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The proposed method is presented, as shown in Fig. 1.
The process of Keyframe selection is shown in Fig. 2.
The geometric illustration of how to decode the PSO parti-

cles to obtain a set of clusters and the Evolution of particles
is shown in Fig. 3. The routine of the proposed clustering
algorithm is shown in Algorithm 1.

Algorithm 1: Hybrid PSO with Gaussian Mutation and
K-means (HPGMK)

Input: D={d1,d2,. . .,dn} //Set of data points
k //Number of desired activities (clusters)

Output: Set of k clusters
1 Initialize a population of particles with random

positions and velocities in the search space
2 for t=1 to the maximum number of iteration do
3 for each particle i do
4 Update position and velocity of particle i

according to Eq.(10) and Eq.(11) in the main
manuscript

5 Evaluate fitness value of particle i according to
the fitness function in Eq.(15) in the main
manuscript

6 Update pbesti(t) and gbest(t) if necessary
7 for T times (T is the number of iteration for

mutation and set 10) do
8 Mutate gbest(t) according to Eq.(16) and

(17) in the main manuscript
9 Compare mutated gbest(t) with previous

and choose the best as new gbest(t)

10 Use gbest(t) as the initial centroids
11 while until no change do

// Refining the centroids
12 Calculate distances of data points to centroids
13 Assign data points to the closest cluster
14 Centroids are updated using the following equation

centroidi =
1
ni

∑
∀di∈Ci

di,
15 where ni is the number of data points in the

cluster i
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I. EXPERIMENTS

A. Datasets

Five datasets were used to evaluate the effectiveness of
proposed method: Cornell Activity Dataset (CAD-60) [1],
UTKinect-Action3D (UTK) [2], Florence3D (F3D) [3], Kinect
Activity Recognition Dataset (KARD) [4], and MSR DailyAc-
tivity3D (MSR) [5]. These datasets have different dimensions,
features, and activities. Table I shows the statistical informa-
tion of these datasets. They are discussed as follows.

TABLE I: Number of activities, subjects and videos in the five
datasets used

Dataset CAD-60 UTK F3D KARD MSR
Activities 14 10 9 18 16
Subjects 4 10 10 10 10
Videos 60 200 215 2160 320

CAD-60: This dataset includes 14 activities: rinsing mouth,
brushing teeth, wearing contact lens, talking on the phone,
drinking water, opening pill container, cooking (chopping),
cooking (stirring), talking on couch, relaxing on couch, writing
on whiteboard, still (standing), working on computer and
random. Each activity was performed by 4 subjects including
one left-handed person. They were performed in 5 different
environments: bathroom, bedroom, kitchen, living room, and
office. It contains activities of cyclic nature such as brushing
teeth and activities with similar postures such as drinking
water and talking on the phone.

UTK: There are 10 activities in this dataset: walk, sit down,
stand up, pick up, carry, throw, push, pull, wave hands, and
clap hands. These activities were performed by 10 subjects and
repeated twice by each subject. The significant intra-class and
viewpoint variations are the main challenges of this dataset.

F3D: This dataset includes 9 activities: wave, drink from a
bottle, answer phone, clap, tight lace, sit down, stand up, read
watch, and bow. These activities were repeated twice or thrice
by 10 subjects. The main challenge with this dataset is that
the activities were performed at high speed. This provides a
small number of frames for the algorithm to sample and learn
from.

KARD: This dataset contains 2160 videos and consists of
18 activities. These activities were performed by 10 different
people. The 18 activities are horizontal arm wave, high arm
wave, two hand wave, catch cap, high throw, draw X, draw
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Fig. 1: Methodology of the proposed approach has two stage pre-processing and discovery. In pre-processing, keyframes are
selected from the video sequence by computing kinetic energy. Then, features based on different aspects of skeleton including
displacement, orientation, and statistical are extracted from informative joints and bones. Principal components are then chosen
by applying PCA on the features. Next, overlapping time windows is used to segment a series of keyframes as activity
samples. In discovery stage (HPGMK), Hybrid PSO clustering with Gaussian mutation operator is used to discover the groups
of activities. Eventually, K-means clustering is applied to the resultant cluster centers to refine the centroids.

