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Rigid Body Motions

ZA-2203 Robotic Systems



Topics

• Coordinate systems

• Describing position

• Describing orientation

• More on orientation and rotation

• Describing pose (configuration)

• Describing motion (transformation): translation and rotation

• Describing velocities (screw theory)
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Coordinate systems
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Coordinate systems
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𝐴 =

𝑥𝐴

𝑦𝐴

𝑧𝐴

𝐵 =

𝑥𝐵

𝑦𝐵

𝑧𝐵

𝐶 =

𝑥𝐶

𝑦𝐶

𝑧𝐶
B

A

C

𝑥

𝑦

𝑧

𝑂

origin

𝑦

𝑥

𝑧

𝑥

𝑦

𝑧

Right-hand rule (RHR)

ො𝑦

ො𝑥

Ƹ𝑧

Unit vectors

Coordinate frame
- has origin
- orthogonal axes
- stationary

𝑥𝐴 means 𝑥 coordinate of point A, 
likewise for other coordinate variables



Describing position
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Position of a point
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𝑃



Position of a point: Cartesian coordinates
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ො𝑦

ො𝑥

𝑃𝑥

𝑃𝑦

0

𝑃 = 𝑃𝑥, 𝑃𝑦

Unit vectors

𝑃𝑥 means 𝑥 coordinate of point P, 
𝑃𝑦 means 𝑦 coordinate of point P.

We have taken the liberal in 
using different notation 
conventions. Please interpret 
accordingly.



Position of a point: Cartesian coordinates
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ො𝑦

ො𝑥

Ƹ𝑧

𝑃𝑥

𝑃𝑦

𝑃𝑧

0

𝑃 = 𝑃𝑥, 𝑃𝑦 , 𝑃𝑧



Position of a point: Cartesian coordinates
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𝑃𝑥

𝑃𝑦

𝑃𝑧

1 𝑃 = 𝑃𝑥, 𝑃𝑦 , 𝑃𝑧



Position of a point: Cartesian coordinates
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𝑃𝑥

𝑃𝑦

𝑃𝑧

1 𝑃 = 𝑃𝑥, 𝑃𝑦 , 𝑃𝑧

ො𝑦

ො𝑥

Ƹ𝑧

𝑃𝑥

𝑃𝑦

𝑃𝑧

0



Position of a point: Cartesian coordinates
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1 𝑃

ො𝑦0

Ƹ𝑧0

ො𝑥00

𝑃0 = 𝑝𝑥
0, 𝑝𝑦

0, 𝑝𝑧
0 

𝑃1 = 𝑝𝑥
1, 𝑝𝑦

1 , 𝑝𝑧
1 

𝑝𝑧
0

𝑝𝑥
0

𝑝𝑦
0

𝑝𝑥
1

𝑝𝑦
1

𝑝𝑧
1

Cartesian coordinates

𝑝𝑥
0 means 𝑥 coordinate of point P 

in frame 0 ,
𝑝𝑦

0 means 𝑦 coordinate of point P 

in frame 0 ,
Likewise for other coordinate 
variables.
In this notation, the subscript is 
the subject of interest, and the 
superscript is the reference 
frame.
Alternative notation are below:

𝑝0𝑥 or 0𝑝𝑥

In 𝑝0, the superscript refers to 
the reference frame. Sometimes, 
subscript is used in this context, 
i.e. in 𝑝0, the subscript is used to 
indicate the reference frame.

Different notation conventions 
have been used by different 
authors.
We will be liberal in using 
different notation conventions. 
Please interpret accordingly.



Position of a point: Cartesian coordinates
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1 𝑃

ො𝑦0

Ƹ𝑧0

ො𝑥00

Cartesian coordinates

1 𝑃

ො𝑦0

ො𝑥00

𝑃0 = 𝑝𝑥
0, 𝑝𝑦

0 

𝑃1 = 𝑝𝑥
1, 𝑝𝑦

1 

𝑝𝑥
0

𝑝𝑦
0

𝑝𝑥
1

𝑝𝑦
1

Cartesian coordinates

3D space

2D plane

𝑃0 = 𝑝𝑥
0, 𝑝𝑦

0, 𝑝𝑧
0 

𝑃1 = 𝑝𝑥
1, 𝑝𝑦

1 , 𝑝𝑧
1 

𝑝𝑧
0

𝑝𝑥
0

𝑝𝑦
0

𝑝𝑥
1

𝑝𝑦
1

𝑝𝑧
1



ො𝑦0

Ƹ𝑧0

ො𝑥0

Position of a point: Vector
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𝑃

0

𝒑0 =

𝑝𝑥
0

𝑝𝑦
0

𝑝𝑧
0

𝑝𝑧
0

𝑝𝑥
0

𝑝𝑦
0

𝒑0

ො𝑦0

ො𝑥0

𝑃

0

𝒑0 =
𝑝𝑥

0

𝑝𝑦
0

𝑝𝑥
0

𝑝𝑦
0

𝒑0

2D 3D

Vector is actually a displacement (more specifically a translation 
displacement).
It specify the position of P by specifying how much translation displacement in 
each dimension (x,y,z) is point P from the origin {0}.
It is useful in arithmetic, whereas we cannot perform arithmetic on points 
(Cartesian coordinates).



ො𝑦0

Ƹ𝑧0

ො𝑥0

Position of a point: Vector
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1
𝑃

0

𝒑0 = 𝑝𝑥
0 𝑝𝑦

0 𝑝𝑧
0 𝑇

𝑝𝑧
0

𝑝𝑥
0

𝑝𝑦
0

𝑝𝑥
1

𝑝𝑦
1

𝑝𝑧
1

𝒑1 = 𝑝𝑥
1 𝑝𝑦

1 𝑝𝑧
1 𝑇

𝒑0

𝒑1

ො𝑥0 =
1
0
0

ො𝑦0 =
0
1
0

Ƹ𝑧0 =
0
0
1

 𝑖𝑛 0

𝒑0 = 𝑝𝑥
0 ො𝑥0 + 𝑝𝑦

0 ො𝑦0+ 𝑝𝑧
0 Ƹ𝑧0

We can write

𝑁𝑜𝑡𝑒

2D 3D
ො𝑦0

ො𝑥0

1
𝑃

0

𝒑0 = 𝑝𝑥
0 𝑝𝑦

0 𝑇

𝑝𝑥
0

𝑝𝑦
0

𝑝𝑥
1

𝑝𝑦
1

𝒑1 = 𝑝𝑥
1 𝑝𝑦

1 𝑇

𝒑0

𝒑1

ො𝑥0 =
1
0

ො𝑦0 =
0
1

 𝑖𝑛 0

𝒑0 = 𝑝𝑥
0 ො𝑥0 + 𝑝𝑦

0 ො𝑦0

We can write

𝒑0 = 𝑝𝑥
0 1

0
+ 𝑝𝑦

0 0
1

=
𝑝𝑥

0

𝑝𝑦
0

Given the same point in space, the coordinates used to represent the position of 
the point depend on which reference coordinate frame is being used.



ො𝑦0

Ƹ𝑧0

ො𝑥0

Position of a rigid body: Points
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0

𝒂0 =

𝑎𝑥
0

𝑎𝑦
0

𝑎𝑧
0

𝒃0

ො𝑦0

ො𝑥0

0

𝒂0 =
𝑎𝑥

0

𝑎𝑦
0

𝒃0

2D 3D

A

B

C

B

A

𝒃0 =
𝑏𝑥

0

𝑏𝑦
0

𝒂0 𝒂0 𝒄0

𝒃0 =

𝑏𝑥
0

𝑏𝑦
0

𝑏𝑧
0

𝒄0 =

𝑐𝑥
0

𝑐𝑦
0

𝑐𝑧
0

The configuration of a rigid body needs to specify where (position) it is in the space 
and how it is oriented (orientation).
The position (vector) of the points sufficiently describe the configuration of the 
rigid bodies: both position and orientation.
However, this representation requires dealing with the constraints when moving 
the body.
It will become easier to deal rigid body motion if we decompose the representation 
into position and orientation.



