Configuration Space

ZA-2203 Robotic Systems

Topics

- Actions
- Describing motion
- Configuration of a robotic system
- Configuration space (CS)
- CS Dimension: Degree of freedom (DoF)
- CS Topology
- CS Representation: explicit, implicit
- Holonomic, nonholonomic constraints
- Workspace: dextrous, reachable
- Task space

Properties of a robot

Sense \longrightarrow Plan \longrightarrow Act

Properties of a robot

Sense \longrightarrow Plan \longrightarrow Act

Types of actions in robots

- Locomotion (interact with own body)
- Going from one place to another, e.g. ground, sea, air.
- Manipulation (interact with environment)

- Changing the environment, e.g. handling objects.
- Information Presentation (perceptual, communication)
- Non-physical changes to the environment, e.g. sound, display.

Actions are delivered through effectors with actuators

Describing motion

- Robot actions (locomotion and manipulation) involve motion, e.g. moving from one place to another, moving the robotic hand to reach an object.
- Involves two properties of the object (as well as the robot) being moved: changing the position and orientation.

Describing motion

- Robot actions (locomotion and manipulation) involve motion, e.g. moving from one place to another, moving the robotic hand to reach an object.
- Involves two properties of the object (as well as the robot) being moved: changing the position and orientation.

Describing motion

- Robot actions (locomotion and manipulation) involve motion, e.g. moving from one place to another, moving the robotic hand to reach an object.
- Involves two properties of the object (as well as the robot) being moved: changing the position and orientation.

Describing motion

- Robot actions (locomotion and manipulation) involve motion, e.g. moving from one place to another, moving the robotic hand to reach an object.
- Involves two properties of the object (as well as the robot) being moved: changing the position and orientation.

How do we write the position and orientation on paper and in computer?

Configuration of a body

- Configuration: a specification of the positions of all points of the body.
- Configuration is a terminology from classical mechanics.

How can we describe the pillow such that it can be accurately reproduced, i.e. put back at exact same position and shape?

Configuration of a body

- Configuration: a specification of the positions of all points of the body.
- Configuration is a terminology from classical mechanics.

The pillow can be accurately described by its configuration, i.e. specifying the position of every point on the pillow in 3D space.

That's a lot of numbers to specify since all points can change differently with relative to other points. The pillow has no fixed owh@ieeє shape. This is one of its many possible configurations.

Configuration of a rigid body

- For a rigid body, all points of the body have fix relationship in their positions, hence the configurations of the rigid body can be specified by a small set of numbers.
- This module assumes robots are made of rigid bodies.

How can we describe the box such that it can be accurately reproduced, i.e. drawn at exact same position and shape?

Configuration of a rigid body

- For a rigid body, all points of the body have fix relationship in their positions, hence the configurations of the rigid body can be specified by a small set of numbers.
- This module assumes robots are made of rigid bodies.

The box can be accurately described by its configuration, i.e. specifying the position of every point on the pillow in 3D space.

Configuration of a rigid body

- For a rigid body, all points of the body have fix relationship in their positions, hence the configurations of the rigid body can be specified by a small set of numbers.
- This module assumes robots are made of rigid bodies.

However, given that we know the shape, which is fixed, we need less points

Configuration of a rigid body

- For a rigid body, all points of the body have fix relationship in their positions, hence the configurations of the rigid body can be specified by a small set of numbers.
- This module assumes robots are made of rigid bodies.

One point is not enough

Configuration of a rigid body

- For a rigid body, all points of the body have fix relationship in their positions, hence the configurations of the rigid body can be specified by a small set of numbers.
- This module assumes robots are made of rigid bodies.

Two points are sufficient to specify the configuration of the box

Example configuration of rigid bodies

"The parameters that define the configuration of a system are called generalized coordinates, and the space defined by these coordinates is called the configuration space of the physical system." - Wikipedia

Configurations of a robotic system

- Robot's configuration: a specification of the positions of all points of the robot.

Different configurations of a robotic system

Configuration space: where is the robot?

- Configuration space (C-space) of a robot refers to the set (space) of all possible configurations of the robot.
- A configuration of a robot is represented by a point in its Cspace.
- C-space has two properties:
- Degree of freedom (dof): dimension of the C-space
- Topology (shape)

Degree of freedom (dof)

- Degree of freedom (dof) can be defined as, depending on the context:
- Robotic systems: number of independent directions of movement. In this context, dof is also called mobility.
- Configuration: minimum number of continuous real numbers to specify a configuration.
- C-space: dimension of C-space.