Fig. 2: Illustration of the keyframe selection.

tick, toss paper, forward kick, side kick, take umbrella, bend,
hand clap, walk, phone call, drink, sit down, and stand up. This
dataset is challenging due to the large number of activities

with high intra-class variation such as different individuals
performing the same activity such as catch cap but in different
ways, this makes learning of the same activity with large
differences in movements difficult.

MSR: In this dataset there are 16 activities: drink, eat, read
book, call cellphone, write on a paper, use laptop, use vacuum
cleaner, cheer up, sit still, toss paper, play game, lie down
on sofa, walk, play guitar, stand up, and sit down. There
are 10 subjects, and each subject performed all activities in
both standing and sitting positions. This makes the dataset
challenging because the extracted features for both sitting
and standing positions in each activity are different. Another
challenge is data corruption. In some frames, the skeletal
gesture structure suddenly collapses completely and lose their
coherence and become meaningless.
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Fig. 3: Illustration of decoding the solution of PSO to get a set of clusters. (a) Samples with extracted features are given as
input to PSO algorithm. (b) Then, each particle randomly chooses as many as the number of activities (clusters) from samples
and (c) based on the PSO operation (d) updates its position.

B. Parameters setting

Through preliminary experiments, the best values for swarm
size and the number of iterations were 20 and 50, respectively.
The experiment was repeated 30 times and the average was
obtained. The parameter settings of the HPGMK is summa-
rized in Table II.

TABLE II: Parameters setting used in the experiment.

Parameter Description Value
c1max

, c2max
acceleration coefficients 2.5

c1min , c2min acceleration coefficients 0
wmax inertial weight 0.9

t maximum number of iteration 50
T number of iteration for mutation 10
np swarm size 20

C. Computation complexity analysis

The Computation complexity of HPGMK in the initial stage
(step 1 in Algorithm 1) is equal to O(D.k.dim.np), where D
is the number of data points, k is the number of clusters,
dim is the dimension of data points and np is the population
size of particles. The time complexity when particles are
updated (step 2 to 9) is equal to O(t.dim.T.np), where t is
maximum number of iteration and T is the number of iteration
for mutating gbest(t). In Refining obtained centroids (step 11
to 15), the time complexity is equal to O(log(D.k.dim)).
Therefore, the overall computation complexity of proposed
algorithm is equal to O(t.T.np.D.k.dim + log(D.k.dim)).
Table III shows the comparison of the computation complexity
of the well-known clustering algorithms including KM and
BIRCH along with the state-of-the-art algorithms developed
for clustering with the proposed algorithm. Based on the
results, PSO-based clustering algorithms take substantially
longer to execute than non-PSO-based clustering methods. But

despite the low time complexity of KM and BIRCH clustering,
their accuracy is very low and they need to be executed
many times to reach the desired solution if they do not get
stuck in the local optimum. HPSOK-means, MinMaxK-means,
PSC-RCE, PSOLFK and PSOSCALFK have around the same
time complexity. However, we developed an algorithm, which
has powerful global search capabilities due to increasing the
variety of solutions during the execution of the algorithm by
applying Guassina mutation and modifying the cluster using
KM to increase the ability of PSO in local search.

TABLE III: The computation complexity of HPGMK and eight
related algorithms.

Algorithm Computation Complexity
KM O(N.K.D.t)

BIRCH O(N)
HPSOK-means O(N.K.D.t)

MinMaxK-means O(N.K.D.t)
PSC-RCE O(N.K.D.nm.t)
PSOLFK O(N.K.D.t)

PSOSCALFK O(N.K.D.t)
KMM O((N.dim+m2 +m.k).t+m.dim)

GLPSOK O(K.dim.(K.dim+N).t)
HPGMK O(t.T.np.D.k.dim+ log(D.k.dim))

