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Configuration Space

ZA-2203 Robotic Systems



Topics

• Actions

• Describing motion

• Configuration of a robotic system

• Configuration space (CS)
– CS Dimension: Degree of freedom (DoF)

– CS Topology

– CS Representation: explicit, implicit

– Holonomic, nonholonomic constraints

• Workspace: dextrous, reachable

• Task space
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Properties of a robot
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Environment
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& Intent

e.g. “think”

Sense

e.g. “sees”

Actions

e.g. “walks”

e.g. “ball”

Input(s)

Output(s)

Sense Plan Act



Environment

Properties of a robot
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Intelligence

& Intent

e.g. “think”

Sense

e.g. “sees”

Actions

e.g. “walks”

e.g. “ball”

Input(s)

Output(s)

This module

Sense Plan Act



Types of actions in robots

• Locomotion (interact with own body)
– Going from one place to another, e.g. ground, sea, air.

• Manipulation (interact with environment)
– Changing the environment, e.g. handling objects.

• Information Presentation (perceptual, communication)
– Non-physical changes to the 

environment, e.g. sound, display.
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Actions are delivered through effectors with 
actuators



Describing motion

• Robot actions (locomotion and manipulation) involve motion, 
e.g. moving from one place to another, moving the robotic 
hand to reach an object.

• Involves two properties of the object (as well as the robot) 
being moved: changing the position and orientation.
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Describing motion

• Robot actions (locomotion and manipulation) involve motion, 
e.g. moving from one place to another, moving the robotic 
hand to reach an object.

• Involves two properties of the object (as well as the robot) 
being moved: changing the position and orientation.
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How do we write the position and orientation on paper and in computer?



Configuration of a body

• Configuration: a specification of the positions of all points of 
the body.
– Configuration is a terminology from classical mechanics.
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How can we describe the pillow such that it can be accurately 
reproduced, i.e. put back at exact same position and shape?



Configuration of a body

• Configuration: a specification of the positions of all points of 
the body.
– Configuration is a terminology from classical mechanics.
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The pillow can be accurately described by its configuration, i.e. 
specifying the position of every point on the pillow in 3D space. 

That’s a lot of numbers to specify since all points can change 
differently with relative to other points. The pillow has no fixed 
shape. This is one of its many possible configurations.



Configuration of a rigid body

• For a rigid body, all points of the body have fix relationship in 
their positions, hence the configurations of the rigid body can 
be specified by a small set of numbers.
– This module assumes robots are made of rigid bodies.
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How can we describe the box such that it can be accurately 
reproduced, i.e. drawn at exact same position and shape?



Configuration of a rigid body

• For a rigid body, all points of the body have fix relationship in 
their positions, hence the configurations of the rigid body can 
be specified by a small set of numbers.
– This module assumes robots are made of rigid bodies.
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The box can be accurately described by its configuration, i.e. 
specifying the position of every point on the pillow in 3D space. 



Configuration of a rigid body

• For a rigid body, all points of the body have fix relationship in 
their positions, hence the configurations of the rigid body can 
be specified by a small set of numbers.
– This module assumes robots are made of rigid bodies.
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However, given that we know the shape, which is fixed, we need less points



Configuration of a rigid body

• For a rigid body, all points of the body have fix relationship in 
their positions, hence the configurations of the rigid body can 
be specified by a small set of numbers.
– This module assumes robots are made of rigid bodies.
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One point is not enough



Configuration of a rigid body

• For a rigid body, all points of the body have fix relationship in 
their positions, hence the configurations of the rigid body can 
be specified by a small set of numbers.
– This module assumes robots are made of rigid bodies.
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Two points are sufficient to specify the configuration of the box



Example configuration of rigid bodies
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ො𝑥

ො𝑦

ො𝑥

ො𝑦𝜃

𝜃

𝑥, 𝑦
𝑥, 𝑦

“The parameters that define the configuration of a system are called 
generalized coordinates, and the space defined by these coordinates 
is called the configuration space of the physical system.” - Wikipedia



Configurations of a robotic system

• Robot’s configuration: a specification of the positions of all 
points of the robot.
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Different configurations of a robotic system



Configuration space: where is the robot?

• Configuration space (C-space) of a robot refers to the set 
(space) of all possible configurations of the robot.

• A configuration of a robot is represented by a point in its C-
space.