Degree of freedom of a point

A point in 2D space (plane) lost one dof in one of the dimensions, i.e. one dimension is constrained. It can be represented by two numbers or coordinates (x, y). it has 2 dof.

(${ }^{x}$)
A point in 1D space (line) lost two dof in two of the dimensions, i.e. two dimensions are constrained. It can be represented by one number or coordinate (x). it has 1 dof.

Degree of freedom of a rigid body on a plane

- A rigid body can be considered as composite of points (particles). Its dof can be determined by

$$
\begin{aligned}
& \text { dof } \\
& =(\text { sum of dof of the points }) \\
& -(\text { number of independent constraints })
\end{aligned}
$$

Degree of freedom of a rigid body on a plane

- A rigid body can be considered as composite of points (particles). Its dof can be determined by

$$
\begin{aligned}
& \text { dof } \\
& =(\text { sum of dof of the points }) \\
& -(\text { number of independent constraints })
\end{aligned}
$$

$$
\begin{aligned}
& \text { Start at } 1 \text { point on the body, say } \\
& \qquad A=\left(x_{A}, y_{A}\right)
\end{aligned}
$$

A point has 2 dof on a plane. Point A has 2 dof and is free to move.

Degree of freedom of a rigid body on a plane

- A rigid body can be considered as composite of points (particles). Its dof can be determined by

$$
\begin{aligned}
& \text { dof } \\
& =(\text { sum of dof of the points }) \\
& -(\text { number of independent constraints })
\end{aligned}
$$

Select a second point on the body, say B

$$
B=\left(x_{B}, y_{B}\right)
$$

B can move however constrained on the circle at a fixed distance to A.

$$
\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}=d_{A B}^{2}
$$

(Circle equation)

Degree of freedom of a rigid body on a plane

- A rigid body can be considered as composite of points (particles). Its dof can be determined by

$$
\begin{aligned}
& \text { dof } \\
& =(\text { sum of dof of the points }) \\
& -(\text { number of independent constraints })
\end{aligned}
$$

Select a third point on the body, say C

$$
C=\left(x_{C}, y_{C}\right)
$$

C cannot move independently due to two constraints. If A and B are positioned, C will be fixed at fixed distances to A and B.

$$
\begin{aligned}
& \left(x_{C}-x_{A}\right)^{2}+\left(y_{C}-y_{A}\right)^{2}=d_{A C}{ }^{2} \\
& \left(x_{C}-x_{B}\right)^{2}+\left(y_{C}-y_{B}\right)^{2}=d_{B C}
\end{aligned}
$$

Any further points will be likewise constrained.

Degree of freedom of a rigid body on a plane

- A rigid body can be considered as composite of points (particles). Its dof can be determined by

$$
\begin{aligned}
& \text { dof } \\
& =(\text { sum of dof of the points }) \\
& -(\text { number of independent constraints })
\end{aligned}
$$

Degree of freedom of a rigid body in space

- A rigid body can be considered as composite of points (particles). Its dof can be determined by

$\hat{z} \quad$	dof
	$=($ sum of dof of the points $)$
	$-($ number of independent constraints $)$

Degree of freedom of a rigid body in space

- A rigid body can be considered as composite of points (particles). Its dof can be determined by

Degree of freedom of a rigid body in space

- A rigid body can be considered as composite of points (particles). Its dof can be determined by

$\hat{z} \quad$	$d o f$
	$=($ sum of dof of the points $)$
	$-($ number of independent constraints $)$

Select a second point on the body, say B

$$
B=\left(x_{B}, y_{B}, z_{B}\right)
$$

B can move however constrained on the sphere at a fixed distance to A.

$$
\begin{aligned}
& \left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}+\left(z_{B}-z_{A}\right)^{2} \\
& =d_{A B}
\end{aligned}
$$

(Sphere equation)

Degree of freedom of a rigid body in space

- A rigid body can be considered as composite of points (particles). Its dof can be determined by

Degree of freedom of a rigid body in space

- A rigid body can be considered as composite of points (particles). Its dof can be determined by

Degree of freedom of a rigid body in space

- A rigid body can be considered as composite of points (particles). Its dof can be determined by

Degree of freedom (dof) of robots

- Robots are usually modelled as articulated rigid bodies (effectors), i.e. consist of rigid bodies connected by a chain of joints.
- The effectors (rigid bodies) are called links.
- Dof of a robot can be determined by the Grubler's formula.

