipulability ellipsoid

• Spatial Jacobian

• Body Jacobian
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Velocity Kinematics

• In previous lecture, we studied the motion of the robot 
manipulator in terms of displacement (position and 
orientation). Specifically, we learned to determine the 
displacement (transformation) of the end-effector given the 
motion at the joints (joint variables either rotation or linear). 
This is forward kinematics.

• In this lecture, we will study the motion of the robot 
manipulator in terms of velocity (linear and rotational). 
Specifically, we will learn to determine the twist of the end-
effector given the velocities and positions at the joints. This is 
velocity kinematics.
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Jacobian

• If the pose of the end-effector is given by 𝑞 ∈ ℝ𝑚, e.g. 𝑞 =
𝑞1, ⋯ , 𝑞6 = 𝑥, 𝑦, 𝑧, 𝜙𝑦𝑎𝑤 , 𝜙𝑝𝑖𝑡𝑐ℎ, 𝜙𝑟𝑜𝑙𝑙 , the forward 

kinematics can be written as:
𝑞 = 𝑓 𝜃

• where 𝜃 = 𝜃1, ⋯ , 𝜃𝑛 ∈ ℝ𝑛 is the joint parameters.

• If the manipulator is moving, we can express the pose and 
joint parameters as functions of time:

𝑞 𝑡 = 𝑓 𝜃 𝑡

• The time derivation of the above equation will give the 
velocities of the end-effector pose ሶ𝑞 as a function of the joint 
velocities ሶ𝜃, i.e. velocity kinematics.

ሶ𝑞 =
𝑑𝑞 𝑡

𝑑𝑡
=

𝑑𝑓 𝜃 𝑡

𝑑𝑡
=

𝜕𝑓 𝜃

𝜕𝜃

𝑑𝜃 𝑡

𝑑𝑡
=

𝜕𝑓 𝜃

𝜕𝜃
ሶ𝜃 = 𝐽 𝜃 ሶ𝜃
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Jacobian

• 𝐽 𝜃 ∈ ℝ𝑚×𝑛 is called the Jacobian. The Jacobian matrix represents the 
linear sensitivity of the end-effector velocity to the joint velocities ሶ𝜃.
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𝑞 = 𝑥1, 𝑥2 , 𝜃 = 𝜃1, 𝜃2

Forward kinematics (by geometry):

Velocity kinematics (time derivative):

𝑡𝑖𝑝 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣𝑡𝑖𝑝 = 𝐽1 𝜃 ሶ𝜃1 + 𝐽2 𝜃 ሶ𝜃2

(Jacobian maps joint velocity ሶ𝜃 to end-effector velocity ሶ𝑞)

𝑥1

𝑥2
ሶ𝑞 = 𝐽 𝜃 ሶ𝜃

𝐽1 𝜃 𝐽2 𝜃

𝑥1 = 𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃1 + 𝜃2
𝑥2 = 𝐿1 sin 𝜃1 + 𝐿2 sin 𝜃1 + 𝜃2

ሶ𝑥1 = −𝐿1
ሶ𝜃1 sin 𝜃1 − 𝐿2

ሶ𝜃1 + ሶ𝜃2 sin 𝜃1 + 𝜃2

ሶ𝑥2 = 𝐿1
ሶ𝜃1 cos 𝜃1 + 𝐿2

ሶ𝜃1 + ሶ𝜃2 cos 𝜃1 + 𝜃2

ሶ𝑥1

ሶ𝑥2
=

−𝐿1 sin 𝜃1 − 𝐿2 sin 𝜃1 + 𝜃2 −𝐿2 sin 𝜃1 + 𝜃2

𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃1 + 𝜃2 𝐿2 cos 𝜃1 + 𝜃2

ሶ𝜃1

ሶ𝜃2

Source: Modern Robotics



Jacobian

• Let 𝐿1 = 𝐿2 = 1, consider two nonsingular postures: 𝜃 =
0, Τ𝜋

4 and 𝜃 = 0, Τ3𝜋
4 . The Jacobians 𝐽 𝜃 at these two 

configurations are
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𝐽1 𝜃 𝐽2 𝜃 𝐽1 𝜃 𝐽2 𝜃