• C-space has two properties:
– Degree of freedom (dof): dimension of the C-space

– Topology (shape)
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Degree of freedom (dof)

• Degree of freedom (dof) can be defined as, depending on the 
context:
– Robotic systems: number of independent directions of movement. In 

this context, dof is also called mobility.

– Configuration: minimum number of continuous real numbers to 
specify a configuration.

– C-space: dimension of C-space.
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ො𝑥

ො𝑦

ො𝑥

ො𝑦𝜃

𝜃

𝑥, 𝑦
𝑥, 𝑦



Degree of freedom of a point
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ො𝑥

ො𝑦

Ƹ𝑧

𝑥, 𝑦, 𝑧

𝑥

𝑧

𝑦 A point in 3-dimensional (3D) space can be 
represented by three numbers or 
coordinates 𝑥, 𝑦, 𝑧 . If it is free to move in 
all 3 dimensions, it has 3 dof.

ො𝑥

ො𝑦

𝑥, 𝑦

𝑥

𝑦

A point in 2D space (plane) lost one dof in one of 
the dimensions, i.e. one dimension is constrained. 
It can be represented by two numbers or 
coordinates 𝑥, 𝑦 . it has 2 dof.

𝑥

A point in 1D space (line) lost two dof in two of the dimensions, i.e. two 
dimensions are constrained. It can be represented by one number or coordinate 
𝑥 . it has 1 dof.



Degree of freedom of a rigid body on a plane

• A rigid body can be considered as composite of points 
(particles). Its dof can be determined by
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𝑑𝑜𝑓
= 𝑠𝑢𝑚 𝑜𝑓 𝑑𝑜𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)

ො𝑥

ො𝑦

A rigid body on a plane (2D). 
Think an autonomous car.



Degree of freedom of a rigid body on a plane

• A rigid body can be considered as composite of points 
(particles). Its dof can be determined by
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𝑑𝑜𝑓
= 𝑠𝑢𝑚 𝑜𝑓 𝑑𝑜𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)

ො𝑥

ො𝑦

Start at 1 point on the body, say 
A

𝐴 = 𝑥𝐴, 𝑦𝐴

A point has 2 dof on a plane. 
Point A has 2 dof and is free to 
move.

A



Degree of freedom of a rigid body on a plane

• A rigid body can be considered as composite of points 
(particles). Its dof can be determined by
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𝑑𝑜𝑓
= 𝑠𝑢𝑚 𝑜𝑓 𝑑𝑜𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)

ො𝑥

ො𝑦

Select a second point on the 
body, say B

𝐵 = 𝑥𝐵 , 𝑦𝐵

B can move however constrained 
on the circle at a fixed distance to 
A.

𝑥𝐵 − 𝑥𝐴
2 + 𝑦𝐵 − 𝑦𝐴

2 = 𝑑𝐴𝐵
2

A
B

𝑑𝐴𝐵

(Circle equation)



Degree of freedom of a rigid body on a plane

• A rigid body can be considered as composite of points 
(particles). Its dof can be determined by

owh@ieee.org ZA-2203 26

𝑑𝑜𝑓
= 𝑠𝑢𝑚 𝑜𝑓 𝑑𝑜𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)

ො𝑥

ො𝑦 Select a third point on the body, 
say C

𝐶 = 𝑥𝐶 , 𝑦𝐶

C cannot move independently 
due to two constraints. If A and B 
are positioned, C will be fixed at 
fixed distances to A and B.

𝑥𝐶 − 𝑥𝐴
2 + 𝑦𝐶 − 𝑦𝐴

2 = 𝑑𝐴𝐶
2

𝑥𝐶 − 𝑥𝐵
2 + 𝑦𝐶 − 𝑦𝐵

2 = 𝑑𝐵𝐶
2

Any further points will be likewise 
constrained.