Links (rigid bodies, effectors)

Robotic joints

- A joint contributes to the relative motion of the links. There are two basic types of joint motion:
- (a) Rotational about a pivot. Referred as revolute (R) joint.
- (b) Translational along a line. Referred as linear or prismatic (P) joint.

- Every joint connects exactly two links.
- A joint constrain the motion of two connected links with relative to each other.

Robotic joints

dof $=\Sigma$ (freedoms of bodies) -

ints
Cylindrical
(C)

Universal (U)

Spherical
(S)

Dof and constraints of different joint types

- For planar rigid body, it has dof $m=3$. A joint imposes c constraints resulting in $\operatorname{dof} f$.
- For spatial rigid body, dof $m=6$.

$$
f=m-c \quad m=f+c \quad c=m-f
$$

Joint type	dof f	Constraints c between two planar rigid bodies	Constraints c between two spatial rigid bodies
Revolute (R)	1	2	5
Prismatic (P)	1	2	5
Helical (H)	1	N/A	5
Cylindrical (C)	2	N/A	4
Universal (U)	2	N/A	4
Spherical (S)	3	N/A	3

Source: Modern Robotics

Grubler's formula

dof
$=$ (sum of dof of the bodies)

- (number of independent constraints)
$=m(N-1)-\sum_{i=1}^{J} c_{i}$
Links (rigid bodies, effectors)

$$
=m(N-1)-\sum_{i=1}^{J}\left(m-f_{i}\right)
$$

$$
d o f=m(N-1-J)+\sum_{i=1}^{J} f_{i}
$$

$$
m=3 \text { if planar robot, } 6 \text { if spatial robot }
$$

$$
N=N o . o f \text { links }
$$

$$
J=\text { No. of joints }
$$

$$
f_{i}=\text { dof of each joint }
$$

Dof example: Serial-chain RRR (3R) robot

$$
d o f=m(N-1-J)+\sum_{i=1}^{J} f_{i}
$$

Open-chain mechanism - also called serial-chain

Simple serial 3R robot (planar)

$$
\begin{aligned}
& m=3 \text { (planar) } \\
& N=4 \text { (include ground/base) } \\
& \mathrm{J}=3 \\
& \mathrm{fi}=1 \text { each }
\end{aligned}
$$

$$
d o f=3(4-1-3)+\sum_{i=1}^{3} 1=3
$$

Dof example: Closed-chain RRRR (4R) robot

$$
d o f=m(N-1-J)+\sum_{i=1}^{J} f_{i}
$$

Simple closed-chain 4R robot (planar)

Closed-chain mechanism

Also called 4-bar linkage

$$
\begin{aligned}
& \mathrm{m}=3 \text { (planar) } \\
& \mathrm{N}=4 \text { (include ground/base) } \\
& \mathrm{J}=4 \\
& \mathrm{fi}=1 \text { each }
\end{aligned}
$$

$$
d o f=3(4-1-4)+\sum_{i=1}^{4} 1=1
$$

Dof example: Delta robot

$$
d o f=m(N-1-J)+\sum_{i=1}^{J} f_{i}
$$

Source: Modern Robotics

Delta robot (spatial)
$3 \times$ RRRSSSS (3×3 R4S) parallel manipulators
$\mathrm{m}=6$ (spatial)
$N=5$ links each leg, top and bottom platforms
$\mathrm{J}=7$ each leg
$\mathrm{fi}=[(1$ for R$) \times 3$, (3 for S) $\times 4$] each leg
dof
$=6((5 \times 3+2)-1-7 \times 3)+3(1 \times 3+3 \times 4)$
$=-30+45$
$=15$
Note: Each joint connects two links

Topology of C-space

- C-space has two properties:
- Degree of freedom (dof): dimension of the C-space
- Topology (shape): shape of the distribution (and relative positions) of the configurations in C -space

Topology of C-space

- C-space has two properties:
- Degree of freedom (dof): dimension of the C-space
- Topology (shape): shape of the distribution (and relative positions) of the configurations in C -space

Topology of C-space

- C-space has two properties:
- Degree of freedom (dof): dimension of the C-space
- Topology (shape): shape of the distribution (and relative positions) of the configurations in C -space

C-space of a $2 R$ planar robot is on the surface of the torus (donut) shape.
The shape or topology of the C -space is a torus (donut).