𝜃 = 0, ൗ𝜋
4

𝐽𝑖 𝜃  (each column) corresponds to 

the tip velocity when ሶ𝜃𝑖 = 1 and the 

other joint velocity is zero

−𝐿1 sin 𝜃1 − 𝐿2 sin 𝜃1 + 𝜃2 −𝐿2 sin 𝜃1 + 𝜃2

𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃1 + 𝜃2 𝐿2 cos 𝜃1 + 𝜃2

𝐽
0
Τ𝜋

4
=

−0.71 −0.71
1.71 0.71

    and    𝐽
0
Τ3𝜋

4
=

−0.71 −0.71
0.29 −0.71

Source: Modern Robotics



Singularities

• As long as 𝐽1 𝜃 and 𝐽2 𝜃 are not collinear (on the same 
straight line), it is possible to generate a tip velocity 𝑣𝑡𝑖𝑝 in 
any arbitrary direction in the 𝑥1- 𝑥2 -plane by choosing 
appropriate joint velocities.

• If a configuration of a manipulator results in 𝐽1 𝜃 and 𝐽2 𝜃
being collinear, then such configuration is called singularity.

• A singularity is characterized by a situation where the robot 
tip is unable to generate velocities in certain directions.
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Map bounds on joint velocity to tip velocity
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The extreme points A, B, C, and D in the 

joint velocity space map to the extreme 

points A, B, C, and D in the end-effector 

velocity space.

Source: Modern Robotics



Manipulability ellipsoid
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Map a unit circle of joint 

velocities in the 𝜃1- 𝜃2 -plane 

to the space of tip velocities.

Shape of ellipse quantity how 

close a given posture is to a 

singularity: the narrower 

(thinner) the ellipse, the more 

difficult for the end-effector 

(tip) to move, i.e. closer to 

singularity.

Ideally, 
ℓ𝑚𝑖𝑛

ℓ𝑚𝑎𝑥
= 1. The closer to 

1, the easier can the tip move 

in arbitrary directions.

Manipulability ellipsoidℓ𝑚𝑎𝑥

ℓ𝑚𝑖𝑛

Source: Modern Robotics



Space Jacobian: by screw

• Let the forward kinematics of an 𝑛-link open chain be 
expressed in the following product of exponentials form:

𝑇 𝜃 = 𝑒 𝒮1 𝜃1 ⋯ 𝑒 𝒮𝑛 𝜃𝑛𝑀

• The space Jacobian 𝐽𝑠 𝜃 ∈ ℝ6×𝑛 relates the joint rate vector 
ሶ𝜃 ∈ ℝ𝑛 to the spatial twist 𝒱𝑠 via

𝒱𝑠 = 𝐽𝑠 𝜃 ሶ𝜃

• The 𝑖th column of 𝐽𝑠 𝜃 can be found by
𝐽𝑠𝑖 𝜃 = 𝐴𝑑

𝑒 𝒮1 𝜃1⋯𝑒 𝒮𝑖−1 𝜃𝑖−1
𝒮𝑖

for 𝑖 = 2, ⋯ , 𝑛, with the first column 𝐽𝑠1 = 𝒮1.

owh@ieee.org ZA-2203 11



Space Jacobian: by screw

• To determine each column of the Jacobian𝐽𝑠 𝜃
𝐽𝑠𝑖 𝜃 = 𝐴𝑑

𝑒 𝒮1 𝜃1⋯𝑒 𝒮𝑖−1 𝜃𝑖−1
𝒮𝑖

for 𝑖 = 2, ⋯ , 𝑛, with the first column 𝐽𝑠1 = 𝒮1.

• Note 𝑒 𝒮1 𝜃1 ⋯ 𝑒 𝒮𝑖−1 𝜃𝑖−1 = 𝑇𝑖−1, and 𝐴𝑑𝑇𝑖−1
𝒮𝑖 is therefore 

the screw axis describing the 𝑖th joint axis after it undergoes 
the rigid body displacement 𝑇𝑖−1. 