To show activity discovery performance, we show the
confusion matrix in Fig. 4 to 8 for different methods applied
on five datasets used in this paper. These figures demonstrate
that HPGMK produced distinctively meaningful clusters. In
these figures, cluster overlapping appears relatively high in the
other methods especially KM and SC in all datasets. In CAD-
60 (Fig. 4), the worst confusion occured between brushing
teeth and random due to similar body gestures. There was
also activity overlapping between brushing teeth, and wearing
contact lenses, because of similar hand movement near the
head. In UTK (Fig. 5), the following activity pairs were poorly
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Fig. 4: Comparison of confusion matrix of the result on subject
1 in CAD-60. Activity list: (1) Brushing teeth; (2) Cooking
(chopping); (3) Rinsing mouth with water; (4) Still(standing);
(5) Taking on the couch; (6) Talking on the phone; (7) Wearing
contact lenses; (8) Working on computer; (9) Writing on
whiteboard; (10) Drinking water; (11) Cooking (stirring); (12)
Opening pill container; (13) Random; and (14) Relaxing on
couch.

distinguished between each other, sit down with stand up and
push with pull. These two similar activities are performed
inversely with each other, so they are difficult to distinguish.
In datasets KARD (Fig. 7) and MSR (Fig. 8), there were a
lot of overlapping due to the large number of activities that
are very similar. For instance, in Fig. 7, activity overlapping
were seen between draw x and draw tick, forward kick and
side kick, two hand wave and hand clap, catch cap and take
umbrella, horizontal arm wave and hand clap, and bend and
drink.

Fig. 9 to 13 show the average F-score for each activity for
all subjects. By examining the average F-scores in all datasets ,
it shows HPGMK outperforming other methods in all datasets
used. HPGMK achieved slightly under 75 % on CAD-60, just
over 45 % on UTK, almost 60 % on F3D, around 40 % on
KARD, and almost 30 % on MSR . In Fig. 9, for HPGMK

Fig. 5: Comparison of confusion matrix of the result on subject
8 in UTK. Activity list: (1) Walk; (2) Sit down; (3) Stand up;
(4) Pick up; (5) Carry; (6) Throw; (7) Push; (8) Pull; (9) Wave
hands; and (10) Clap hands.

although F-score was high in most of the activities compared
to other methods, cooking (chopping) and talking on the phone
were discovered with low F-scores. This was due to the high
similarity between cooking (chopping) with cooking (stirring)
and talking on the phone with wearing contact lenses. In
Fig. 10, a few actions were discovered with low F-scores.
For example, throw samples were easily mistakenly regarded
as push due to similar hand movements, resulting in low F-
scores in both activities. In Fig. 11, we observe HPGMK
outperformed other methods except for activities wave, clap
and tight lace. With respect to the F-score of KARD dataset
in Fig. 12, activities such as horizontal arm wave, high arm
wave, high throw, phone call, and drink have achieved lower
F-score than the other activities due to the large number of
similar activities that were performed by hand. In Fig. 13,
the F-score for most of the activities were below 40 %. The
reason for the low value of F-score for activities in MSR is
the presence of a lot of noise in the data and also activities
were performed in both standing and sitting. Fig. 14 shows
the average clustering time of the different combinations of
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Fig. 6: Comparison of confusion matrix of the result on subject
2 in F3D. Activity list: (1) Wave; (2) Drink from a bottle; (3)
Answer phone; (4) Clap; (5) Tight lace; (6) Sit down; (7) Stand
up; (8) Read watch; and (9) Bow.

components used in the proposed algorithm in milliseconds on
subject 1 in CAD-60. This experiment evaluates the impact of
the different components in the proposed HPGMK algorithm.
As can be seen, the clustering time of the proposed algorithm
(red line) was relatively low. The reason is that our approach
has benefited from dimension reduction methods, including
PCA and keyframe selector. Fig. 15 indicates the effect of each
component of HPGMK on convergence rate. As it is indicated,
each combination has a different convergence rate. However,
using all components enables the proposed method to achieve
the best convergence compared to the other combinations. It
is also confirmed from Fig. 15 that by combining both KM
and PSO algorithms, the convergence speed has increased. Ta-
ble IV indicates a significant difference between the HPGMK
and KM, HPGMK and PSO, HPGMK and SSC, HPGMK
and ENSC and HPGMK and SDCN through 30 independent
runs using the Kruskal–Wallis test (p-value). Since the p-value
of almost all of the datasets is less than 0.05 (significance
level) with the 95 % confidence intervals for each median, we
reject the null hypothesis, and conclude there is a significant