Topology of C-space

- Topology of C-space is useful for planning motion (sequence of configurations to move) of the robot

- Two C-spaces may have the same dof with different topology.

Point on a plane

Point on a sphere

Topology of C-space

- Topology of two C-spaces are considered equivalent if they can smoothly transform from one to another without cutting and gluing.

[^0]- Topology is a fundamental property of a C-space, i.e. fix for a given C -space. However, a C-space can be represented in different ways.

C-space topologies and representations e.g.

Topologically distinct onedimensional spaces

S or S^{1}

\mathbb{E} or \mathbb{E}^{1} or \mathbb{R} or \mathbb{R}^{1}

$I:[a, b] \subset \mathbb{R}^{1}$
owh@ieee.org
Source: Modern Robotics

system	topology	sample representation
point on a plane	\mathbb{E}^{2}	
	S^{2}	$\left[-180^{\circ}, 180^{\circ}\right) \times\left[-90^{\circ}, 90^{\circ}\right]$
	$T^{2}=S^{1} \times S^{1}$	$[0,2 \pi) \times[0,2 \pi)$
rotating sliding knob	$\mathbb{E}^{1} \times S^{1}$	

Explicit representation

- Explicit representation uses minimum parameters (e.g. 2 for 2d), however suffers from singularities in cases where the representation has different shape from the topology.
- A singularity in representation is where the values are undefined (e.g. at a point of discontinuity)
- (Related) A mechanical singularity is a position or configuration of a mechanism or a machine where the subsequent behavior cannot be predicted (undefined) - movement blocked in a certain dimension.

Implicit representation

- Implicit representation embed the C-space in higher dimension Euclidean space and impose constraints to restrict the dimension of the representation.
- Implicit representation avoids singularities, however, is more complicated (not the simplest representation).

Constraint: $x^{2}+y^{2}+z^{2}=r^{2}$
(Sphere equation)
Implicit representation

Configuration (Holonomic) constraints

- Configuration constraints reduce the dimension of C-space. In this case, it reduces the dimension of the representation C -space to that of the actual C-space.
- They are also called Holonomic constraints as they reduces the dof.

Actual C space dimension (DOF) $=n-k$ where $k \leq n$
$n=n o$. of parameters of the C-space, $k=n o$. of constraints
owh@ieee.o। E.g. For $n=4$ parameters, $k=3$ constraints, $\mathrm{DOF}=4-3=1$

Configuration (Holonomic) constraints

Closed-chain four-bar linkage

- Easier to represent implicit
- Use four angles, i.e. 4 parameters
- System is 1-dof
- Introduce 3 constraints base on:
- L4 (ground link) always horizontal
- End of L4 at origin (red dot)

$$
\begin{aligned}
& L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right)+\cdots+L_{4} \cos \left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right)=0 \\
& L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)+\cdots+L_{4} \sin \left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right)=0 \\
& \theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}-2 \pi=0
\end{aligned}
$$

(loop closure equations)

Configuration (Holonomic) constraints

Closed-chain four-bar linkage

- Easier to represent implicit
- Use four angles, i.e. 4 parameters
- System is 1-dof
- Introduce 3 constraints base on:
- L4 (ground link) always horizontal
- End of L4 at origin (red dot)

$$
L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right)+\cdots+L_{4} \cos \left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right)=0
$$

$$
L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)+\cdots+L_{4} \sin \left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right)=0
$$

$$
\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}-2 \pi=0
$$

Actual DOF $=4$ parameters -3 constraints $=1$

Configuration (Holonomic) constraints

Let constraint equations be defined as

$$
\begin{aligned}
& g_{1}\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right)+\cdots+L_{4} \cos \left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right)=0 \\
& g_{2}\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)+\cdots+L_{4} \sin \left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right)=0 \\
& g_{3}\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}-2 \pi=0
\end{aligned}
$$

Write in matrix form: $\quad g(\theta)=\left[\begin{array}{l}g_{1}\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right) \\ g_{2}\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right) \\ g_{3}\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)\end{array}\right]=0$