ො𝑦𝑠

Ƹ𝑧𝑠

ො𝑥𝑠

Position of a rigid body: Body frame
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𝑠

𝒑𝑠 =

𝑝𝑥
𝑠

𝑝𝑦
𝑠

𝑝𝑧
𝑠

ො𝑦𝑠

ො𝑥𝑠

𝑠

𝒑𝑠 =
𝑝𝑥

𝑠

𝑝𝑦
𝑠

𝒑𝑠

2D 3D

P

𝒑𝑠

𝑏 P
ො𝑦𝑏

Ƹ𝑧𝑏 ො𝑥𝑏

𝑏

Attach a coordinate frame to the body.
The origin of the body coordinate frame {b} in the space coordinate frame {s} 
gives the position of the body in space.
The orientation of the {b} with respect to {s} gives the orientation of the body. 

Space coordinate frame
(world, global, base or inertia)

Body coordinate frame



Describing orientation
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ො𝑦𝑠

Ƹ𝑧𝑠

ො𝑥𝑠

Orientation of a rigid body: Rotation
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𝑠

ො𝑦𝑠

ො𝑥𝑠

𝑠

𝒑𝑠

2D 3D

P

𝒑𝑠

𝑏 P

ො𝑦𝑏

Ƹ𝑧𝑏 ො𝑥𝑏

𝑏

We consider orientation separately from the position …

𝒑𝑠 =

𝑝𝑥
𝑠

𝑝𝑦
𝑠

𝑝𝑧
𝑠

𝒑𝑠 =
𝑝𝑥

𝑠

𝑝𝑦
𝑠



Orientation of a rigid body: Rotation
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𝑠
𝑠

2D 3D

𝑏
ො𝑦𝑏

Ƹ𝑧𝑏 ො𝑥𝑏

𝑏

Let’s remove the position displacement 𝒑𝑠 …

We consider the orientation of {b} with reference to {s}.
Alternatively, think of the orientation of {b} is a rotation 
from the initial orientation of {s}.

ො𝑦𝑠

ො𝑥𝑠

ො𝑦𝑠

Ƹ𝑧𝑠

ො𝑥𝑠



Orientation of a rigid body: Rotation

owh@ieee.org ZA-2203 20

2D

𝑠

ො𝑦𝑠

ො𝑥𝑠

The orientation of {b} is a rotation from the 
initial orientation of {s}.

𝑏



𝑏

Orientation of a rigid body: Rotation
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2D

𝑠

ො𝑦𝑠

ො𝑥𝑠

The orientation of {b} is a rotation from the 
initial orientation of {s}.



𝑏

Orientation of a rigid body: Rotation

owh@ieee.org ZA-2203 22

2D

𝑠

ො𝑦𝑠

ො𝑥𝑠

𝜃

By rotation angle (RHR),

Orientation 𝑅 = 𝜃

This representation is not continuous, 
i.e. singularity at 0°. In 3D space, the 
representation will specify three 
angles, i.e. for the three axes.



Orientation of a rigid body: Rotation
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2D

𝑠

ො𝑦𝑠

ො𝑥𝑠

By axes vectors of {b} in {s},

𝑂𝑟𝑒𝑖𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑅 = ො𝑥𝑏
𝑠 ො𝑦𝑏

𝑠 =
𝑥𝑏,𝑥

𝑠

𝑥𝑏,𝑦
𝑠

𝑦𝑏,𝑥
𝑠

𝑦𝑏,𝑦
𝑠

𝑥𝑏,𝑥
𝑠

𝑥𝑏,𝑦
𝑠

𝑦𝑏,𝑥
𝑠

𝑦𝑏,𝑦
𝑠

𝜃



Orientation of a rigid body: Rotation
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2D

𝑠

ො𝑦𝑠

ො𝑥𝑠

By axes vectors of {b} in {s},

𝑂𝑟𝑒𝑖𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑅 = ො𝑥𝑏
𝑠 ො𝑦𝑏

𝑠 =
𝑥𝑏,𝑥

𝑠

𝑥𝑏,𝑦
𝑠

𝑦𝑏,𝑥
𝑠

𝑦𝑏,𝑦
𝑠

𝑥𝑏,𝑥
𝑠

𝑥𝑏,𝑦
𝑠

𝑦𝑏,𝑥
𝑠

𝑦𝑏,𝑦
𝑠

𝜃

𝑥𝑏,𝑥
𝑠 = ො𝑥𝑏 𝑐𝑜𝑠 𝜃 = 𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜃



Orientation of a rigid body: Rotation
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2D

𝑠

ො𝑦𝑠

ො𝑥𝑠

By axes vectors of {b} in {s},

𝑂𝑟𝑒𝑖𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑅 = ො𝑥𝑏
𝑠 ො𝑦𝑏

𝑠 =
𝑥𝑏,𝑥

𝑠

𝑥𝑏,𝑦
𝑠

𝑦𝑏,𝑥
𝑠

𝑦𝑏,𝑦
𝑠

𝑥𝑏,𝑥
𝑠

𝑥𝑏,𝑦
𝑠

𝑦𝑏,𝑥
𝑠

𝑦𝑏,𝑦
𝑠

𝜃

𝑥𝑏,𝑥
𝑠 = ො𝑥𝑏 𝑐𝑜𝑠 𝜃 = 𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜃

𝜃
𝑥𝑏,𝑦

𝑠 = ො𝑥𝑏 𝑠𝑖𝑛 𝜃 = 𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃



Orientation of a rigid body: Rotation
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2D

𝑠

ො𝑦𝑠

ො𝑥𝑠

By axes vectors of {b} in {s},

𝑂𝑟𝑒𝑖𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑅 = ො𝑥𝑏
𝑠 ො𝑦𝑏

𝑠 =
𝑥𝑏,𝑥

𝑠

𝑥𝑏,𝑦
𝑠

𝑦𝑏,𝑥
𝑠

𝑦𝑏,𝑦
𝑠

𝑥𝑏,𝑥
𝑠

𝑥𝑏,𝑦
𝑠

𝑦𝑏,𝑥
𝑠

𝑦𝑏,𝑦
𝑠

𝜃

𝑥𝑏,𝑥
𝑠 = ො𝑥𝑏 𝑐𝑜𝑠 𝜃 = 𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜃

𝜃
𝑥𝑏,𝑦

𝑠 = ො𝑥𝑏 𝑠𝑖𝑛 𝜃 = 𝑠𝑖𝑛𝜃

𝑦𝑏,𝑥
𝑠 = − ො𝑦𝑏 𝑠𝑖𝑛 𝜃 = −𝑠𝑖𝑛𝜃

𝑦𝑏,𝑦
𝑠 = ො𝑦𝑏 𝑐𝑜𝑠 𝜃 = 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃

𝑂𝑟𝑒𝑖𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑏
𝑠 =

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃

Since orientation is rotation of frame {b} in 
frame {s}, we write

R is called a rotation matrix.

Negative side of ො𝑥𝑠



Orientation of a rigid body: Rotation
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2D

𝑠

ො𝑦𝑠

ො𝑥𝑠

The rotation matrix can be expressed as dot 
products of the axes 

𝑂𝑟𝑒𝑖𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑏
𝑠 = ො𝑥𝑏

𝑠 ො𝑦𝑏
𝑠 =

𝑥𝑏,𝑥
𝑠

𝑥𝑏,𝑦
𝑠

𝑦𝑏,𝑥
𝑠

𝑦𝑏,𝑦
𝑠

𝑥𝑏,𝑥
𝑠

𝑥𝑏,𝑦
𝑠

𝑦𝑏,𝑥
𝑠

𝑦𝑏,𝑦
𝑠

𝜃

𝑐𝑜𝑠𝜃

𝜃 𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃

Dot product of two vectors project one 
vector on to another vector.