Fig. 7: Comparison of confusion matrix of the result on subject
10 in KARD. Activity list: (1) Horizontal arm wave; (2) High
arm wave; (3) Two hand wave; (4) Catch cap; (5) High throw;
(6) Draw X; (7) Draw tick; (8) Toss paper; (9) Forward kick;
(10) side kick; (11) Take umbrella; (12) Bend; (13) Hand clap;
(14) Walk; (15) Phone call; (16) Drink; (17) Sit down; and (18)
Stand up.

difference between the proposed method with KM, PSO, SSC,
ENSC, and SDCN. In cases where the p-value is higher
than the significant level (these cases are specified with⋆ in
Table IV), there is not enough evidence to reject the null
hypothesis.

TABLE IV: Comparison of Kruskal-Wallis test (p-value) be-
tween HPGMK and KM, HPGMK and PSO, HPGMK and
SSC, HPGMK and ENSC and HPGMK and SDCN through
30 independent runs

Datasets HPGMK vs KM HPGMK vs PSO HPGMK vs SDCN HPGMK vs ENSC HPGMK vs SSC
CAD-60 ≈0 0.00048 ≈0 ≈0

UTK ≈0 0.00014 0.02369⋆ ≈0 0.03325⋆

F3D ≈0 ≈0 ≈0 ≈0 ≈0
KARD ≈0 0.00544 0.023696⋆ ≈0 0.39117⋆

MSR ≈0 0.88246⋆ ≈0 ≈0 0.018736⋆

⋆ p-value > 0.05: The differences between the medians are not
statistically significant.
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Fig. 8: Comparison of confusion matrix of the result on subject
5 in MSR. Activity list: (1) Drink; (2) Eat; (3) Read book; (4)
Call cellphone; (5) Write on a paper; (6) Use laptop; (7) Use
vacuum cleaner; (8) Cheer up; (9) Sit still; (10) Toss paper;
(11) Play game; (12) Lie down on sofa; (13) Walk; (14) Play
guitar; (15) Stand up; and (16) Sit down.

Fig. 9: The average F-score for all subjects in CAD-60.
Activity list: (1) Brushing teeth; (2) Cooking (chopping); (3)
Rinsing mouth with water; (4) Still(standing); (5) Taking on
the couch; (6) Talking on the phone; (7) Wearing contact
lenses; (8) Working on computer; (9) Writing on whiteboard;
(10) Drinking water; (11) Cooking (stirring); (12) Opening pill
container; (13) Random; and (14) Relaxing on couch. AVG is
the average F-score for all activities.

Fig. 10: The average F-score for all subjects in UTK. Activity
list: (1) Walk; (2) Sit down; (3) Stand up; (4) Pick up; (5)
Carry; (6) Throw; (7) Push; (8) Pull; (9) Wave hands; and
(10) Clap hands. AVG is the average F-score for all activities.

Fig. 11: The average F-score for all subjects in F3D. Activity
list: (1) Wave; (2) Drink from a bottle; (3) Answer phone;
(4) Clap; (5) Tight lace; (6) Sit down; (7) Stand up; (8)
Read watch; and (9) Bow. AVG is the average F-score for
all activities.

Fig. 12: The average F-score for all subjects in KARD.
Activity list: (1) Horizontal arm wave; (2) High arm wave;
(3) Two hand wave; (4) Catch cap; (5) High throw; (6) Draw
X; (7) Draw tick; (8) Toss paper; (9) Forward kick; (10) side
kick; (11) Take umbrella; (12) Bend; (13) Hand clap; (14)
Walk; (15) Phone call; (16) Drink; (17) Sit down; and (18)
Stand up. AVG is the average F-score for all activities.
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Fig. 13: The average F-score for all subjects in MSR. Activity
list: (1) Drink; (2) Eat; (3) Read book; (4) Call cellphone; (5)
Write on a paper; (6) Use laptop; (7) Use vacuum cleaner; (8)
Cheer up; (9) Sit still; (10) Toss paper; (11) Play game; (12)
Lie down on sofa; (13) Walk; (14) Play guitar; (15) Stand
up; and (16) Sit down. AVG is the average F-score for all
activities.

