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A Novel Skeleton-Based Human Activity Discovery
Using Particle Swarm Optimization

With Gaussian Mutation
Parham Hadikhani , Daphne Teck Ching Lai , and Wee-Hong Ong

Abstract—Human activity discovery aims to cluster human ac-
tivities without any prior knowledge of what defines each activity.
However, most existing methods for human activity recognition are
supervised, relying on labeled inputs for training. In reality, it is
challenging to label human activity data due to its large volume
and the diversity of human activities. To address this issue, this
article proposes an unsupervised framework for human activity
discovery in 3-D skeleton sequences. The framework includes a data
preprocessing step that selects important frames based on kinetic
energy and extracts relevant features, such as joint displacement,
statistical displacement, angles, and orientation. To reduce the
dimensionality of the extracted features, the framework uses prin-
ciple component analysis. Unlike many other methods for human
activity discovery, the proposed framework is fully unsupervised
and does not rely on presegmented videos. To segment the time
series of activities, the framework uses a sliding time window
with some overlapping. The hybrid particle swarm optimization
(PSO) with Gaussian mutation and K-means algorithm is then
proposed to discover the activities. PSO is chosen for its powerful
global search capability and simple implementation. To further
improve the convergence rate of PSO, K-means is applied to the
outcome centroids from each iteration of PSO. The experimental
results on five datasets demonstrate that the proposed framework
has superior performance in discovering activities compared to
other state-of-the-art methods. The framework achieves an average
increase in accuracy of at least 4%.

Index Terms—Clustering, dimension reduction, feature ex-
traction, human activity discovery, particle swarm optimization
(PSO), skeleton sequence, unsupervised learning.

I. INTRODUCTION

HUMAN activity recognition (HAR) has attracted much
attention due to its applications in fields such as human–

computer interaction, intelligent transportation systems [1], [2],
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Fig. 1. Overview of HAR system: (a) Performed activities are (b) captured
by a Kinect sensor. (c) After that, pose of humans are estimated by extracting
joints. (d) To make raw data more usable, their salient and defining features are
identified. (e) Based on the similarities and differences, activities are discovered.
(f) Afterwards, the system begins to learn from the discovered activities and (g)
finally human activities are recognized.

and monitoring applications [3]. Activity recognition aims to
identify actions and activities that humans perform in different
environments automatically. The input to a vision-based HAR
system is a sequence of frames of a person performing different
movements. The output is a set of labels representing the actions
taken or activities in those movements. Many existing works use
visual data as input. But such data have considerable complexity
detrimental to the performance of HAR systems. These com-
plexities include cluttered background, changes in brightness,
and points of view. 3-D skeleton data partially overcomes these
complexities and protects people’s privacy when red, green,
and blue (RGB) data is not captured. Each frame represented
by 3-D coordinates of the main body joints is appropriate for
representing human actions [4] and can be easily obtained in
real-time with low-cost depth sensors [5].

As shown in Fig. 1, there are at least seven steps in vision-
based HAR systems. Vision sensors capture activities performed
by a person. The skeletal information comprising joints coor-
dinate are extracted from captured videos, containing image
sequences called frames. Meaningful features are then extracted
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for more accurate activity discovery. The system without us-
ing manual annotations and having any guidance for activities
discovers them by clustering the most similar activities from
a set of different activities. In other words, the system tries
to differentiate observed activities based on the likeness of
extracted features. The discovered activity clusters are used
in the learning process to model each cluster of activity and
recognize future activities. Significant progress has been made
in the supervised learning of activity models [6], illustrated in
Fig. 1(f) and (g). The learning and recognition steps rely on
human-labeled training data to categorize activities if activ-
ity discovery [block (e)] was not performed. Human activity
discovery is a part of the HAR process where activities are
categorized based on their similarities without any knowledge
of activity labels or any information that characterizes an activ-
ity, making this step particularly challenging. In other words,
activity discovery is like a child’s learning. There is no prior
information to define a specific sequence of movements to
mean a particular activity such as crawling or waving and so
forth to the child learner. Using the ability to differentiate, they
learn from unlabeled data and form a model that can postlabel
new data based on that training. In human activity discovery,
there is no known information or knowledge about a particular
movement, including its start to end, e.g., when someone is
picking up something. This means the input is a series of move-
ments without knowing the start and endpoints to indicate each
activity. Some existing work has segmented the input data by
activity [4]. Thus, the start and endpoints of the activities are al-
ready known, although the method of grouping activities may be
unsupervised.