Generalize:

$$
g(\theta)=\left[\begin{array}{c}
g_{1}\left(\theta_{1}, \ldots, \theta_{n}\right) \\
\vdots \\
g_{k}\left(\theta_{1}, \ldots, \theta_{n}\right)
\end{array}\right]=0
$$

Velocity constraints

If the robot arm moves, we express the parameters (angles) as function of time t.

$$
\theta(t)=\left[\begin{array}{lll}
\theta_{1}(t) & \ldots & \theta_{n}(t)
\end{array}\right]^{T}
$$

The loop closure equations become

$$
g(\theta(t))=\left[\begin{array}{c}
g_{1}\left(\theta_{1}(t), \ldots, \theta_{n}(t)\right) \\
\vdots \\
g_{k}\left(\theta_{1}(t), \ldots, \theta_{n}(t)\right)
\end{array}\right]=0
$$

Differentiating both side with respective to t gives the velocity of the parameters (joint angles' velocity), we can derive Pfaffian constraints

$$
\begin{gathered}
\frac{d}{d t} g(\theta(t))=0 \\
{\left[\begin{array}{c}
\frac{\partial g_{1}}{\partial \theta_{1}}(\theta) \dot{\theta}_{1}+\cdots+\frac{\partial g_{1}}{\partial \theta_{n}}(\theta) \dot{\theta}_{n} \\
\vdots \\
\frac{\partial g_{k}}{\partial \theta_{1}}(\theta) \dot{\theta}_{1}+\cdots+\frac{\partial g_{k}}{\partial \theta_{n}}(\theta) \dot{\theta}_{n}
\end{array}\right]=0} \\
\text { owh@ieee.org }
\end{gathered}\left[\begin{array}{ccc}
\frac{\partial g_{1}}{\partial \theta_{1}}(\theta) & \ldots & \frac{\partial g_{1}}{\partial \theta_{n}}(\theta) \\
\frac{\partial g_{k}}{\partial \theta_{1}}(\theta) & \cdots & \frac{\partial g_{k}}{\partial \theta_{n}}(\theta)
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{1} \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right]=0 \begin{aligned}
& \frac{\partial g}{\partial \theta}(\theta) \dot{\theta}=0 \\
& \text { ZA-2203 }
\end{aligned}
$$

Velocity constraints

- Pfaffian constraints are velocity constraints. It usually uses q instead of θ to generalize to non angular parameters.
$A(q) \dot{q}=0$ where $A(q)=\frac{\partial g}{\partial q}(q)$ and $\dot{q}=\left[\begin{array}{lll}\dot{q}_{1} & \ldots & \dot{q}_{n}\end{array}\right]^{T}$
Note $q=\left[\begin{array}{lll}q_{1} & \cdots & q_{n}\end{array}\right]^{T} \in \mathbb{R}^{n}$ is the parameters vector (e.g. joint angles), $A(q) \in \mathbb{R}^{k \times n}$ is differentiation wrt parameters $q, \dot{q} \in \mathbb{R}^{n}$ is differentiation wrt to time t (e.g. \dot{q}_{i} is velocity of joint i).

$$
\begin{aligned}
& g_{1}\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right)+\cdots+L_{4} \cos \left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right) \\
& g_{2}\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)+\cdots+L_{4} \sin \left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right) \\
& g_{3}\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}-2 \pi
\end{aligned}
$$

Holonomic and nonholonomic constraints

- If velocity constraints (Pfaffian constraints) can be integrated to equivalent configuration constraints, they are holonomic. If not, they are nonholonomic.
- Nonholonomic constraints reduce the dimension of the feasible velocities, but not the dimension of the C-space.

Nonholonomic constraint example

Pfaffian constraint: $A(q) \dot{q}=0$ where $A(q)=\frac{\partial g}{\partial q}(q)$ and $\dot{q}=\left[\begin{array}{lll}\dot{q}_{1} & \ldots & \dot{q}_{n}\end{array}\right]^{T}$
Consider a car driving on the road (plane). We determine the Pfaffian constraint.