𝒂 • 𝒃 = 𝒂 𝒃 𝑐𝑜𝑠𝜃

𝜃

𝒂 𝑐𝑜𝑠𝜃

𝒂

𝒃
𝒂 • 𝒃 (scalar)

𝒂 • 𝒃 = 𝑐𝑜𝑠𝜃 𝑖𝑓 𝒂 = 𝒃 =1

𝑥𝑏,𝑥
𝑠 = ො𝑥𝑏 • ො𝑥𝑠

𝑥𝑏,𝑦
𝑠 = ො𝑥𝑏 • ො𝑦𝑠

𝑦𝑏,𝑥
𝑠 = ො𝑦𝑏 • ො𝑥𝑠

𝑦𝑏,𝑦
𝑠 = ො𝑦𝑏 • ො𝑦𝑠

𝑅𝑏
𝑠 =

ො𝑥𝑏 • ො𝑥𝑠

ො𝑥𝑏 • ො𝑦𝑠

ො𝑦𝑏 • ො𝑥𝑠

ො𝑦𝑏 • ො𝑦𝑠



Orientation of a rigid body: Rotation
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2D

𝑠

ො𝑦𝑠

ො𝑥𝑠

Orientation can be represented by a rotation 
matrix as below

𝑂𝑟𝑒𝑖𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑏
𝑠 = ො𝑥𝑏

𝑠 ො𝑦𝑏
𝑠 =

𝑥𝑏,𝑥
𝑠

𝑥𝑏,𝑦
𝑠

𝑦𝑏,𝑥
𝑠

𝑦𝑏,𝑦
𝑠

𝑥𝑏,𝑥
𝑠

𝑥𝑏,𝑦
𝑠

𝑦𝑏,𝑥
𝑠

𝑦𝑏,𝑦
𝑠

𝜃

𝑐𝑜𝑠𝜃

𝜃 𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃
𝑅𝑏

𝑠 =
ො𝑥𝑏 • ො𝑥𝑠

ො𝑥𝑏 • ො𝑦𝑠

ො𝑦𝑏 • ො𝑥𝑠

ො𝑦𝑏 • ො𝑦𝑠

𝑅𝑏
𝑠 =

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃

Dot product projection will come handy to formulate the 
rotation matrix in 3D



Orientation of a rigid body: Rotation
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2D 3D

𝑠
𝑏

ො𝑦𝑠

ො𝑥𝑠

𝑠
ො𝑦𝑏

Ƹ𝑧𝑏 ො𝑥𝑏

𝑏

ො𝑦𝑠

Ƹ𝑧𝑠

ො𝑥𝑠

𝑅𝑏
𝑠 = ො𝑥𝑏

𝑠 ො𝑦𝑏
𝑠 =

𝑥𝑏,𝑥
𝑠

𝑥𝑏,𝑦
𝑠

𝑦𝑏,𝑥
𝑠

𝑦𝑏,𝑦
𝑠

𝑅𝑏
𝑠 =

ො𝑥𝑏 • ො𝑥𝑠

ො𝑥𝑏 • ො𝑦𝑠

ො𝑦𝑏 • ො𝑥𝑠

ො𝑦𝑏 • ො𝑦𝑠

𝑅𝑏
𝑠 =

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃

𝑅𝑏
𝑠 = ො𝑥𝑏

𝑠 ො𝑦𝑏
𝑠 Ƹ𝑧𝑏

𝑠 =

𝑥𝑏,𝑥
𝑠 𝑦𝑏,𝑥

𝑠 𝑧𝑏,𝑥
𝑠

𝑥𝑏,𝑦
𝑠 𝑦𝑏,𝑦

𝑠 𝑧𝑏,𝑦
𝑠

𝑥𝑏,𝑧
𝑠 𝑦𝑏,𝑧

𝑠 𝑧𝑏,𝑧
𝑠

𝑅𝑏
𝑠 =

ො𝑥𝑏 • ො𝑥𝑠 ො𝑦𝑏 • ො𝑥𝑠 Ƹ𝑧𝑏 • ො𝑥𝑠

ො𝑥𝑏 • ො𝑦𝑠 ො𝑦𝑏 • ො𝑦𝑠 Ƹ𝑧𝑏 • ො𝑦𝑠

ො𝑥𝑏 • Ƹ𝑧𝑠 ො𝑦𝑏 • Ƹ𝑧𝑠 Ƹ𝑧𝑏 • Ƹ𝑧𝑠



Properties of rotation matrix

• Because the columns of the rotation matrix are axes, they are orthogonal 
to each other. The rotation matrix is an orthogonal matrix.

𝑅𝑏
𝑠 = ො𝑥𝑏

𝑠 ො𝑦𝑏
𝑠 𝑅𝑏

𝑠 = ො𝑥𝑏
𝑠 ො𝑦𝑏

𝑠 Ƹ𝑧𝑏
𝑠

• Since all column vectors are unit vectors, the determinant of the rotation 
matrix is 1, i.e. 𝑑𝑒𝑡 𝑅 = 1 (RHR). R does not change the length of vector 
it multiplies.

• The rotation matrix belongs to the special orthorgonal group 𝑺𝑶 𝒏
where 𝑛 = 3 is the dimension of the matrix. Two useful properties:

𝑅−1 = 𝑅𝑇

• Product is a rotation matrix 𝑅1𝑅2 ∈ 𝑆𝑂 𝑛 .

• The above property is useful to compute its inverse when solving 
transformation problems.

• Other useful properties: 1. closure, 2. associativity, 3. identity element 
existence, 4. inverse element existence.
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Directional cosine representation

• Rotation matrices contain sin and cosine of the angle(s) between the axis 
vectors. Representation in this form is sometimes referred as direction 
cosine. 

– The elements in R can be given (flattened) in a single column vector: 4 
parameters for 2x2 and 9 parameters for 3x3 R matrices.

• This is an implicit representation of the orientation. 

– For 2x2, there are 4 parameters to represent 1 dof in orientation on a plane. 
There are 3 constraints: two columns are unit vectors, columns are 
orthogonal. 

– Likewise, for 3x3, there are 9 parameters to represent 3 dof in orientation in 
the space. There are 6 constraints: three columns are unit vectors, columns 
are orthogonal.

– Implicit representation avoids singularity in the representation.
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𝑅𝑏
𝑠 =

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃

𝑅𝑏
𝑠 = 𝑥𝑏,𝑥

𝑠 𝑥𝑏,𝑦
𝑠 𝑥𝑏,𝑧

𝑠 𝑦𝑏,𝑥
𝑠 𝑦𝑏,𝑦

𝑠 𝑦𝑏,𝑧
𝑠 𝑧𝑏,𝑥

𝑠 𝑧𝑏,𝑦
𝑠 𝑧𝑏,𝑧

𝑠 𝑇



More on orientation and rotation
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Three uses of rotation matrix

• Rotation matrix can be used for three purposes:

1. Represent orientation of a vector or coordinate frame 
(attached to an object)

2. Rotate a vector or a coordinate frame in the same 
reference coordinate frame

3. Change reference frame of a vector (point) or a 
coordinate frame

• In second case, the rotation matrix is used to describe a 
rotational motion or rotational transformation.

• In second and third cases, the rotation matrix is used as an 
operator, i.e. to be multiplied on a vector or frame.
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Represent orientation
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𝑠

𝑏

ො𝑥𝑠

ො𝑦𝑠

ො𝑥𝑏

ො𝑦𝑏

𝜃

The orientation of a rigid body in 
space is represented by the 
orientation of the coordinate frame 
{b} attached to it, with reference to a 
space coordinate frame {s}.

Rotation matrix can be used to 
represent the orientation of the 
coordinate frame. Example for 2D 
space (plane):

𝑅𝑏
𝑠 = ො𝑥𝑏

𝑠 ො𝑦𝑏
𝑠 =

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃

Likewise for 3D,

𝑅𝑏
𝑠 = ො𝑥𝑏

𝑠 ො𝑦𝑏
𝑠 Ƹ𝑧𝑏

𝑠



Rotate a coordinate frame
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𝑏
𝑏′ ො𝑥𝑠

ො𝑦𝑠

ො𝑥𝑏′

ො𝑦𝑏′

𝜃

The rotation of a rigid body in space 
can be represented by the rotation of 
a coordinate frame {b} attached to it 
from its initial orientation {b} to its 
new orientation {b’}.

Rotation matrix can be used to 
represent the rotation of the 
coordinate frame. Example for 2D 
space (plane):

𝑅 = ො𝑥𝑏′
𝑏 ො𝑦𝑏′

𝑏 =
𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃

Likewise for 3D,

𝑅 = ො𝑥𝑏′
𝑏 ො𝑦𝑏′

𝑏 Ƹ𝑧𝑏′
𝑏

Orientation of {b’}, 𝑅𝑏′ is the result of 
rotating {b}, 𝑅𝑏 by the rotation 
expressed by 𝑅.