Fig. 14: The comparison of clustering time of different com-
ponents of proposed algorithm on all subjects in CAD-60.

Figure 15-19 visually shows the average clustering time of
the eight clustering algorithms in milliseconds on the 5
datasets. As shown, compared with the other seven algorithms,
the clustering time of the proposed algorithm (gray line) is
relatively low. Because our approach enjoys the benefits of
dimension reduction methods including PCA and Keyframe
selector. That is why it achieves a lower clustering time.
Moreover, by combing both these algorithms the convergence
speed is accelerated as validated in Figure 20-62.It is also

Fig. 15: The comparison of convergence in subject 1 of CAD-
60.

confirmed that by combining both K-means and PSO algo-
rithms, the convergence speed increases. Figure 63-107 show
the confusion matrix of HPGMK for each subject in different
datasets.
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Fig. 16: The comparison of clustering time for all subjects of
CAD-60.

Fig. 17: The comparison of clustering time for all subjects of
KARD.

Fig. 18: The comparison of clustering time for all subjects of
MSR.

Fig. 19: The comparison of clustering time for all subjects of
UTK.

Fig. 20: The comparison of clustering time for all subjects of
F3D.
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Fig. 21: The comparison of convergence in subject 1 of CAD-
60.

Fig. 22: The comparison of convergence in subject 2 of CAD-
60.

Fig. 23: The comparison of convergence in subject 3 of CAD-
60.

Fig. 24: The comparison of convergence in subject 4 of CAD-
60.

Fig. 25: The comparison of convergence in subject 1 of
KARD.

Fig. 26: The comparison of convergence in subject 2 of
KARD.
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Fig. 27: The comparison of convergence in subject 3 of
KARD.

Fig. 28: The comparison of convergence in subject 4 of
KARD.

Fig. 29: The comparison of convergence in subject 5 of
KARD.

Fig. 30: The comparison of convergence in subject 6 of
KARD.

Fig. 31: The comparison of convergence in subject 7 of
KARD.

Fig. 32: he comparison of convergence in subject 8 of KARD.
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Fig. 33: The comparison of convergence in subject 9 of
KARD.

Fig. 34: The comparison of convergence in subject 10 of
KARD.

Fig. 35: The comparison of convergence in subject 1 of MSR.

Fig. 36: The comparison of convergence in subject 2 of MSR.

Fig. 37: The comparison of convergence in subject 3 of MSR.

Fig. 38: The comparison of convergence in subject 4 of MSR.
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Fig. 39: The comparison of convergence in subject 5 of MSR.

Fig. 40: The comparison of convergence in subject 6 of MSR.

Fig. 41: The comparison of convergence in subject 7 of MSR.

Fig. 42: The comparison of convergence in subject 8 of MSR.

Fig. 43: The comparison of convergence in subject 9 of MSR.

Fig. 44: The comparison of convergence in subject 10 of MSR.
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Fig. 45: The comparison of convergence in subject 1 of UTK.

Fig. 46: The comparison of convergence in subject 2 of UTK.

Fig. 47: The comparison of convergence in subject 3 of UTK.

Fig. 48: The comparison of convergence in subject 4 of UTK.

Fig. 49: The comparison of convergence in subject 5 of UTK.

Fig. 50: The comparison of convergence in subject 6 of UTK.
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Fig. 51: The comparison of convergence in subject 7 of UTK.

Fig. 52: The comparison of convergence in subject 8 of UTK.

Fig. 53: The comparison of convergence in subject 9 of UTK.

Fig. 54: The comparison of convergence in subject 10 of UTK.

Fig. 55: The comparison of convergence in subject 1 of F3D.

Fig. 56: The comparison of convergence in subject 2 of F3D.
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Fig. 57: The comparison of convergence in subject 3 of F3D.

Fig. 58: The comparison of convergence in subject 4 of F3D.

Fig. 59: The comparison of convergence in subject 5 of F3D.