• Physically this is the same as moving the first 𝑖 − 1 joints from 
their zero position to the current values 𝜃1, ⋯ , 𝜃𝑖−1. 
Therefore, the 𝑖 th column 𝐽𝑠𝑖 𝜃 of 𝐽𝑠 𝜃 is simply the screw 
vector describing joint axis 𝑖, expressed in fixed-frame 
coordinates, as a function of the joint variables 𝜃1, ⋯ , 𝜃𝑖−1.
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Space Jacobian: by screw

• We can determine each column 𝐽𝑠𝑖 𝜃 similar to the 
procedure for deriving the joint screws in the product of 
exponentials 𝑒 𝒮1 𝜃1 ⋯ 𝑒 𝒮𝑛 𝜃𝑛𝑀: each column 𝐽𝑠𝑖 𝜃 is the 
screw vector describing joint axis 𝑖, expressed in fixed-frame 
coordinates, but for arbitrary 𝜽 rather than 𝜽 = 𝟎.
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Space Jacobian E.g.1: Spatial RRRP chain
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Consider an RRRP robotic arm in 3D 
(spatial).

We see there are 4 joint variables, 𝜃1, 
𝜃2, 𝜃3, 𝜃4. Therefore 𝑛 = 4. 
 
The Jacobian matrix therefore has 4 
columns.

𝐽𝑠 𝜃 = 𝐽𝑠1 𝜃 𝐽𝑠2 𝜃 𝐽𝑠3 𝜃 𝐽𝑠4 𝜃

Each column is the screw axis at each 
joint. E.g. 𝐽𝑠1 𝜃  is the screw axis at joint 
1.

𝐽𝑠1 𝜃 =
𝜔1

𝑣1
=

𝜔𝑥1

𝜔𝑦1

𝜔𝑧1
𝑣𝑥1

𝑣𝑦1

𝑣𝑧1

R

R

R

P

Source: Modern Robotics

ො𝑥𝑠

ො𝑦𝑠

Ƹ𝑧𝑠



Space Jacobian E.g.1: Spatial RRRP chain
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To determine 𝐽𝑠1 𝜃 , we look at joint 1. 

We see 𝜔1 points in 𝑧𝑠-direction.

𝑣1 is the linear velocity of a point at 
origin {s} when link 1 rotates around 𝜔1. 
There is no linear movement when 
rotating around 𝜔1.

𝐽𝑠1 𝜃 =
𝜔1

𝑣1
=

0
0
1
0
0
0

𝜔1

𝑣1

Source: Modern Robotics



Space Jacobian E.g.1: Spatial RRRP chain
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To determine 𝐽𝑠2 𝜃 , we look at joint 2. 

We see 𝜔2 points in 𝑧𝑠-direction. When 
considering 𝜔2 we need to take into 
account of the effect of 𝜃1, i.e. we want 
to define 𝜔2 for any arbitrary value of 
𝜃1. However, we note the direction of 
𝜔2 is not affected by joint 1 movement 
(𝜃1). 

𝜔2 =
0
0
1

𝜔2

Source: Modern Robotics



Space Jacobian E.g.1: Spatial RRRP chain
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𝑣2 is the linear velocity of a point at 
origin {s} when link 2 rotates around 𝜔2. 
When considering 𝑣2 we need to take 
into account of the effect of 𝜃1, i.e. we 
want to define 𝑣2 for any arbitrary value 
of 𝜃1. Base on RHR,

𝑣2 = −𝜔2 × 𝑞2
where

𝜔2 =
0
0
1

 and 𝑞2 =
𝐿1 cos 𝜃1

𝐿1 sin 𝜃1

0

Giving

𝑣2 =
𝐿1 sin 𝜃1

−𝐿1 cos 𝜃1

0

𝜔2

𝑣2

𝜃1

𝜔2

𝜃2

𝑞2

𝑣2

𝜔2 points outward of screen

Recall
𝑎1

𝑎2

𝑎3

×

𝑏1

𝑏2

𝑏3

=

𝑎2𝑏3 − 𝑎3𝑏2

𝑎3𝑏1 − 𝑎1𝑏3

𝑎1𝑏2 − 𝑎2𝑏1

Source: Modern Robotics

ො𝑥𝑠

ො𝑦𝑠

Ƹ𝑧𝑠

ො𝑥𝑠



Space Jacobian E.g.1: Spatial RRRP chain
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To determine 𝐽𝑠2 𝜃 , we look at joint 2. 