𝑅𝑏′ = 𝑅𝑅𝑏



Rotation of a coordinate frame

owh@ieee.org ZA-2203 36

ො𝑥𝑏

ො𝑦𝑏

Ƹ𝑧𝑏

𝑏

ො𝑦𝑏′

ො𝑥𝑏′

Ƹ𝑧𝑏′

𝑏′

𝑅

𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏′  𝑤𝑟𝑡 𝑏  𝑅𝑏′
𝑏 = 𝑅𝑅𝑏

𝑅𝑏 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑓𝑟𝑎𝑚𝑒 (𝑢𝑛𝑟𝑜𝑡𝑎𝑡𝑒𝑑), 𝑅𝑏 = 𝐼, 
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑅 = 𝑅𝑏′

𝑏

𝐼𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙, 𝑅 𝑐𝑎𝑛 𝑏𝑒 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑 𝑜𝑓 𝑎 𝑠𝑒𝑟𝑖𝑒𝑠 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑜𝑢𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑎𝑥𝑒𝑠 (𝑥,𝑦,𝑧)



Basic rotation matrices in 3D
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𝑅𝑦,𝜃 =

ො𝑥𝑏 • ො𝑥𝑠 ො𝑦𝑏 • ො𝑥𝑠 Ƹ𝑧𝑏 • ො𝑥𝑠

ො𝑥𝑏 • ො𝑦𝑠 ො𝑦𝑏 • ො𝑦𝑠 Ƹ𝑧𝑏 • ො𝑦𝑠

ො𝑥𝑏 • Ƹ𝑧𝑠 ො𝑦𝑏 • Ƹ𝑧𝑠 Ƹ𝑧𝑏 • Ƹ𝑧𝑠

= 
𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃

0 1 0
−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

𝑠

ො𝑦𝑠

Ƹ𝑧𝑠

ො𝑥𝑠
𝑏

ො𝑦𝑏

Ƹ𝑧𝑏

ො𝑥𝑏

𝜃

𝜃

𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃

𝜃

𝑠

ො𝑥𝑠

ො𝑦𝑠

Ƹ𝑧𝑠
𝑏

ො𝑥𝑏

ො𝑦𝑏

Ƹ𝑧𝑏

𝜃

𝜃

𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃

𝜃

𝑅𝑥,𝜃 =

ො𝑥𝑏 • ො𝑥𝑠 ො𝑦𝑏 • ො𝑥𝑠 Ƹ𝑧𝑏 • ො𝑥𝑠

ො𝑥𝑏 • ො𝑦𝑠 ො𝑦𝑏 • ො𝑦𝑠 Ƹ𝑧𝑏 • ො𝑦𝑠

ො𝑥𝑏 • Ƹ𝑧𝑠 ො𝑦𝑏 • Ƹ𝑧𝑠 Ƹ𝑧𝑏 • Ƹ𝑧𝑠

= 
1 0 0
0 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
0 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑅𝑧,𝜃 =

ො𝑥𝑏 • ො𝑥𝑠 ො𝑦𝑏 • ො𝑥𝑠 Ƹ𝑧𝑏 • ො𝑥𝑠

ො𝑥𝑏 • ො𝑦𝑠 ො𝑦𝑏 • ො𝑦𝑠 Ƹ𝑧𝑏 • ො𝑦𝑠

ො𝑥𝑏 • Ƹ𝑧𝑠 ො𝑦𝑏 • Ƹ𝑧𝑠 Ƹ𝑧𝑏 • Ƹ𝑧𝑠

= 
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1



Composition of rotations

• Cumulative effect of rotations about different axes can be 
computed.  There are two ways of computing the total 
rotation depending on:
– If all the rotations are specified with respect to their current frame

– If all the rotations are specified with respect to a fixed (same) frame

• Rotations with respect to current (relative) frames – post-
multiply the rotations to compute overall rotation

• Rotation with respect to a fixed (same) frame – pre-multiply
the rotations to compute overall rotation
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Rotations with respect to current frames

• If we rotate from frame {0} to frame {1} by 𝑅1
0 followed by 

rotation of frame {1} to frame {2} by 𝑅2
1, the overall rotation is 

given by post multiplication:

𝑅2
0 = 𝑅1

0 𝑹𝟐
𝟏
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z1

z0

x0

x1 y0,

z1,

x1
y1

z1,
z0

x0

x1 x2

y0, 

y2







+ =

𝑅𝑗
𝑖  is used to denote rotation from frame {i} to {j}, which also means orientation of 

frame {j} with reference to frame {i}.

In general, 𝑅𝑛
0 = 𝑅1

0𝑅2
1𝑅3

2 ⋯ 𝑅𝑛
𝑛−1

y1 x2

y2



z2 z2

y1



Rotation with respect to a fixed frame

• If we rotate from frame {0} to frame {1} by 𝑅1
0 followed by 

rotation of frame {1} to frame {2} by a rotation specified with 
reference to frame {0}. Let R represent the second rotation.  
We will determine the overall rotation by pre multiplication.

𝑅2
0 = 𝑹𝑅1

0
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z1

z0

x0

x1 y0,

z0

x1

x0
y2





+ =

z1

z0

x0

x1 y0, y1



x2

y2



z2

y1
x2

z1
z2

y0, y1



Change reference frame
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𝑠

𝑏

ො𝑥𝑠

ො𝑦𝑠

ො𝑥𝑏

ො𝑦𝑏

𝜃

𝜙

ො𝑥𝑔

ො𝑦𝑔

𝑔

We know the orientation of the 
gripper represented by {g} on the 
effector represented {b}

𝑅𝑔
𝑏 =

𝑐𝑜𝑠𝜙
𝑠𝑖𝑛𝜙

−𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜙

We know the orientation of {b} in the 
space {s}

𝑅𝑏
𝑠 =

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃

We can determine the orientation of 
the gripper {g} in space {s}, i.e. 
change its reference frame from {b} 
to {s}

𝑅𝑔
𝑠 = 𝑅𝑏

𝑠𝑅𝑔
𝑏

Likewise, if it is in 3D.



Change reference frame
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𝑠

𝑏

ො𝑥𝑠

ො𝑦𝑠

ො𝑥𝑏

ො𝑦𝑏

𝜃

𝜙

ො𝑥𝑔

ො𝑦𝑔

𝑔

We know the orientation of the 
gripper represented by {g} on the 
effector represented {b}

𝑅𝑔
𝑏 =

𝑐𝑜𝑠𝜙
𝑠𝑖𝑛𝜙

−𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜙

We know the orientation of {b} in the 
space {s}

𝑅𝑏
𝑠 =

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃

We can determine the orientation of 
the gripper {g} in space {s}, i.e. 
change its reference frame from {b} 
to {s}

𝑅𝑔
𝑠 = 𝑅𝑏

𝑠𝑅𝑔
𝑏

Likewise, if it is in 3D.



Directional cosine representation: cons

• The redundancy in the directional cosine representation 
requires significant care in maintaining the constraints during 
interpolation. Makes interpolation of all parameters difficult.

• In addition, determining the rotational (angular) velocities is 
not straight forward since the parameters are not angles, i.e. 
we cannot determine angular velocities as ሶ𝑅.

• There are alternative angular representations. We can 
represent orientation and rotation by angles.

• These angles can also be used to parameterize the rotation 
matrix in order to use the rotation matrix for ease of 
calculations, e.g. combining rotations.
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Three-angles representations

• A rigid body uses 3 dof to achieve its desire orientation.

• An orientation can be achieved by a series of independent 
rotation around three arbitrary axes.

• Three angles representation suffers from the problem of 
singularity.
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𝑠

ො𝑥𝑠

ො𝑦𝑠

Ƹ𝑧𝑠 Common names:
1. Euler angles
2. Yaw-pitch-roll angles
3. Axis-angle
4. Exponential coordinates

Possible sequences:
XYX XYZ XZX XZY
YXY YXZ YZY YZX
ZXZ ZXY ZYZ ZYX



Euler Angles

• Rotate around current frame, i.e. relative rotation – post-
multiplication.