In this article, we focus on the less developed activity dis-
covery comprising the block (d) to (e) of Fig. 1 by developing
an effective methodology to extract good features and cluster
activities without any label. Keyframe selection [7] and principle
component analysis (PCA) are used to remove redundant frames
and features to reduce time complexity and increase accuracy. A
preprocessing and feature extraction methodology are proposed
to prepare information and extract features from the most infor-
mative joints and bones, including joint displacement, joint ori-
entation, and statistical time domain. As our first study, a hybrid
PSO with Gaussian mutation and K-means (HPGMK) clustering
that requires a known prior of the cluster number is proposed
to find activities. Sometimes particles converge to a specific
point between the best global and personal positions and get
trapped in local optima. This difficulty arises when the swarm’s
variety reduces and the swarm cannot escape from a local opti-
mum [8]. To address this, a hybrid PSO with Gaussian mutation
is proposed to promote diversity to avoid early convergence.
Then, K-means is applied to the centroids obtained by PSO
to refine their location and get the best possible solution. Our
methodology performs activity discovery using unsegmented
input data and the proposed techniques used are unsupervised
with no prior knowledge of the labels of the different activities.
The main contributions of this article are as follows.

1) A methodology consists of keyframe selection, feature
extraction, and PCA to represent human activities. The
features based on displacement, statistical, and orientation

are extracted simultaneously to represent all the movement
aspects of human activities. This makes the discovery part
perform better because it has comprehensive information
about the activities.

2) A hybrid clustering algorithm called HPGMK to discover
and group unlabelled human activities observations into
individual activity classes. PSO is customized by applying
the Gaussian mutation, based on the advantages of two
methods [9] and [10], on the global best’s centroids to
increase the diversity of selected clusters in the global
best. Also, due to the increase in the variety of solutions,
the proposed algorithm reaches the desired solution in a
smaller number of iterations. That is why the clustering
time is reduced.

3) Integrating K-means to refine the obtained cluster centers
from the PSO to improve the exploitation of the algorithm.
In PSO, when approaching the final solution, the speed
of the particles decreases greatly and it becomes difficult
to reach the best optimum solution. For this reason, the
problem of PSO is solved by using the advantage of
K-means in local search and applying it to the obtained
solution from PSO.

The rest of this article is organized as follows. In this article,
the background and related methods are discussed in Section II.
The methodology is described in Section III. We present the eval-
uation of the proposed approach, comparing with state-of-the-art
(SOTA) techniques in Section IV. Finally, Section V concludes
this article.

II. RELATED WORKS

Feature extraction from 3-D skeletal human activities data:
Skeletal data includes the number of joints, and each joint con-
tains 3-D coordinates. Since the motion of the joints has essential
information for any activity, feature extraction is vital. There
are various methods for representation of the motion of skeletal
joints such as calculating the difference between the joints in the
same frame and the same joints in different frames [11], using
histogram oriented of joints [12], dynamic time warping algo-
rithm [13], covariance of 3-D joints [14], generating joint rota-
tion matrix concerning the person’s torso [15], and extracting the
angles and orientations of the most informative body joints [16].
However, most of these methods extract one aspect of the skeletal
data features, leading to other important aspects of activities
being overlooked. As a result, there is a decrease in accuracy in
the final result because of the insufficient discriminating ability
of the extracted features. Moreover, due to the complexity of
feature calculations, some of these methods cause computational
latency. The difference between our article with previous works
for extracting features is that We have combined the feature
extraction techniques from [11], [16], and [17] to extract three
skeletal features from informative joints and keyframes. Previ-
ously, these features have been applied separately and most of
them have used all of the joints and frames, which increases
additional information. This increases the time complexity and
reduces identifying the activities’ performance. Some methods
like [7] and [18] have tried to select some frames that are more
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distinguishing compared to other frames and remove redundant
information with the assistance of kinetic energy. However, these
methods are applied to each activity sample separately. In other
words, in [7] and [18], keyframes were selected in a supervised
manner. In contrast, we apply the above methods in our proposed
method to select keyframes without knowing the beginning and
end of the activities.