𝜔2 =
0
0
1

 and 𝑣2 =
𝐿1 sin 𝜃1

−𝐿1 cos 𝜃1

0

𝐽𝑠2 𝜃 =
𝜔2

𝑣2
=

0
0
1

𝐿1𝑠1

−𝐿1𝑐1

0

𝜔2

𝑣2

𝜃1

𝜔2

𝜃2

𝑞2

𝑣2

𝜔2 points outward of screen

Source: Modern Robotics



Space Jacobian E.g.1: Spatial RRRP chain
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To determine 𝐽𝑠3 𝜃 , we look at joint 3. 
We need to consider the effect of 𝜃1 and 
𝜃2 on 𝜔3 and 𝑣3.

𝜔3 is not affected by the movement of 
𝜃1 and 𝜃2.

𝜔3 =
0
0
1

𝜔3

Source: Modern Robotics



Space Jacobian E.g.1: Spatial RRRP chain
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𝜔3

𝑣2

𝜃1

𝜃3

𝑞3

𝜔3 points outward of screen

𝑣3

𝜔3

𝜃1 + 𝜃2

𝑞3

Base on RHR,
𝑣3 = −𝜔3 × 𝑞3

where

𝜔3 =
0
0
1

 and 𝑞3 =
𝐿1𝑐1 + 𝐿2𝑐12

𝐿1𝑠1 + 𝐿2𝑠12

0

Source: Modern Robotics



Space Jacobian E.g.1: Spatial RRRP chain
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𝜔3

𝑣2

𝑞3

Base on RHR,
𝑣3 = −𝜔3 × 𝑞3

where

𝜔3 =
0
0
1

 and 𝑞3 =
𝐿1𝑐1 + 𝐿2𝑐12

𝐿1𝑠1 + 𝐿2𝑠12

0

Giving 𝑣3 =
𝐿1𝑠1 + 𝐿2𝑠12

− 𝐿1𝑐1 + 𝐿2𝑐12

0

𝐽𝑠3 𝜃 =
𝜔3

𝑣3
=

0
0
1

𝐿1𝑠1 + 𝐿2𝑠12

− 𝐿1𝑐1 + 𝐿2𝑐12

0
Recall

𝑎1

𝑎2

𝑎3

×

𝑏1

𝑏2

𝑏3

=

𝑎2𝑏3 − 𝑎3𝑏2

𝑎3𝑏1 − 𝑎1𝑏3

𝑎1𝑏2 − 𝑎2𝑏1

Source: Modern Robotics



Space Jacobian E.g.1: Spatial RRRP chain
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𝑣4

To determine 𝐽𝑠4 𝜃 , we look at joint 4. 
We need to consider the effect of 𝜃1, 𝜃2 
and 𝜃3 on 𝜔4 and 𝑣4.

We take note that joint 4 is a prismatic 
joint, it has no angular velocity.

For prismatic joint, 𝑣4 is the direction of 
the prismatic motion. In this case, it is in 
the direction of  𝑧𝑠-direction.

𝜔4 =
0
0
0

 and 𝑣4 =
0
0
1

𝐽𝑠4 𝜃 =
𝜔4

𝑣4
=

0
0
0
0
0
1

Source: Modern Robotics



Space Jacobian E.g.1: Spatial RRRP chain
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𝐽𝑠 𝜃 =

0
0
1
0
0
0

0
0
1

𝐿1𝑠1

−𝐿1𝑐1

0

0
0
1

𝐿1𝑠1 + 𝐿2𝑠12

−𝐿1𝑐1 − 𝐿2𝑐12

0

0
0
0
0
0
1

Source: Modern Robotics



Space Jacobian E.g.2: Spatial RRPRRR chain 
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For 𝐽𝑠1 𝜃 , we look at joint 1. 

𝜔1 is in the direction of 𝑧𝑠-
direction.

There is no linear motion when 
rotating around this axis.

𝜔1 =
0
0
1

 and 𝑣1 =
0
0
0

𝐽𝑠1 𝜃 =
𝜔1

𝑣1
=

0
0
1
0
0
0

𝜔1

ො𝑦𝑠

Ƹ𝑧𝑠

ො𝑥𝑠

Source: Modern Robotics



Space Jacobian E.g.2: Spatial RRPRRR chain 
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For 𝐽𝑠2 𝜃 , we look at joint 2 
with consideration of change in 
𝜃1. 

𝜔2 is on 𝑥𝑧-𝑦𝑠 plane, however 
the direction depends on 𝜃1. 
Take note of the zero 
configuration position of 𝜃1 to 
ensure we get the sign correct.