• Most common is ZYZ: rotate about current z-axis by 𝜃
followed by rotate about (new) current y-axis by 𝜙 and finally 
rotate about (new) current z-axis by 𝜓.
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XYX XYZ XZX XZY
YXY YXZ YZY YZX
ZXZ ZXY ZYZ ZYX

z0,

xa

x0

ya

y0


za

xa

ya,


zb

xb

yb

zb, 

xb

y1

x1



(1) (2) (3)

za

𝑅1
0 = 𝑅𝑧,𝜃𝑅𝑦,𝜙 𝑅𝑧,𝜓 =

𝑐𝜃𝑐𝜙𝑐𝜓 − 𝑠𝜃𝑠𝜓 −𝑐𝜃𝑐𝜙𝑠𝜓 − 𝑠𝜃𝑐𝜓 𝑐𝜃𝑠𝜙

𝑠𝜃𝑐𝜙𝑐𝜓 + 𝑐𝜃𝑠𝜓 −𝑠𝜃𝑐𝜙𝑠𝜓 + 𝑐𝜃𝑐𝜓 𝑠𝜃𝑠𝜙

−𝑠𝜙𝑐𝜓 𝑠𝜙𝑠𝜓 𝑐𝜙(Forward problem)
𝑐𝛼 = 𝑐𝑜𝑠 𝛼 𝑠𝛼 = 𝑠𝑖𝑛 𝛼 𝑡𝛼 = 𝑡𝑎𝑛 𝛼

𝐸𝑢𝑙𝑒𝑟 𝑎𝑛𝑔𝑙𝑒𝑠:  𝜃, 𝜙, 𝜓

yb

z1



Euler Angles: inverse problem

• Given the rotation matrix, we can solve linear equations to 
determine the Euler angles. However, there are multiple 
solutions.
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𝐺𝑖𝑣𝑒𝑛 𝑅 =

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

=

𝑐𝜃𝑐𝜙𝑐𝜓 − 𝑠𝜃𝑠𝜓 −𝑐𝜃𝑐𝜙𝑠𝜓 − 𝑠𝜃𝑐𝜓 𝑐𝜃𝑠𝜙

𝑠𝜃𝑐𝜙𝑐𝜓 + 𝑐𝜃𝑠𝜓 −𝑠𝜃𝑐𝜙𝑠𝜓 + 𝑐𝜃𝑐𝜓 𝑠𝜃𝑠𝜙

−𝑠𝜙𝑐𝜓 𝑠𝜙𝑠𝜓 𝑐𝜙

If not both r13 and r23 are zero, 𝑟33 ≠ 1, s  0 – two solutions

Solution 1 (𝒔𝝓 > 𝟎) Solution 2 (𝒔𝝓 < 𝟎)

𝜃 = Atan2 𝑟13, 𝑟23

𝜙 = Atan2 𝑟33, 1 − 𝑟33
2

𝜓 = Atan2 −𝑟31, 𝑟32

𝜃 = Atan2 −𝑟13, −𝑟23

𝜙 = Atan2 𝑟33, − 1 − 𝑟33
2

𝜓 = Atan2 𝑟31, −𝑟32

If 𝑟13 = 𝑟23 = 0, 𝑟33 = 1, or 𝑟13 = 𝑟23 = 0, 𝑟33 = −1, cannot resolve 𝜃 and 𝜓.

(Singularity)



Fix frame Yaw-Pitch-Roll

• Rotate around fixed (stationary) frame – pre-multiplication.

• Rotate about x-axis (Yaw) by 𝜃 with respect to a base frame 
then rotate about y-axis (Pitch) by 𝜙 with respect to the same 
base frame and finally rotate about z-axis (Roll) by 𝜑 with 
respect to the same base frame.  Performing the sequence in 
reverse order, Roll-Pitch-Yaw, will yield the same result.
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𝑅 = 𝑅𝑧,𝜓𝑅𝑦,𝜙𝑅𝑥,𝜃

=

𝑐𝜓𝑐𝜙 −𝑠𝜙𝑐𝜃 + 𝑐𝜓𝑠𝜙𝑠𝜃 𝑠𝜓𝑠𝜃 + 𝑐𝜓𝑠𝜙𝑐𝜙

𝑠𝜓𝑐𝜙 𝑐𝜓𝑐𝜃 + 𝑠𝜓𝑠𝜙𝑠𝜃 −𝑐𝜓𝑠𝜃 + 𝑠𝜓𝑠𝜙𝑐𝜃

−𝑠𝜙 𝑐𝜙𝑠𝜃 𝑐𝜙𝑐𝜃

(Forward problem)

Yaw-pitch-roll: 𝜃, 𝜙, 𝜓

𝜃

𝜙

𝜓

y0

x0

z0

Source: Wikipedia



Fix frame Yaw-Pitch-Roll: inverse problem
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𝐺𝑖𝑣𝑒𝑛 𝑅 =

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

=

𝑐𝜓𝑐𝜙 −𝑠𝜙𝑐𝜃 + 𝑐𝜓𝑠𝜙𝑠𝜃 𝑠𝜓𝑠𝜃 + 𝑐𝜓𝑠𝜙𝑐𝜙

𝑠𝜓𝑐𝜙 𝑐𝜓𝑐𝜃 + 𝑠𝜓𝑠𝜙𝑠𝜃 −𝑐𝜓𝑠𝜃 + 𝑠𝜓𝑠𝜙𝑐𝜃

−𝑠𝜙 𝑐𝜙𝑠𝜃 𝑐𝜙𝑐𝜃

If not both r11 and r21 are zero, 𝑟31 ≠ 1, c  0 – two solutions

Solution 1 (𝒄𝝓 > 𝟎) Solution 2 (𝒄𝝓 < 𝟎)

𝜙 = Atan2 −𝑟31, 1 − 𝑟31
2

𝜃 = Atan2 𝑟32, 𝑟33

𝜓 = Atan2 𝑟21, 𝑟11

𝜙 = Atan2 −𝑟31, − 1 − 𝑟31
2

𝜃 = Atan2 −𝑟32, −𝑟33

𝜓 = Atan2 −𝑟21, −𝑟11

If 𝑟11 = 𝑟21 = 0, 𝑟31 = 1, or 𝑟11 = 𝑟21 = 0, 𝑟31 = −1, cannot resolve yaw 𝜃 
and roll 𝜓. (Singularity)



Axis-Angle

• There exists a single axis of rotation for every rotation produced by a 
given rotation matrix, i.e. every rotation matrix 𝑅 can be represented by a 
rotation about an axis 𝒌 by an angle of 𝜃.
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z1

z0

x0

x1 y0, y1

+ =

z0

x0

y0x2

y2



z2

𝒌

𝑅2
0 = 𝑅𝒌,𝜃 = 𝑅 𝒌, 𝜃

=

𝑘𝑥
2

𝑣𝜃 + 𝑐𝜃 𝑘𝑥𝑘𝑦𝑣𝜃 − 𝑘𝑧𝑠𝜃 𝑘𝑥𝑘𝑧𝑣𝜃 + 𝑘𝑦𝑠𝜃

𝑘𝑥𝑘𝑦𝑣𝜃 + 𝑘𝑧𝑠𝜃 𝑘𝑦
2

𝑣𝜃 + 𝑐𝜃 𝑘𝑦𝑘𝑧𝑣𝜃 − 𝑘𝑥𝑠𝜃

𝑘𝑥𝑘𝑧𝑣𝜃 − 𝑘𝑦𝑠𝜃 𝑘𝑦𝑘𝑧𝑣𝜃 + 𝑘𝑥𝑠𝜃 𝑘𝑧
2

𝑣𝜃 + 𝑐𝜃

𝑘 = 𝑘𝑥 𝑘𝑦 𝑘𝑧
𝑇

v = vers = 1 − c

Axis-angle: (𝒌, 𝜃)

z1

z0

x0

x1 y0, y1x2

y2

z2



Axis-angle: Rodrigues’ formula

• The rotation matrix representing axis-angle can be 
determined from the Rodrigues’ formula

𝑅𝑘,𝜃 = 𝑒
𝒌 𝜃 = 𝐼 + 𝑆 𝒌 𝑠𝑖𝑛𝜃 + 𝑆 𝒌

2
1 − 𝑐𝑜𝑠𝜃

where 𝒌 = 𝑘𝑥 𝑘𝑦 𝑘𝑧
𝑇 and 

𝑆 𝒌 =

0 −𝑘𝑧 𝑘𝑦

𝑘𝑧 0 −𝑘𝑥

−𝑘𝑦 𝑘𝑥 0
is the skew-symmetric matrix of 𝒌

• Base on linear differential equation theory.
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Different notation conventions have been used by different authors for skew-symmetric matrix. In the 
above, 𝑠 𝒌  represents the skew-symmetric matrix of a vector 𝒌. The Modern Robotics book 

uses ෝ𝜔 to represent the skew-symmetric matrix of a vector ෝ𝜔. And, unfortunately, similar notation 𝜔  
is used to mean the matrix form of a variable 𝜔.
We will be liberal in using different notation conventions. However, please be careful and interpret 
accordingly depending on the context.