A
B

𝑑𝐴𝐶

C

𝑑𝐵𝐶



Degree of freedom of a rigid body on a plane

• A rigid body can be considered as composite of points 
(particles). Its dof can be determined by
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𝑑𝑜𝑓
= 𝑠𝑢𝑚 𝑜𝑓 𝑑𝑜𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)

ො𝑥

ො𝑦

A
B

C

𝑑𝑜𝑓
= 𝑑𝑜𝑓𝐴 + 𝑑𝑜𝑓𝐵 + 𝑑𝑜𝑓𝐶 + ⋯
− 𝑐𝐴 + 𝑐𝐵 + 𝑐𝐶 + ⋯
= 2 + 2 + 2 + ⋯
− 0 + 1 + 2 + ⋯ = 3

Degree of freedom of a planar rigid body is 3



Degree of freedom of a rigid body in space

• A rigid body can be considered as composite of points 
(particles). Its dof can be determined by
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𝑑𝑜𝑓
= 𝑠𝑢𝑚 𝑜𝑓 𝑑𝑜𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)

ො𝑥

ො𝑦

A rigid body in a space (3D). 
Think a drone.

Ƹ𝑧



Degree of freedom of a rigid body in space

• A rigid body can be considered as composite of points 
(particles). Its dof can be determined by
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𝑑𝑜𝑓
= 𝑠𝑢𝑚 𝑜𝑓 𝑑𝑜𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)

ො𝑥

ො𝑦

Ƹ𝑧

Start at 1 point on the body, say A
𝐴 = 𝑥𝐴, 𝑦𝐴, 𝑧𝐴

A point has 3 dof in the space. Point 
A has 3 dof and is free to move.

A



Degree of freedom of a rigid body in space

• A rigid body can be considered as composite of points 
(particles). Its dof can be determined by
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𝑑𝑜𝑓
= 𝑠𝑢𝑚 𝑜𝑓 𝑑𝑜𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)

ො𝑥

ො𝑦

Ƹ𝑧

Select a second point on the body, 
say B

𝐵 = 𝑥𝐵 , 𝑦𝐵 , 𝑧𝐵

B can move however constrained on 
the sphere at a fixed distance to A.

𝑥𝐵 − 𝑥𝐴
2 + 𝑦𝐵 − 𝑦𝐴

2 + 𝑧𝐵 − 𝑧𝐴
2

= 𝑑𝐴𝐵
2

A
B

(Sphere equation)



Degree of freedom of a rigid body in space

• A rigid body can be considered as composite of points 
(particles). Its dof can be determined by
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𝑑𝑜𝑓
= 𝑠𝑢𝑚 𝑜𝑓 𝑑𝑜𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)

ො𝑥

ො𝑦

Ƹ𝑧

Select a third point on the body, say 
C

𝐶 = 𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶

C can move however constrained on 
the intersection of the spheres 
centered at A and B.

𝑥𝐶 − 𝑥𝐴
2 + 𝑦𝐶 − 𝑦𝐴

2 + 𝑧𝐶 − 𝑧𝐴
2

= 𝑑𝐴𝐶
2

𝑥𝐶 − 𝑥𝐵
2 + 𝑦𝐶 − 𝑦𝐵

2 + 𝑧𝐶 − 𝑧𝐵
2

= 𝑑𝐵𝐶
2

A
B

C



Degree of freedom of a rigid body in space

• A rigid body can be considered as composite of points 
(particles). Its dof can be determined by
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𝑑𝑜𝑓
= 𝑠𝑢𝑚 𝑜𝑓 𝑑𝑜𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)

ො𝑥

ො𝑦

Ƹ𝑧

Select a fourth point on the body, say D
𝐷 = 𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷

D cannot move independently if A, B and C 
have been positioned. It is subject to three 
fixed distance constraints to A, B and C.

𝑥𝐷 − 𝑥𝐴
2 + 𝑦𝐷 − 𝑦𝐴

2 + 𝑧𝐷 − 𝑧𝐴
2

= 𝑑𝐴𝐷
2

𝑥𝐷 − 𝑥𝐵
2 + 𝑦𝐷 − 𝑦𝐵

2 + 𝑧𝐷 − 𝑧𝐵
2

= 𝑑𝐵𝐷
2

𝑥𝐷 − 𝑥𝐶
2 + 𝑦𝐷 − 𝑦𝐶

2 + 𝑧𝐷 − 𝑧𝐶
2

= 𝑑𝐶𝐷
2

A
B

C
D



Degree of freedom of a rigid body in space

• A rigid body can be considered as composite of points 
(particles). Its dof can be determined by
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𝑑𝑜𝑓
= 𝑠𝑢𝑚 𝑜𝑓 𝑑𝑜𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)