Fig. 60: The comparison of convergence in subject 6 of F3D.

Fig. 61: The comparison of convergence in subject 7 of F3D.

Fig. 62: The comparison of convergence in subject 8 of F3D.
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Fig. 63: The comparison of convergence in subject 9 of F3D.

Fig. 64: The comparison of convergence in subject 10 of F3D.

Fig. 65: The confusion matrix of HPGMK on the subject 1 of
CAD-60.

Fig. 66: The confusion matrix of HPGMK on the subject 2 of
CAD-60.
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Fig. 67: The confusion matrix of HPGMK on the subject 3 of
CAD-60.

Fig. 68: The confusion matrix of HPGMK on the subject 4 of
CAD-60.

Fig. 69: The confusion matrix of HPGMK on the subject 1 of
KARD.

Fig. 70: The confusion matrix of HPGMK on the subject 2 of
KARD.
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Fig. 71: The confusion matrix of HPGMK on the subject 3 of
KARD.

Fig. 72: The confusion matrix of HPGMK on the subject 4 of
KARD.

Fig. 73: The confusion matrix of HPGMK on the subject 5 of
KARD.

Fig. 74: The confusion matrix of HPGMK on the subject 6 of
KARD.
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Fig. 75: The confusion matrix of HPGMK on the subject 7 of
KARD.

Fig. 76: The confusion matrix of HPGMK on the subject 8 of
KARD.

Fig. 77: The confusion matrix of HPGMK on the subject 9 of
KARD.

Fig. 78: The confusion matrix of HPGMK on the subject 10
of KARD.
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Fig. 79: The confusion matrix of HPGMK on the subject 1 of
MSR.

Fig. 80: The confusion matrix of HPGMK on the subject 2 of
MSR.

Fig. 81: The confusion matrix of HPGMK on the subject 3 of
MSR.

Fig. 82: The confusion matrix of HPGMK on the subject 4 of
MSR.
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Fig. 83: The confusion matrix of HPGMK on the subject 5 of
MSR.

Fig. 84: The confusion matrix of HPGMK on the subject 6 of
MSR.

Fig. 85: The confusion matrix of HPGMK on the subject 7 of
MSR.

Fig. 86: The confusion matrix of HPGMK on the subject 8 of
MSR.
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Fig. 87: The confusion matrix of HPGMK on the subject 9 of
MSR.

Fig. 88: The confusion matrix of HPGMK on the subject 10
of MSR.

Fig. 89: The confusion matrix of HPGMK on the subject 1 of
UTK.

Fig. 90: The confusion matrix of HPGMK on the subject 2 of
UTK.
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Fig. 91: The confusion matrix of HPGMK on the subject 3 of
UTK.

Fig. 92: The confusion matrix of HPGMK on the subject 4 of
UTK.

Fig. 93: The confusion matrix of HPGMK on the subject 5 of
UTK.

Fig. 94: The confusion matrix of HPGMK on the subject 6 of
UTK.



17

Fig. 95: The confusion matrix of HPGMK on the subject 7 of
UTK.

Fig. 96: The confusion matrix of HPGMK on the subject 8 of
UTK.

Fig. 97: The confusion matrix of HPGMK on the subject 9 of
UTK.

Fig. 98: The confusion matrix of HPGMK on the subject 10
of UTK.
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Fig. 99: The confusion matrix of HPGMK on the subject 1 of
F3D.

Fig. 100: The confusion matrix of HPGMK on the subject 2
of F3D.

Fig. 101: The confusion matrix of HPGMK on the subject 3
of F3D.

Fig. 102: The confusion matrix of HPGMK on the subject 4
of F3D.
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Fig. 103: The confusion matrix of HPGMK on the subject 5
of F3D.

Fig. 104: The confusion matrix of HPGMK on the subject 6
of F3D.

Fig. 105: The confusion matrix of HPGMK on the subject 7
of F3D.

Fig. 106: The confusion matrix of HPGMK on the subject 8
of F3D.
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Fig. 107: The confusion matrix of HPGMK on the subject 9
of F3D.

Fig. 108: The confusion matrix of HPGMK on the subject 10
of F3D.