𝜔2 =
− cos 𝜃1

− sin 𝜃1

0

𝜔2

𝜔2

𝜃1

ො𝑥𝑠

ො𝑦𝑠

Ƹ𝑧𝑠

− ො𝑥𝑠

− ො𝑦𝑠

− ො𝑦𝑠

− ො𝑥𝑠

(view from top)

Source: Modern Robotics



Space Jacobian E.g.2: Spatial RRPRRR chain 
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For 𝐽𝑠2 𝜃 , we look at joint 2 
with consideration of change in 
𝜃1. 

𝑣2 = −𝜔2 × 𝑞2

𝜔2 =
− cos 𝜃1

− sin 𝜃1

0

, 𝑞2 =
0
0
𝐿1

𝑣2 =
𝐿1𝑠1

−𝐿1𝑐1

0

𝐽𝑠2 𝜃 =
𝜔2

𝑣2
=

−𝑐1

−𝑠1

0
𝐿1𝑠1

−𝐿1𝑐1

0

𝜔2

ො𝑥𝑠

ො𝑦𝑠

Ƹ𝑧𝑠

− ො𝑦𝑠

− ො𝑥𝑠

𝑣2

𝑞2

Recall
𝑎1

𝑎2

𝑎3

×

𝑏1

𝑏2

𝑏3

=

𝑎2𝑏3 − 𝑎3𝑏2

𝑎3𝑏1 − 𝑎1𝑏3

𝑎1𝑏2 − 𝑎2𝑏1

Source: Modern Robotics



Space Jacobian E.g.2: Spatial RRPRRR chain 
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For 𝐽𝑠3 𝜃 , we look at joint 3 
with consideration of changes 
in 𝜃1, 𝜃2. 

Joint 3 is prismatic, so there is 
no angular velocity.

𝜔3 =
0
0
0

𝑣3

ො𝑥𝑠

ො𝑦𝑠

Ƹ𝑧𝑠

Source: Modern Robotics



Space Jacobian E.g.2: Spatial RRPRRR chain 
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𝑣3 defines the direction of the 
linear motion. It is affected by 
𝜃1, 𝜃2. 

We can draw in 3D to 
determine the coordinates of 𝑣3 
by geometry and cross product.

𝑣3

ො𝑥𝑠

ො𝑦𝑠

Ƹ𝑧𝑠

Alternative we can perform rotations of 𝜃1 and 𝜃2 on the 
initial position (zero configuration) of 𝑣3. Note 𝑣3 is along 
ො𝑦𝑠 in zero configuration.

𝑣3
0 =

0
1
0

𝜃2 rotates 𝑣3
0 around − ො𝑥𝑠- axis (or around ො𝑥𝑠 in negative direction 

according to RHR). 𝜃1 rotates 𝑣3
0 around Ƹ𝑧𝑠- axis. We visualize the 

order of rotation around the axes in {s} and use pre-multiplication. 

𝑣3 = 𝑅𝑜𝑡 Ƹ𝑧𝑠, 𝜃1 𝑅𝑜𝑡 ො𝑥𝑠, −𝜃2

0
1
0

=

−𝑠1𝑐2

𝑐1𝑐2

−𝑠2

Source: Modern Robotics



Space Jacobian E.g.2: Spatial RRPRRR chain 
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Axes of joints 4, 5 and 6 
intersect at the same point. 
They are the 3 dof of the wrist 
joint to provide the orientation 
of the end-effector.

We can obtain 𝜔4, 𝜔5 and 𝜔6 
by performing rotations of the 
joints before each of them.

ො𝑥𝑠

ො𝑦𝑠

Ƹ𝑧𝑠

𝜔4

𝜔4 = 𝑅𝑜𝑡 Ƹ𝑧𝑠, 𝜃1 𝑅𝑜𝑡 ො𝑥𝑠, −𝜃2 𝜔4
0 = 𝑅 Ƹ𝑧𝑠, 𝜃1 𝑅 ො𝑥𝑠, −𝜃2

0
0
1

𝜔5 = 𝑅 Ƹ𝑧𝑠, 𝜃1 𝑅 ො𝑥𝑠, −𝜃2 𝑅 Ƹ𝑧𝑠, 𝜃4 𝜔5
0 where 𝜔5

0 =
−1
0
0

𝜔6 = 𝑅 Ƹ𝑧𝑠, 𝜃1 𝑅 ො𝑥𝑠, −𝜃2 𝑅 Ƹ𝑧𝑠, 𝜃4 𝑅 ො𝑥𝑠, −𝜃5 𝜔6
0 where 𝜔6

0 =
0
1
0

𝜔6

𝜔5

Source: Modern Robotics



Space Jacobian E.g.2: Spatial RRPRRR chain 
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We can obtain 𝑣4, 𝑣5 and 𝑣6 
from the cross product of their 
respective screw axis 𝜔4, 𝜔5 
and 𝜔6 with the vector from {s} 
to the wrist center, 𝑞𝑤.