Axis-angle: Exponential coordinates
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The axis-angle representation uses four parameters (three for 𝒌 and one 

for ) to specify a 3-DOF overall rotation.  Since the three axis of 𝒌 are 

orthogonal, it is possible to reduce one parameter in the representation.  

The rotation can be represented by a single vector r as:

𝑟 = 𝑟𝑥 𝑟𝑦 𝑟𝑧 𝑇 = 𝜃𝑘𝑥 𝜃𝑘𝑦 𝜃𝑘𝑧
𝑇

Note, since 𝒌 is a unit vector, that the length of the vector r is the 

equivalent angle θ and the direction of r is the equivalent axis 𝒌.

Axis-angle: 𝑘𝜃

The components of 𝒌𝜃  are called exponential coordinates of the 

rotation matrix R. The above representation is called exponential 

coordinates as seen in the Rodrigues’ formula. 



Axis-Angle: inverse problem
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𝐺𝑖𝑣𝑒𝑛 𝑅𝑘,𝜃 =

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

=

𝑘𝑥
2𝑣𝜃 + 𝑐𝜃 𝑘𝑥𝑘𝑦𝑣𝜃 − 𝑘𝑧𝑠𝜃 𝑘𝑥𝑘𝑧𝑣𝜃 + 𝑘𝑦𝑠𝜃

𝑘𝑥𝑘𝑦𝑣𝜃 + 𝑘𝑧𝑠𝜃 𝑘𝑦
2𝑣𝜃 + 𝑐𝜃 𝑘𝑦𝑘𝑧𝑣𝜃 − 𝑘𝑥𝑠𝜃

𝑘𝑥𝑘𝑧𝑣𝜃 − 𝑘𝑦𝑠𝜃 𝑘𝑦𝑘𝑧𝑣𝜃 + 𝑘𝑥𝑠𝜃 𝑘𝑧
2𝑣𝜃 + 𝑐𝜃

𝜃 = 𝑐𝑜𝑠−1
𝑇𝑟 𝑅 − 1

2

where Tr denotes the trace (sum of diagonal elements) of R, and

𝒌 =

𝑘𝑥

𝑘𝑦

𝑘𝑧

=
1

2 𝑠𝑖𝑛 𝜃

𝑟32 − 𝑟23

𝑟13 − 𝑟31

𝑟21 − 𝑟12

Axis of rotation is undefined if sin 𝜃 = 0, 𝜃 = 0 (singularity). For cases 

when 𝜃 is integer multiple of 𝜋, there are different formulae (Sec 3.2.3.3).

Note that Rk, = R−k,−



Quaternion: four parameters

• The axis-angle representation can be embedded in higher 
dimensional space to avoid singularity.

• Quaternion representation uses four parameters to represent 
the orientation. In mathematics, Quaternion is an extended 
complex number with one real part and three imaginary 
parts. Think of it as a four-dimensional axes system.

𝑞 =

𝑞0

𝑞1
𝑞2

𝑞3

=
𝑐𝑜𝑠

𝜃

2

𝒌𝑠𝑖𝑛
𝜃

2

∈ ℝ4

• where 𝒌 is the unit vector axis of rotation, 𝑞 = 1.
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𝑅 =

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞0𝑞2 + 𝑞1𝑞3)

2(𝑞0𝑞3 + 𝑞1𝑞2) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞0𝑞1 + 𝑞2𝑞3) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2



Quaternion: inverse problem
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𝑞0 = 𝑐𝑜𝑠
𝜃

2
=

1

2
1 + 𝑟11 + 𝑟22 + 𝑟33

𝑞1

𝑞2

𝑞3

= 𝒌𝑠𝑖𝑛
𝜃

2
=

1

4𝑞0

𝑟32 − 𝑟23

𝑟13 − 𝑟31

𝑟21 − 𝑟12

Due to the redundancy (4 parameters), there is always a nonzero parameter to 
choose as 𝑞0 to avoid singularity.

Given 𝑅 =

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

, we can determine



Describing pose

Configuration representation
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Representing pose: position, orientation

• With the representation of position and orientation we have 
developed so far, we can put them together to specify the 
configuration of a rigid body.

• In robotics, a robot configuration is also called a pose usually 
denoted by 𝝃.
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𝑃𝑜𝑠𝑒 𝜉 = 𝑅, 𝑝

ො𝑦𝑠

ො𝑥𝑠

ො𝑦𝑏

ො𝑥𝑏

{b}

𝑥

𝑦

𝜃

{s}

Source: https://grabcad.com/library/grabcad4m-robot-arm-1 

Ƹ𝑧𝑔

ො𝑦𝑔

ො𝑥𝑔

approach

Slide 
(or Orientation, Opening)

normal

𝑅 = ො𝑛 Ƹ𝑠 ො𝑎

𝒑

𝒑

𝑅
𝑅

(2-axis representation: Ƹ𝑠 ො𝑎 . ො𝑛 is assumed with RHR)

https://grabcad.com/library/grabcad4m-robot-arm-1


Homogeneous transformation matrix: pose
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It is convenient to put both orientation and position in one matrix. A 
homogeneous transformation matrix puts together rotation R and position 
vector p in one 4 by 4 matrix:

𝑠

𝒑

𝑹

𝜉 =
𝑹 𝒑
0 1 =

𝑟11 𝑟21 𝑟31 𝑝𝑥

𝑟12 𝑟22
𝑟32 𝑝𝑦

𝑟13

0
𝑟23

0
𝑟33

0
𝑝𝑧

1



Describing motion: translation and 
rotation

Rigid body motion (aka displacement, or transformation)

owh@ieee.org ZA-2203 65



Describing translation motion

• We have learned to use vector to represent position.

• In addition, free vector can be used to represent change in 
position, i.e. translation motion or transformation.

• Translation transformation is achieved by vector addition.

• Only add vectors in the same (or parallel) reference frame.
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x1

{0}

z0

x0

y0

{1}

z1

y1

d

dx

dz

dy

𝑑1
0 =

𝑑𝑥
0

𝑑𝑦
0

𝑑𝑧
0

{0}

z0

x0

y0

d

dx

dz

dy

p2

p1

𝑑 =

𝑑𝑥

𝑑𝑦

𝑑𝑧

𝑝2 = 𝑝1 + 𝑑

Translation within same coordinate 
frame, from p1 to p2Translation from frame {0} to frame {1}



Describing rotation motion

• We have learned that rotation matrix can be used to 
represent orientation, rotation and change of reference 
frame.

• A rotation matrix is used to represent change in orientation, 
i.e. rotation motion or transformation.

• Rotation transformation is achieved by matrix multiplication.
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Rx,

p0

p1

A point p, starting at position p0 (represented 
as a vector) is rotated about x-axis by an 
angle of , and its new position is p1

𝑝1 = 𝑅𝑥,𝜃𝑝0



Combine translation and rotation
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𝑏

𝑏′

ො𝑥𝑏

ො𝑦𝑏

ො𝑥𝑏′

ො𝑦𝑏′

𝜃

𝒒

[𝑅𝑏
𝑠]

Consider a rigid body being 
displaced by first a translation of 
q followed by a rotation of R. The 
pose of the rigid body is 
transformed (displaced) from 
frame {b} to {b’}.