ො𝑥

ො𝑦

Ƹ𝑧

A
B

C
D 𝑑𝑜𝑓

= 𝑑𝑜𝑓𝐴 + 𝑑𝑜𝑓𝐵 + 𝑑𝑜𝑓𝐶 + 𝑑𝑜𝑓𝐷 + ⋯
− 𝑐𝐴 + 𝑐𝐵 + 𝑐𝐶 + 𝑐𝐶 + 𝑐𝐷 + ⋯
= 3 + 3 + 3 + 3 + ⋯
− 0 + 1 + 2 + 3 + ⋯ = 6

Degree of freedom of a spatial rigid body is 6



Degree of freedom (dof) of robots

• Robots are usually modelled as articulated rigid bodies 
(effectors), i.e. consist of rigid bodies connected by a chain of 
joints.

• The effectors (rigid bodies) are called links.

• Dof of a robot can be determined by the Grubler’s formula.
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Links (rigid bodies, effectors)

Joints



Robotic joints

• A joint contributes to the relative motion of the links. There 
are two basic types of joint motion:
– (a) Rotational about a pivot. Referred as revolute (R) joint.

– (b) Translational along a line. Referred as linear or prismatic (P) joint.

• Every joint connects exactly two links.

• A joint constrain the motion of two connected links with 
relative to each other.
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(a) (b)

Each of the joint provides 1 dof



Robotic joints
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Source: Modern Robotics



Dof and constraints of different joint types

• For planar rigid body, it has 𝑑𝑜𝑓 𝑚 = 3. A joint imposes 𝑐
constraints resulting in 𝑑𝑜𝑓 𝑓.

• For spatial rigid body, 𝑑𝑜𝑓 𝑚 = 6.
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𝑓 = 𝑚 − 𝑐 𝑚 = 𝑓 + 𝑐 𝑐 = 𝑚 − 𝑓

Source: Modern Robotics



Grubler’s formula
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𝑑𝑜𝑓
= 𝑠𝑢𝑚 𝑜𝑓 𝑑𝑜𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑑𝑖𝑒𝑠
− 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

= 𝑚 𝑁 − 1 − ෍

𝑖=1

𝐽

𝑐𝑖

= 𝑚 𝑁 − 1 − ෍

𝑖=1

𝐽

𝑚 − 𝑓𝑖
Links (rigid bodies, effectors)

Joints

𝑑𝑜𝑓 = 𝑚 𝑁 − 1 − 𝐽 + ෍

𝑖=1

𝐽

𝑓𝑖

𝑚 = 3 𝑖𝑓 𝑝𝑙𝑎𝑛𝑎𝑟 𝑟𝑜𝑏𝑜𝑡, 6 𝑖𝑓 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑟𝑜𝑏𝑜𝑡

𝑁 = 𝑁𝑜. 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠

𝐽 = 𝑁𝑜. 𝑜𝑓 𝑗𝑜𝑖𝑛𝑡𝑠

𝑓𝑖 = 𝑑𝑜𝑓 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑗𝑜𝑖𝑛𝑡



Dof example: Serial-chain RRR (3R) robot
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Simple serial 3R robot (planar)

m = 3 (planar)
N = 4 (include ground/base)
J = 3
fi = 1 each

𝑑𝑜𝑓 = 𝑚 𝑁 − 1 − 𝐽 + ෍

𝑖=1

𝐽

𝑓𝑖

𝑑𝑜𝑓 = 3 4 − 1 − 3 + ෍

𝑖=1

3

1 = 3
Open-chain mechanism
- also called serial-chain

R

R
R



Dof example: Closed-chain RRRR (4R) robot
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Simple closed-chain 4R robot (planar)

m = 3 (planar)
N = 4 (include ground/base)
J = 4
fi = 1 each

𝑑𝑜𝑓 = 𝑚 𝑁 − 1 − 𝐽 + ෍

𝑖=1

𝐽

𝑓𝑖

𝑑𝑜𝑓 = 3 4 − 1 − 4 + ෍

𝑖=1

4

1 = 1
Closed-chain mechanism

R

R R

R

Also called 4-bar linkage



Dof example: Delta robot
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Delta robot (spatial)