Configuration of the car $q=\left[\begin{array}{lll}\varnothing & x & y\end{array}\right]^{T}$

$$
\text { Note }\left[q_{1}=\emptyset \quad q_{2}=x \quad q_{3}=y\right]
$$

Velocities in x and y directions

$$
\dot{x}=v \cos (\varnothing) \quad \dot{y}=v \sin (\varnothing)
$$

Rearrange \dot{y} and substitute into \dot{x} yields below constraint

$$
\dot{x}=\frac{\dot{y}}{\sin (\varnothing)} \cos (\varnothing) \rightarrow \dot{x} \sin (\varnothing)-\dot{y} \cos (\varnothing)=0
$$

Rearrange above constraint equation in a form we can relate to $A(q) \dot{q}$

$$
\begin{aligned}
& 0 . \dot{\emptyset}+\sin (\varnothing) \dot{x}-\cos (\varnothing) \dot{y}=0 \\
& \text { 0. } \dot{q}_{1}+\sin \left(q_{1}\right) \dot{q}_{2}-\cos \left(q_{1}\right) \dot{q}_{3}=0 \\
& {\left[\begin{array}{lll}
0 & \sin (\phi) & -\cos (\phi)
\end{array}\right]\left[\begin{array}{c}
\dot{\phi} \\
\dot{x} \\
\dot{y}
\end{array}\right]=0 \quad \square \underbrace{\left[\begin{array}{lll}
0 & \sin \left(q_{1}\right) & -\cos \left(q_{1}\right)
\end{array}\right]}_{\mathrm{ZA}-2203} \underbrace{\left[\begin{array}{c}
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3}
\end{array}\right]}_{A(q)}=0}
\end{aligned}
$$

Holonomic of robots

- Holonomic refers to the relationship between controllable and total degrees of freedom of a robot.
- One actuator gives one controllable dof (CDOF).
- Not all DOF are controllable.
- Uncontrollable dof makes motion complex, i.e. a body has to take a series of controllable dof to achieve a desired motion.
- That series of moving the body or effector is called the trajectory.

Total degree of freedom (TDOF) $=3$ (on plane) Controllable degree of freedom (CDOF) = 2 (forward/backward, turn)

Holonomic of robots

- A robot is holonomic if the number of controllable dof is equal to the number of dof of the robot. CDOF = TDOF
- A robot is non-holonomic if the number of controllable dof is less than the number of dof of the robot. CDOF < TDOF
- A robot is redundant if the number of controllable dof is more than the number of dof of the robot. CDOF > TDOF
- A system or robot may have holonomic and/or nonholonomic constraint(s).

Workspace

- Workspace: the volume in space that a robot's end-effector can reach
- Dextrous workspace - workspace where the end-effector can reach in any orientation
- Reachable workspace - workspace where the end-effector can reach in at least one orientation
- Depends on robot structure.
- Usually position of endeffector, ignoring orientation.

Task space

- Task space: a space in which the robot's task can be naturally expressed
- depends on the task, not depend on the robot structure
- it is possible that some part of the task space may not be reachable by a robot's C-space

Photo by Kvalifik on Unsplash
2 dof, \mathbb{E}^{2}

6 dof, $\mathbb{E}^{3} \times \mathbb{R}^{3}$

Source: https://hondanews.com

$$
4 \text { dof, } \mathbb{E}^{3} \times \mathbb{R}^{1}
$$

C-space, workspace, task space are different

Task space

A 2R planar robot to write on a white board (this slide)

A 3R planar robot

Workspace
 same workspace. However, they have different C-space. If they are made to perform the same task, they have the same task space.

Summary (1/2)

- Robot's configuration: a specification of the positions of all points of the robot: position and orientation of its bodies.
- Describing motion of a robot requires information on its configuration, i.e. position and orientation of its bodies.
- The configuration space (C-space) is the space of all configurations of a robot.
- C-space has two fundamental properties: degree of freedom (dof) and topology.
- We can determine the dof using Grubler's formula.
- Robot configurations can be represented explicitly or implicitly.
- Explicit representation is simple however may suffer from singularity.

Summary (2/2)

- Implicit representation embds the C-space in higher dimension space and impose constraints. It avoids singularity.
- Holonomic constraint is constraint on dof of the C-space. Nonholonomic constraint is constraint on velocity of the configuration parameters.
- A robot's workspace is the volume in space that a robot's end-effector can reach.
- A task space is the space in which the robot's task is naturally express.
- C-space, workspace and task space are different.

Reading List

- Chapter 2 of Modern Robotics

To Do List

- Watch Chapter 2 videos of Modern Robotics on Coursera, or on YouTube
https://www.youtube.com/playlist?list=PLggLP4frq02vX00QQ5vrCxbJrzamYDfx

[^0]: Source: Wikipedia