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐷 = 𝑅 = 𝑅𝑏′
𝑏 , 𝒒

𝑂𝑙𝑑 𝑝𝑜𝑠𝑒 𝜉𝑏
𝑠 = 𝑅𝑏

𝑠 , 𝒑
𝑁𝑒𝑤 𝑝𝑜𝑠𝑒 𝜉𝑏′

𝑠 = 𝑅𝑏′
𝑠 , 𝒓

𝑅𝑏′
𝑠 = 𝑅𝑏

𝑠𝑅
𝑟 = 𝑅𝑏

𝑠𝑞 + 𝑝

Note that the reference frame for 
both transformations q and R is 
{b}.  Rotation is achieved through 
(post) multiplication while 
translation (reference frame 
changed) by addition.𝑠

𝒑

[𝑅 ]

𝒓

D

Note 𝑅𝑏
𝑠 is sometimes written 𝑅𝑠𝑏. Take 

note of the {b} is the subject, and {s} is the 
reference frame.



Homogeneous transformation matrix
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It is convenient to put both rotation and translation in one matrix.  

Transformation will then be achieved through matrix multiplication only.  A 

homogeneous transformation matrix puts together rotation 𝑹 ∈ ℝ3𝑥3 and 

translation 𝒕 ∈ ℝ3 in one 4 by 4 matrix:

𝐻 =
𝑅 𝑡
0 1

Displacement (transformation) of a vector or frame can be done by 

multiplication solely. 

Homogeneous transformation matrices belongs to the special Euclidean group 

𝑆𝐸 3 . A useful property of this matrix is:

𝐻−1 =
𝑅𝑇 −𝑅𝑇𝑡
0 1



Homogeneous transformation: displacement
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𝑏

𝑏′

ො𝑥𝑏

ො𝑦𝑏

ො𝑥𝑏′

ො𝑦𝑏′

𝜃

𝒒

[𝑅𝑏
𝑠]

Consider a rigid body being 
displaced by first a translation of 
p followed by a rotation of R. The 
pose of the rigid body is 
transformed (displaced) from 
frame {b} to {b’}.

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐷 =
𝑅 = 𝑅𝑏′

𝑏 𝒒
0 1

𝑂𝑙𝑑 𝑝𝑜𝑠𝑒 𝜉𝑏
𝑠 =

𝑅𝑏
𝑠 𝒑

0 1

𝑁𝑒𝑤 𝑝𝑜𝑠𝑒 𝜉𝑏′
𝑠 = 𝜉𝑏

𝑠𝐷 =
𝑅𝑏′

𝑠 𝒓
0 1

𝑠

𝒑

[𝑅 ]

𝒓

Note: This is alternative representation to that in Slide 67.

Careful with pre- or post-multiplication

D



Homogeneous transformation: 3D
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Similar to 2D case, we can pack the rotational and translational 
transformation (displacement) in one matrix. A homogeneous 
transformation matrix puts together rotation R and translation vector t in one 4 
by 4 matrix:

𝑫 =
𝑹 𝒕
0 1 =

𝑟11 𝑟21 𝑟31 𝑝𝑥

𝑟12 𝑟22
𝑟32 𝑝𝑦

𝑟13

0
𝑟23

0
𝑟33

0
𝑝𝑧

1

𝑠

𝒕

𝑹

Note: This is similar to the case of representing pose.



Three uses of transformation matrix

• Similar to rotation matrix, homogeneous transformation 
matrix can be used in three ways

– Represent a configuration (pose)

– Displace a vector or frame

– Change the reference frame of a vector or frame
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(repeat) T Matrix: represent a pose
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𝑠

𝒑

𝑹𝝃 =
𝑹 𝒑
0 1 =

𝑟11 𝑟21 𝑟31 𝑝𝑥

𝑟12 𝑟22
𝑟32 𝑝𝑦

𝑟13

0
𝑟23

0
𝑟33

0
𝑝𝑧

1



(repeat) T Matrix: displace a vector or frame

• When displacing a vector with a T matrix, the vector needs to be 
represented in transformation coordinates, i.e. add one at the bottom to 
form an ℝ4 vector.

• Here we show displacing a frame attached to a rigid body.
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𝑠

𝒕
Pose 𝜉𝑏 before 
displacement 𝐷𝑏

𝑹

Displacement 𝐷 =
𝑹 𝒕
0 1

Pose 𝜉𝑏′ after 
displacement 𝐷

𝑏′

𝜉𝑏′ = 𝐷𝜉𝑏



T Matrix: change reference frame

• The pose of each frame may be expressed in different reference frame, 
e.g.

– 𝑇𝑏𝑐: pose of {c} frame w.r.t. {b}

– 𝑇𝑎𝑐: pose of {c} frame w.r.t. {a}

– 𝑇𝑠𝑐: pose of {c} frame w.r.t. {c}

• We can change the reference frame, e.g.

– 𝑇𝑠𝑐 = 𝑇𝑠𝑏𝑇𝑏𝑐

– 𝑇𝑠𝑐 = 𝑇𝑠𝑎𝑇𝑎𝑐

– 𝑇𝑠𝑏 = 𝑇𝑠𝑎𝑇𝑎𝑐𝑇𝑐𝑏 = 𝑇𝑠𝑎𝑇𝑎𝑐𝑇𝑏𝑐
−1
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𝑠

𝑎

𝑏

𝑐
𝑇𝑏𝑐

𝑇𝑎𝑐

𝑇𝑠𝑐



Describing motion and velocities

Screw theory
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Screw motion
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𝑏

𝑏′

ො𝑥𝑏

ො𝑦𝑏

ො𝑥𝑏′

ො𝑦𝑏′

𝜃

𝒒

[𝑅𝑏
𝑠]

Consider a rigid body being 
displaced by first a translation of 
q followed by a rotation of R. The 
pose of the rigid body is 
transformed from frame {b} to {b’}.

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐷 = 𝑅 = 𝑅𝑏′
𝑏 , 𝒒

𝑃𝑜𝑠𝑒 𝜉𝑏′
𝑠 = 𝑅𝑏′

𝑠 , 𝒓
𝑅𝑏′

𝑠 = 𝑅𝑏
𝑠𝑅

𝑟 = 𝑅𝑏
𝑠𝑞 + 𝑝

𝑠

𝒑

[𝑅 ]

𝒓

D
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𝑆

𝛽

𝑏

𝑏′

ො𝑥𝑏

ො𝑦𝑏

ො𝑥𝑏′

ො𝑦𝑏′

Another way of thinking of the 
displacement is a rotation of an 
angle 𝛽 about a fixed point 𝑆 =

𝑠𝑥, 𝑠𝑦  in the space 𝑠 .

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐷 = 𝛽, 𝑠𝑥 , 𝑠𝑦

In fact, for any displacement in 
the space, there is such a point 𝑆 
in the space that can be used to 
describe such displacement by a 
rotation around the point 𝑆.

𝑠
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𝑆

𝑏
ො𝑥𝑏

ො𝑦𝑏

Another way of thinking of the 
displacement is a rotation of an 
angle 𝛽 about a fixed point 𝑆 =

𝑠𝑥, 𝑠𝑦  in the space 𝑠 .

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐷 = 𝛽, 𝑠𝑥 , 𝑠𝑦

In fact, for any displacement in 
the space, there is such a point 𝑆 
in the space that can be used to 
describe such displacement by a 
rotation around the point 𝑆.

𝑠
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𝑆

𝑏′

ො𝑥𝑏′

ො𝑦𝑏′

Another way of thinking of the 
displacement is a rotation of an 
angle 𝛽 about a fixed point 𝑆 =

𝑠𝑥, 𝑠𝑦  in the space 𝑠 .

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐷 = 𝛽, 𝑠𝑥 , 𝑠𝑦

In fact, for any displacement in 
the space, there is such a point 𝑆 
in the space that can be used to 
describe such displacement by a 
rotation around the point 𝑆.

𝑠
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𝑆

𝛽

𝑏

𝑏′

ො𝑥𝑏

ො𝑦𝑏

ො𝑥𝑏′

ො𝑦𝑏′

Another way of thinking of the 
displacement is a rotation of an 
angle 𝛽 about a fixed point 𝑆 =

𝑠𝑥, 𝑠𝑦  in the space 𝑠 .