𝑑𝑜𝑓 = 𝑚 𝑁 − 1 − 𝐽 + ෍

𝑖=1

𝐽

𝑓𝑖

𝑑𝑜𝑓
= 6 5 × 3 + 2 − 1 − 7 × 3 + 3 1 × 3 + 3 × 4
= −30 + 45
= 15

3 x RRRSSSS (3 x 3R4S) parallel manipulators

m = 6 (spatial)
N = 5 links each leg, top and bottom platforms
J = 7 each leg
fi = [ (1 for R) x 3, (3 for S) x 4 ] each leg

Note: Each joint connects two links

Source: Wikipedia

Source: Modern Robotics



Topology of C-space

• C-space has two properties:
– Degree of freedom (dof): dimension of the C-space

– Topology (shape): shape of the distribution (and relative positions) of 
the configurations in C-space
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𝜃1

𝜃2

𝜃1

𝜃2



Topology of C-space

• C-space has two properties:
– Degree of freedom (dof): dimension of the C-space

– Topology (shape): shape of the distribution (and relative positions) of 
the configurations in C-space
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𝜃1

𝜃2

𝜃1

𝜃2

𝜃1

𝜃2



Topology of C-space

• C-space has two properties:
– Degree of freedom (dof): dimension of the C-space

– Topology (shape): shape of the distribution (and relative positions) of 
the configurations in C-space
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𝜃1

𝜃2

𝜃1

𝜃2

C-space of a 2R planar robot is on the surface of the torus (donut) shape.
The shape or topology of the C-space is a torus (donut).



• Topology of C-space is useful for planning motion (sequence 
of configurations to move) of the robot

• Two C-spaces may have the same dof with different topology.

Topology of C-space
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𝜃1

𝜃2

𝜃1

𝜃2

𝑥, 𝑦

Point on a plane
Point on a sphere
(E.g. Spherical pendulum)

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒



Topology of C-space

• Topology of two C-spaces 
are considered equivalent if 
they can smoothly 
transform from one to 
another without cutting and 
gluing.

• Topology is a fundamental 
property of a C-space, i.e. 
fix for a given C-space. 
However, a C-space can be 
represented in different 
ways.
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𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒
𝑥, 𝑦, 𝑧

Ƹ𝑧

ො𝑦

ො𝑥

Source: Wikipedia



C-space topologies and representations e.g.
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Topologically distinct one-
dimensional spaces

Source: Modern Robotics

T
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𝔼 𝑜𝑟 𝔼1 𝑜𝑟 ℝ 𝑜𝑟 ℝ1

𝑆 𝑜𝑟 𝑆1

𝐼: 𝑎, 𝑏 ⊂ ℝ1



Explicit representation

• Explicit representation uses minimum parameters (e.g. 2 for 
2d), however suffers from singularities in cases where the 
representation has different shape from the topology.
– A singularity in representation is where the values are undefined (e.g.

at a point of discontinuity)

– (Related) A mechanical singularity is a position or configuration of a 
mechanism or a machine where the subsequent behavior cannot be 
predicted (undefined) – movement blocked in a certain dimension.
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𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒

Ƹ𝑧

ො𝑦

ො𝑥

longitude

latitude

90°

−90°−180° 180°

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒

Explicit representation



Implicit representation

• Implicit representation embed the C-space in higher 
dimension Euclidean space and impose constraints to restrict 
the dimension of the representation.
– Implicit representation avoids singularities, however, is more 

complicated (not the simplest representation).
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𝑥, 𝑦, 𝑧

Ƹ𝑧

ො𝑦

ො𝑥

Ƹ𝑧

ො𝑦

ො𝑥

𝑥, 𝑦, 𝑧

Constraint: 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2

Implicit representation

(Sphere equation)



• Configuration constraints reduce the dimension of C-space. In this case, it 
reduces the dimension of the representation C-space to that of the actual 
C-space.

• They are also called Holonomic constraints as they reduces the dof.