PSO clustering and dimension reduction: One of the impor-
tant methods to do discovery is to use clustering. Clustering is
a method that categorizes data points based on similarities and
dissimilarities [19], [20]. One of the common methods of cluster-
ing is K-means. But it has problems such as poor convergence
rate and local optimum. One of the ways to overcome these
problems is to use evolutionary algorithms like PSO. PSO is a
population-based algorithm where each individual represents a
potential solution, which makes a better problem space search.
PSO greatly reduces the possibility of getting stuck in local
optimum due to using local search and global search simul-
taneously [21], [22]. To create a novel clustering algorithm,
Malarvizhi et al. [23] combined PSO and feature linkage-based
weight reduction. The method determined the weight of each
feature using the Mahalanobis distance to choose the feature and
do the clustering automatically. Sharma et al. [24] developed
a hybrid PSO clustering for network-based sustainable com-
puting. They applied the mutation operator to ensure diversity
among the solutions to keep the algorithm’s balance between
exploration and exploitation. Rengasamy et al. [25] introduced a
new memory dimension termed family memory and added to the
two already existing ones of cognitive memory and social mem-
ory. This memory was used to collect the information from the
particles that favor a certain cluster. Additionally, they utilized
the K-means to initialize centroids for PSO clustering to enhance
the traditional PSO. Cai et al. [26] proposed a new clustering
method based on combining density peaks clustering with PSO.
They employed a technique to compute density peaks to avoid
falling into a local. They also presented a new fitness criteria
function to optimally explore K cluster centers to obtain the
optimal global solutions. However, these methods do not address
all the weak points of PSO. Some of them either deal with
the issue of reducing the speed of PSO when approaching the
optimal solution or the issue of reducing the diversity among the
solutions during the search. Different from the abovementioned
methods, we overcome the weakness noted for PSO simultane-
ously by using Gaussian mutation and K-means. By employ-
ing Gaussian mutation, the variety of the solutions the PSO’s
capacity to exploit around potential solutions gets effectively
enhanced. We also utilize K-means to solve the PSO problem:
Its convergence speed slows down when it approaches the global
optimum. We also use K-means to solve the problem of reducing
the convergence speed of PSO when approaching the global op-
timum by using the fast speed of K-means in local search. Zhang
et al. [27] introduced a feature selection method based on
PSO that combined fuzzy clustering and feature importance
(PSOFS-FC). They presented a new objective function based
on F-measure and filling risk for PSO with fuzzy cluster-
ing to assess the impact of missing data in class imbal-
ance. To overcome the dimensionality curse, Song et al. [28]

presented a three-phase feature selection technique based on
correlation-guided clustering and PSO. First, they combined a
filter approach and a feature clustering-based method to reduce
the search space. Then, an enhanced integer PSO was used to
select the best feature subset. Unlike PSOFS-FC and other men-
tioned methods, which combine clustering and feature selection,
we reduce extracted features’ dimensions before clustering.
Although good results have been obtained in these methods, due
to the simultaneity of feature selection and clustering, clustering
becomes problematic in high-dimensional data and the cluster-
ing time increases greatly. In human activity discovery (HAD),
spending time to discover activities is important because of its
applications, such as use in security areas to identify suspicious
behavior or in hospitals to check patients’ status. For this reason,
our proposed method reduces the feature dimensions before
clustering by using PCA to make the data more clusterable.
PCA speeds up the clustering algorithm by removing correlated
features that do not influence decision-making. As a result, the
algorithm’s clustering time decreases dramatically with fewer
features. Thus, not only the speed of clustering increases but
also the accuracy of clustering increases because the clustering
process is performed on highly important features. Regarding
detecting outlier and noisy data, Hubert et al. [29] proposed a
combination method to make PCA robust to outliers. They com-
bined projection pursuit [30] with h robust covariance estimation
in lower dimensions [31]. Moreover, they applied a diagnostic
plot to detect the outliers. Candes et al. [32] proposed a technique
to improve the performance of PCA. They used a low-rank
and sparse component for PCA to avoid outliers and achieved
good performance in the application of Alzheimer’s Disease
Recognition [33]. Rahmani et al. [34] presented a provable
algorithm to identify the outliers based on PCA. For this reason,
they employed a convex optimization problem to evaluate the
data points based on the innovation search method. Despite the
very good performance of the presented methods to improve
PCA, they have more execution time than the original PCA. On
the other hand, the focus of our work is on the improvement
of feature extraction and discovery for human activities. As
mentioned before, time is very important in HAD. That is why
we use PCA to prevent the increase in the computation of time
for the presented framework. It is worth mentioning that the
obtained results show that PCA has reduced the dimensions of
the features and improved HAD performance significantly.

Recognition and discovery of 3-D skeletal human activity:
Many studies in HAR used supervised approaches [35], [36],
[37]. Yadav et al. [38] combined long-short term memory
networks and convolutional neural networks for recognizing
human activity and fall detection. They used some handcrafted
features, including geometrical and kinematic features to guide
their proposed model. Zhang et al. [39] proposed an end-to-end
semantics-guided neural networks framework. They provided
two semantic forms based on joints and frames and used
graph convolutional network (GCN) and convolutional neural
network (CNN) layers to find the dependence of joints and
frames, respectively. Si et al. [40] proposed a novel model based
on a recurrent network. They applied a graph convolutional
layer into the LSTM network to improve the performance
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of traditional LSTM. They also introduced an attention gate
inside the LSTM to capture discriminative features. Xia et al.
[41] provided a graph convention network based on spatial
and temporal. They applied an attention layer to the model to
generate discriminative features and modified feature maps.
Then, a softmax classifier was used to categorize the activities.
Cai et al. [42] introduced a scheme to capture visual information
surrounding each skeleton joint and achieve local motion cues.
They extracted features from skeleton and RGB data using two
graph convolutional networks. Then, both types of features
were concatenated and activities were classified by calculating
a score based on linear blending. The problem with these
approaches is that they require activity labels in the training
data. Humans annotated the labels during data preparation. It
makes these methods impractical with real-life data that are
mainly unlabeled. Our work does not use labels for training in
our algorithm. The algorithm discovers activities by looking
for similar features between them. In addition, the methods
mentioned above use deep learning techniques. In contrast, as
a first study, we do not use them in our method and the focus is
on developing a comprehensive model for HAD as a baseline.