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐷 = 𝛽, 𝑠𝑥 , 𝑠𝑦

In fact, for any displacement in 
the space, there is such a point 𝑆 
in the space that can be used to 
describe such displacement by a 
rotation around the point 𝑆.

This is a planar example of a 
screw motion. The screw axis is 
out of the slide in the fixed frame 
𝑠 .

𝑠
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𝑆

𝜔

𝑏

𝑏′

ො𝑥𝑏

ො𝑦𝑏

ො𝑥𝑏′

ො𝑦𝑏′

Another way of viewing screw 
motion is to think of it as a 
combination of angular 𝜔 and 
linear 𝒗 velocities, called screw 
axis.

𝑆𝑐𝑟𝑒𝑤 𝑎𝑥𝑖𝑠 𝑺 = 𝜔, 𝑣𝑥, 𝑣𝑦

The angular velocity can be fixed 
at 𝜔 = 1 𝑟𝑎𝑑/𝑠 and 𝒗 will be 
determined such that the 
displacement is correctly defined 
at an angle 𝜃 = 𝛽.
 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐷 = 𝑺𝜃 

Similar concept is applicable in 
3D space.

𝑠

𝒗 =
𝑣𝑥

𝑣𝑦

𝛽

(exponential coordinates)



Angular velocity

• Base on the concepts of screw motion and axis-angle representation, 
angular velocity 𝝎 of a rotating body (frame {b}) can be represented by 
determining the suitable rotation axis 𝒌 through the origin of {b} and the 
rotation speed ሶ𝜃 about this axis. All vectors are with reference to space 
frame {s}.
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Source: Modern Robotics

𝝎 = 𝒌 ሶ𝜃

ො𝑥𝑏
𝑠

ො𝑦𝑏
𝑠

Ƹ𝑧𝑏
𝑠

ሶො𝑥𝑏 = 𝝎 × ො𝑥𝑏

𝝎 = 𝒌 ሶ𝜃

Given the orientation of the body
𝑅 = ො𝑥𝑏 ො𝑦𝑏 Ƹ𝑧𝑏

Then ሶො𝑥𝑏 = 𝝎 × ො𝑥𝑏 , ሶො𝑦𝑏 = 𝝎 × ො𝑦𝑏 , ሶො𝒛𝒃 = 𝝎 × Ƹ𝑧𝑏
ሶ𝑅 = 𝜔 × ො𝑥𝑏 𝜔 × ො𝑥𝑏 𝜔 × ො𝑥𝑏 = 𝜔 × 𝑅

We can replace the cross product with skew-
symmetric matrix multiplication.
     Fixed frame (pre-multiply): ሶ𝑅 = 𝑆 𝜔𝑠 𝑅
     Body frame (post-multiply): ሶ𝑅 = 𝑅𝑆 𝜔𝑏
Note 𝑆 𝜔𝑠  is the skew-symmetric matrix of vector𝜔𝑠. 



Twist: linear and angular velocities
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Any rigid-body (spatial) velocity can be represented as a twist comprising of 
a screw axis 𝑺 = 𝑞, Ƹ𝑠, ℎ  (a direction ොs ∈ S2, a point q ∈ ℝ3 on the screw, and 
the pitch (linear speed/angular speed) of the screw h), plus the speed along 

the screw ሶ𝜃.  

If h is infinite, ሶ𝜃 is the linear speed.
Otherwise, it is the angular speed.

Twist is given by

𝒱 = 𝒮 ሶ𝜃 =
𝜔
𝑣

=
Ƹ𝑠 ሶ𝜃

− Ƹ𝑠 ሶ𝜃 × 𝑞 + ℎ Ƹ𝑠 ሶ𝜃

Source: Modern Robotics

Matrix representation:
Body twist (spatial velocity in the body frame)

𝑇𝑠𝑏
−1 ሶ𝑇𝑠𝑏 = 𝒱𝑏 =

𝜔𝑏 𝑣𝑏

0 0
Spatial twist (spatial velocity in the space 
frame)

ሶ𝑇𝑠𝑏𝑇𝑠𝑏
−1 = 𝒱𝑠 =

𝜔𝑠 𝑣𝑠

0 0
(this is called Matrix Logarithm)
Note 𝜔𝑏  is the skew-symmetric matrix of the 
vector𝜔𝑏.
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Any rigid-body (spatial) velocity can be represented as a twist comprising of 
a screw axis 𝑺 = 𝑞, Ƹ𝑠, ℎ  (a direction ොs ∈ S2, a point q ∈ ℝ3 on the screw, and 
the pitch (linear speed/angular speed) of the screw h), plus the speed along 

the screw ሶ𝜃.  

Twist is given by

𝒱 = 𝒮 ሶ𝜃 =
𝜔
𝑣

=
Ƹ𝑠 ሶ𝜃

− Ƹ𝑠 ሶ𝜃 × 𝑞 + ℎ Ƹ𝑠 ሶ𝜃

linear velocity on the plane 
orthogonal to the “screw” axis

Source: Modern Robotics

angular velocity about the “screw” 
axis Ƹ𝑠

linear velocity in the direction of 
the “screw” axis

Note screw axis 𝒮 is not shown the diagram. Imagine there is 
one that describes both spatial angular and linear motion by just 

making a rotation around it ( ሶ𝜃) without the pitch.

The “screw” axis Ƹ𝑠  shown in the diagram is the one in the 
direction of angular motion 𝜔, which in turn causes 2D linear 
motion on the plane orthogonal to the “screw” as well as a 1D 
linear motion in the direction of the “screw” resulting in 3D linear 
motion.

Ƹ𝑠 can be conveniently determined (in contrast to the actual screw 𝒮), e.g. as the joint axis, giving us a way to 

determine the angular velocity 𝜔 and spatial linear velocity 𝑣. We can then determine the screw axis 𝒮 =
𝒱

ሶ𝜃
.

If h is infinite, ሶ𝜃 is the linear speed.
Otherwise, it is the angular speed.



Summary (1/4)

• We attach coordinate frame in the space and bodies in order 
to give "values" to the configurations (points) of the bodies.

• We use right hand rule for the coordinate system.

• The position of point can be represented by cartesian 
coordinates or vector.

• We can perform operations (e.g. addition) on vectors but not 
points.

• We attach coordinate frame to a rigid body and uses the 
origin to represent its position.

• The orientation of the coordinate frame fixed on the body is 
used to represent the orientation of the body.
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Summary (2/4)

• Rotation matrix represents the orientation by specifying the 
position of the axes of the body coordinate frame in the 
space.

• Rotation matrix can be used to:
– Represent orientation of a vector or frame

– Rotate (as operator) a vector or frame

– Change the reference frame of a vector or frame

• Rotation matrix does not suffer from the problems of 
singularity, however is complicated to interpolate the 
parameters due to having to maintain the constraints.

• Three angles representations are easy to interpolate, 
however suffer from singularity problem.
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Summary (3/4)

• Three angles representations include:
– Euler angles (relative, current frame)

– Fixed yaw-pitch roll (fix frame)

– Axis-angle

• Angles representations can be used to parameterize rotation 
matrices with its forward problem formulation.

• The inverse problem formulation determine the angles from 
the parameters of a rotation matrix.

• Quaternion represents axis-angle in four-dimension space. It 
avoids singularity.

• Axis-angle representation is also called exponential 
coordinates. This representation is useful to describe 
velocities.
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Summary (4/4)

• Describing the configuration or pose put together position 
(vector) and orientation (rotation matrix).

• Vector is also used to represent translation motion.

• Rotation matrix is also used to represent rotation motion.

• Homogeneous transformation matrix put together the 
translation and rotation motion in one matrix. This allow a 
single operation (multiplication) when computing new pose 
resulting from the motion.

• Screw theory is used to describe velocities.

• Linear and rotational (angular) velocities are represented by 
the rotational and linear motion of the screw.

• Twist is the representation of linear and angular velocities put 
in one.
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Reading List

• Read Chapter 3 of Modern Robotics
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To Do List

• Watch Chapter 3 videos of Modern Robotics on Coursera, or 
on YouTube
https://www.youtube.com/playlist?list=PLggLP4f-
rq02vX0OQQ5vrCxbJrzamYDfx
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https://www.youtube.com/playlist?list=PLggLP4f-rq02vX0OQQ5vrCxbJrzamYDfx
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