Configuration (Holonomic) constraints
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𝑥, 𝑦, 𝑧

Ƹ𝑧

ො𝑦

ො𝑥

Ƹ𝑧

ො𝑦

ො𝑥

𝑥, 𝑦, 𝑧

Constraint: 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2

Configuration constraint

𝐴𝑐𝑡𝑢𝑎𝑙 𝐶 𝑠𝑝𝑎𝑐𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝐷𝑂𝐹 = 𝑛 − 𝑘 𝑤ℎ𝑒𝑟𝑒 𝑘 ≤ 𝑛

E.g. For n=4 parameters, k=3 constraints, DOF = 4 – 3 = 1

n=no. of parameters of the C-space, k=no. of constraints



Configuration (Holonomic) constraints

Closed-chain four-bar linkage

• Easier to represent implicit

• Use four angles, i.e. 4 parameters

• System is 1-dof

• Introduce 3 constraints base on:
– L4 (ground link) always horizontal

– End of L4 at origin (red dot)
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ො𝑦

ො𝑥

𝜃1

𝜃2

𝜃3

𝜃4

𝐿4

𝐿3

𝐿2

𝐿1

𝐿1𝑐𝑜𝑠𝜃1 + 𝐿2𝑐𝑜𝑠 𝜃1 + 𝜃2 + ⋯ + 𝐿4𝑐𝑜𝑠 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 = 0

𝐿1𝑠𝑖𝑛𝜃1 + 𝐿2𝑠𝑖𝑛 𝜃1 + 𝜃2 + ⋯ + 𝐿4𝑠𝑖𝑛 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 = 0

𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 − 2𝜋 = 0

(loop closure equations)



Configuration (Holonomic) constraints

Closed-chain four-bar linkage

• Easier to represent implicit

• Use four angles, i.e. 4 parameters

• System is 1-dof

• Introduce 3 constraints base on:
– L4 (ground link) always horizontal

– End of L4 at origin (red dot)
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ො𝑦

ො𝑥

𝜃1

𝜃2

𝜃3

𝜃4

𝐿4

𝐿3

𝐿2

𝐿1

𝐿1𝑐𝑜𝑠𝜃1 + 𝐿2𝑐𝑜𝑠 𝜃1 + 𝜃2 + ⋯ + 𝐿4𝑐𝑜𝑠 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 = 0

𝐿1𝑠𝑖𝑛𝜃1 + 𝐿2𝑠𝑖𝑛 𝜃1 + 𝜃2 + ⋯ + 𝐿4𝑠𝑖𝑛 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 = 0

𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 − 2𝜋 = 0 ො𝑦

ො𝑥

𝜃1

𝜃4

𝜃3

𝜃2

Actual DOF = 4 parameters – 3 constraints = 1



Configuration (Holonomic) constraints
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𝑔1 𝜃1, 𝜃2, 𝜃3, 𝜃4 = 𝐿1𝑐𝑜𝑠𝜃1 + 𝐿2𝑐𝑜𝑠 𝜃1 + 𝜃2 + ⋯ + 𝐿4𝑐𝑜𝑠 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 = 0

𝑔2 𝜃1, 𝜃2, 𝜃3, 𝜃4 = 𝐿1𝑠𝑖𝑛𝜃1 + 𝐿2𝑠𝑖𝑛 𝜃1 + 𝜃2 + ⋯ + 𝐿4𝑠𝑖𝑛 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 = 0

𝑔3 𝜃1, 𝜃2, 𝜃3, 𝜃4 = 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 − 2𝜋 = 0

Let constraint equations be defined as

𝑔 𝜃 =

𝑔1 𝜃1, 𝜃2, 𝜃3, 𝜃4

𝑔2 𝜃1, 𝜃2, 𝜃3, 𝜃4

𝑔3 𝜃1, 𝜃2, 𝜃3, 𝜃4

= 0

𝑔 𝜃 =
𝑔1 𝜃1, … , 𝜃𝑛

⋮
𝑔𝑘 𝜃1, … , 𝜃𝑛

= 0

Write in matrix form:

Generalize:



Velocity constraints
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If the robot arm moves, we express the parameters (angles) as function of time t.

𝜃 𝑡 = 𝜃1 𝑡 … 𝜃𝑛 𝑡 𝑇

The loop closure equations become

𝑔 𝜃 𝑡 =
𝑔1 𝜃1 𝑡 , … , 𝜃𝑛 𝑡

⋮
𝑔𝑘 𝜃1 𝑡 , … , 𝜃𝑛 𝑡

= 0

Differentiating both side with respective to t gives the velocity of the parameters 
(joint angles’ velocity), we can derive Pfaffian constraints 