Considering RHR, we have

ො𝑥𝑠

ො𝑦𝑠

Ƹ𝑧𝑠

𝜔4

𝜔6

𝜔5

𝑞𝑤

𝑣4

𝑣5 𝑣6

𝑣4 = −𝜔4 × 𝑞𝑤, 𝑣5 = −𝜔5 × 𝑞𝑤, 𝑣6 = −𝜔6 × 𝑞𝑤

𝑝𝑤 is subject to the motions of joint 1, 2 and 3, we can obtain 
𝑝𝑤 as below:

𝑞𝑤 =
0
0
𝐿1

+ 𝑅𝑜𝑡 Ƹ𝑧𝑠, 𝜃1 𝑅𝑜𝑡 ො𝑥𝑠, −𝜃2

0
𝐿2 + 𝜃3

0Source: Modern Robotics



Body Jacobian: by screw

• Let the forward kinematics of an 𝑛-link open chain be 
expressed in the following product of exponentials form:

𝑇 𝜃 = 𝑀𝑒 ℬ1 𝜃1 ⋯ 𝑒 ℬ𝑛 𝜃𝑛

• The body Jacobian 𝐽𝑏 𝜃 ∈ ℝ6×𝑛 relates the joint rate vector 
ሶ𝜃 ∈ ℝ𝑛 to the spatial twist 𝒱𝑠 via

𝒱𝑏 = 𝐽𝑏 𝜃 ሶ𝜃

• The 𝑖th column of 𝐽𝑏 𝜃 can be found by
𝐽𝑏𝑖 𝜃 = 𝐴𝑑

𝑒− ℬ𝑛 𝜃𝑛⋯𝑒− ℬ𝑖+1 𝜃𝑖+1
ℬ𝑖

• for 𝑖 = 𝑛 − 1, ⋯ , 1, with the last column 𝐽𝑏𝑛 = ℬ𝑛.

• The 𝑖 th column 𝐽𝑏𝑖 𝜃 is the screw vector for joint axis 𝒊, 
expressed in the body (end-effector) coordinate frame, as a 
function of the joint variables 𝜃𝑖−1, ⋯ , 𝜃𝑛.
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Summary (1/2)

• Velocity kinematics is about determining the twist of the end-
effector given the velocities and positions at the joints.

• Jacobian is the linear sensitivity of the end-effector velocity to 
the joint velocity ሶ𝜃.

𝑡𝑖𝑝 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣𝑡𝑖𝑝 = 𝐽1 𝜃 ሶ𝜃1 + ⋯ + 𝐽𝑛 𝜃 ሶ𝜃𝑛

• Jacobian matrix maps the joint velocity space to the end-
effector velocity space.

• Jacobian can map a unit spherical joint velocity boundary to 
the end-effector manipulability ellipsoid.

• The manipulability ellipsoid can quantify closeness of a 
configuration to singularity.
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Summary (2/2)

• Spatial Jacobian uses similar screw axis (expressed in space 
frame) technique in power of exponentials (forward 
kinematics) to determine the columns of a Jacobian matrix.

• Body Jacobian uses similar screw axis (express in body frame) 
technique in power of exponentials (forward kinematics) to 
determine the columns of a Jacobian matrix.

• Jacobian matrix will be used in solving inverse kinematics 
problems.
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Reading List

• Read Chapter 5.1 of Modern Robotics
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To Do List

• Watch Chapter 5 videos of Modern Robotics on Coursera, or 
on YouTube
https://www.youtube.com/playlist?list=PLggLP4f-
rq02vX0OQQ5vrCxbJrzamYDfx

owh@ieee.org ZA-2203 35

https://www.youtube.com/playlist?list=PLggLP4f-rq02vX0OQQ5vrCxbJrzamYDfx
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