𝑑

𝑑𝑡
𝑔 𝜃 𝑡 = 0

𝜕𝑔1

𝜕𝜃1
𝜃 …

𝜕𝑔1

𝜕𝜃𝑛
𝜃

⋮
𝜕𝑔𝑘

𝜕𝜃1
𝜃 …

𝜕𝑔𝑘

𝜕𝜃𝑛
𝜃

ሶ𝜃1

⋮
ሶ𝜃𝑛

= 0

𝜕𝑔

𝜕𝜃
𝜃 ሶ𝜃 = 0

𝐴 𝜃 ሶ𝜃 = 0

𝜕𝑔1

𝜕𝜃1
𝜃 ሶ𝜃1 + ⋯ +

𝜕𝑔1

𝜕𝜃𝑛
𝜃 ሶ𝜃𝑛

⋮
𝜕𝑔𝑘

𝜕𝜃1
𝜃 ሶ𝜃1 + ⋯ +

𝜕𝑔𝑘

𝜕𝜃𝑛
𝜃 ሶ𝜃𝑛

= 0
Pfaffian constraints: 



Velocity constraints

• Pfaffian constraints are velocity constraints. It usually uses 𝑞
instead of 𝜃 to generalize to non angular parameters.

𝐴 𝑞 ሶ𝑞 = 0 where 𝐴 𝑞 =
𝜕𝑔

𝜕𝑞
𝑞 and ሶ𝑞 = ሶ𝑞1 … ሶ𝑞𝑛

𝑇

Note 𝑞 = 𝑞1 … 𝑞𝑛
𝑇 ∈ ℝ𝑛 is the parameters vector (e.g.

joint angles), 𝐴 𝑞 ∈ ℝ𝑘×𝑛 is differentiation wrt parameters 
𝑞, ሶ𝑞 ∈ ℝ𝑛 is differentiation wrt to time 𝑡 (e.g. ሶ𝑞𝑖 is velocity of 
joint 𝑖). 
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𝑔1 𝜃1, 𝜃2, 𝜃3, 𝜃4 = 𝐿1𝑐𝑜𝑠𝜃1 + 𝐿2𝑐𝑜𝑠 𝜃1 + 𝜃2 + ⋯ + 𝐿4𝑐𝑜𝑠 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4

𝑔2 𝜃1, 𝜃2, 𝜃3, 𝜃4 = 𝐿1𝑠𝑖𝑛𝜃1 + 𝐿2𝑠𝑖𝑛 𝜃1 + 𝜃2 + ⋯ + 𝐿4𝑠𝑖𝑛 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4

𝑔3 𝜃1, 𝜃2, 𝜃3, 𝜃4 = 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 − 2𝜋



Holonomic and nonholonomic constraints

• If velocity constraints (Pfaffian constraints) can be integrated 
to equivalent configuration constraints, they are holonomic.  
If not, they are nonholonomic.

• Nonholonomic constraints reduce the dimension of the 
feasible velocities, but not the dimension of the C-space.
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Nonholonomic constraint example
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Pfaffian constraint: 𝐴 𝑞 ሶ𝑞 = 0 where 𝐴 𝑞 =
𝜕𝑔

𝜕𝑞
𝑞  and ሶ𝑞 = ሶ𝑞1 … ሶ𝑞𝑛

𝑇

ො𝑦

ො𝑥

𝑥, 𝑦

𝑣

∅

Configuration of the car 𝑞 = ∅ 𝑥 𝑦 𝑇

Note 𝑞1 = ∅ 𝑞2 = 𝑥 𝑞3 = 𝑦

Consider a car driving on the road (plane). We determine the Pfaffian constraint.

Velocities in x and y directions

ሶ𝑥 = 𝑣 𝑐𝑜𝑠 ∅ ሶ𝑦 = 𝑣 𝑠𝑖𝑛 ∅

Rearrange ሶ𝑦 and substitute into ሶ𝑥 yields below constraint

ሶ𝑥 =
ሶ𝑦

𝑠𝑖𝑛 ∅
 𝑐𝑜𝑠 ∅  →  ሶ𝑥𝑠𝑖𝑛 ∅ − ሶ𝑦𝑐𝑜𝑠 ∅ = 0 

0. ሶ∅ + 𝑠𝑖𝑛 ∅ ሶ𝑥 − 𝑐𝑜𝑠 ∅ ሶ𝑦 = 0

Rearrange above constraint equation in a form we can relate to 𝐴 𝑞 ሶ𝑞

0. ሶ𝑞1 + 𝑠𝑖𝑛 𝑞1 ሶ𝑞2 − 𝑐𝑜𝑠 𝑞1 ሶ𝑞3 = 0

0 𝑠𝑖𝑛 ∅ −𝑐𝑜𝑠 ∅

ሶ∅
ሶ𝑥
ሶ𝑦

= 0 0 𝑠𝑖𝑛 𝑞1 −𝑐𝑜𝑠 𝑞1

ሶ𝑞1

ሶ𝑞2

ሶ𝑞3

= 0

ሶ𝑞𝐴 𝑞



Holonomic of robots

• Holonomic refers to the relationship between controllable 
and total degrees of freedom of a robot.

• One actuator gives one controllable dof (CDOF).
– Not all DOF are controllable.

• Uncontrollable dof makes motion complex, i.e. a body has to
take a series of controllable dof to achieve a desired motion.
– That series of moving the body or effector is called the trajectory.
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Total degree of freedom (TDOF) = 3 (on plane)
Controllable degree of freedom (CDOF) = 2

(forward/backward, turn)



• A robot is holonomic if the number of controllable dof is 
equal to the number of dof of the robot. CDOF = TDOF

• A robot is non-holonomic if the number of controllable dof is 
less than the number of dof of the robot. CDOF < TDOF

• A robot is redundant if the number of controllable dof is 
more than the number of dof of the robot. CDOF > TDOF

• A system or robot may have holonomic and/or nonholonomic 
constraint(s).

Holonomic of robots
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Workspace

• Workspace: the volume in space that a robot’s end-effector
can reach
– Dextrous workspace – workspace where the end-effector can reach in 

any orientation

– Reachable workspace – workspace where the end-effector can reach 
in at least one orientation

• Depends on robot structure.

• Usually position of end-
effector, ignoring orientation.
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A slice of a position-only workspace for 
a typical 6R robot, with joints limits

Source: Modern Robotics
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Source: https://robodk.com/doc/en/Tips-Tricks-ShowHide-Robot-Workspace.html 

https://robodk.com/doc/en/Tips-Tricks-ShowHide-Robot-Workspace.html


Task space

• Task space: a space in which the robot’s task can be naturally 
expressed
– depends on the task, not depend on the robot structure

– it is possible that some part of the task space may not be reachable by 
a robot’s C-space
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Photo by Kvalifik on Unsplash 

Ƹ𝑧

Source: https://hondanews.com 2 dof, 𝔼2
6 dof, 𝔼3 × ℝ3

4 dof, 𝔼3 × ℝ1

https://unsplash.com/@kvalifik?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/whiteboard?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://hondanews.com/


C-space, workspace, task space are different
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𝜃1

𝜃2

𝐿1

𝐿2

A 2R planar robot to write on 
a white board (this slide)

𝜃′1

𝜃′2

𝐿′1

𝐿′3

A 3R planar robot

𝜃′3

𝐿′2

Task space

Workspace

C-space

If L’1+L’2=L1 and L’3=L2, the 3R and 2R robots have the 
same workspace. However, they have different C-space. 
If they are made to perform the same task, they have 
the same task space.



Summary (1/2)

• Robot’s configuration: a specification of the positions of all 
points of the robot: position and orientation of its bodies.

• Describing motion of a robot requires information on its 
configuration, i.e. position and orientation of its bodies.

• The configuration space (C-space) is the space of all 
configurations of a robot.

• C-space has two fundamental properties: degree of freedom 
(dof) and topology.

• We can determine the dof using Grubler’s formula.

• Robot configurations can be represented explicitly or 
implicitly.

• Explicit representation is simple however may suffer from 
singularity.
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Summary (2/2)

• Implicit representation embds the C-space in higher 
dimension space and impose constraints. It avoids singularity.

• Holonomic constraint is constraint on dof of the C-space. 
Nonholonomic constraint is constraint on velocity of the 
configuration parameters.

• A robot’s workspace is the volume in space that a robot’s 
end-effector can reach.

• A task space is the space in which the robot’s task is naturally 
express.

• C-space, workspace and task space are different.
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Reading List

• Chapter 2 of Modern Robotics
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To Do List

• Watch Chapter 2 videos of Modern Robotics on Coursera, or 
on YouTube
https://www.youtube.com/playlist?list=PLggLP4f-
rq02vX0OQQ5vrCxbJrzamYDfx
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