Several approaches try to address the HAR in an unsupervised
way. Wang et al. [43] presented a deep clustering method based
on a dual-stack autoencoder to map raw data to spatio-temporal
features. After extracting features, the radial basis function neu-
ral network was used to classify the activities. Su et al. [6] pro-
vided an unsupervised model by employing a bidirectional recur-
rent neural network and used K-NN to classify the activities. Liu
et al. [44] designed a spatial-temporal asynchronous normaliza-
tion method to reduce redundant information related to time and
normalize the spatial features. Next, they used a gated recurrent
unit autoencoder to feature vectors. First, all of these methods
received the activities already segmented which has enabled
them to be aware of the differences between the activities before
performing the recognition. Second, in most of these methods,
only feature extraction was performed without supervision. The
supervised classification method was used for the rest of the
operations to learn activity models using activity labels.

On the other hand, human activity discovery can automati-
cally categorize human activity in a fully unsupervised way and
the challenge is learning from unlabeled data. The majority of
existing methods were developed for sensor-based [45], [46]
and RGB video data [47]. The challenges of the sensor-based
approach are difficult to implement in the environment and
take a long time to install [48]. Furthermore, it is impractical
for people to wear sensors everywhere. With RGB videos,
the problems faced are millions of pixel values, illumination
variations, viewpoint changes, and cluttered backgrounds [5].
In this work, we concentrate on 3-D skeleton-based data as it
does not have the problems of the other two data types. One of
the first works in HAD was performed by Ong et al. [48]. They
proposed an autonomous learning technique based on the mix-
ture of the Gaussian hidden Markov model. They introduced an
incremental clustering approach based on K-means to discover
the activities to deal with the undefined number of clusters.
An issue with their approach is that they have used K-means
to discover the activities that get stuck into the local optimum

easily and they have not examined all aspects of the skeleton
data features. Moreover, they extracted all the features from all
joints, resulting in more redundant data and increased discovery
errors. Recently several approaches have been proposed by [4]
to solve HAR without labels. In their proposed methods, several
clustering methods, including spectral clustering (SC), elastic
net subspace clustering (ENSC), and sparse subspace clustering
(SSC) were used, which used covariance descriptors. They used
an affinity matrix to find similarities and then applied spectral
clustering. In addition, a time stamp pruning approach was
used to remove redundant data to normalize temporal features.
Although they have achieved impressive results, the data used
were already segmented by activity before performing discovery.
It means that the activities are already categorized. Because each
sample contains an activity that performs completely. In other
words, the beginning and end of each activity are clear.

In a nutshell, many methods have been proposed to recognize
human activities in a supervised and unsupervised manner and
have obtained very acceptable results. But the problem with
these methods is that they ignore the discovery step. These
methods are useless because labeling activities do not occur in
real time. They also need a lot of computation time for training.
In reality, training data are not available. If we have a dynamic
big and growing video related to human activity, we are not sure
of the labels to predefine the rules. This can be a real challenge.
On the other hand, due to the variety of human activities, these
methods need to be retrained for new activities, making them not
scalable. In the case of HAD, in addition to the fact that there are
very limited methods, these methods have problems including
using shallow methods which are not very accurate or not fully
performing the discovery process in an unsupervised manner.
In this article, we propose an approach to discovering activities
from untrimmed videos without knowing the label of activities.
It makes this method suitable for use in real-world scenarios.
In addition, we use a feature extraction approach to examine
most aspects of skeleton data along with a keyframe selector to
reduce redundant information and discovery accuracy.

III. PROPOSED HUMAN ACTIVITY DISCOVERY

The goal of this article is to pave the path to make robots
and machines learn like toddlers, who learn automatically, gain
knowledge every day, and their intelligence will gradually in-
crease until they resemble humans. The crucial aspect is the
increase in learning without human intervention and planning.
The proposed approach can be used in developing other business
technologies by identifying and analyzing human activities. For
example, in security areas, new activities can be discovered
and the new activity can be determined whether is suspicious
or not. Another application is in hospitals to care for patients.
New patient conditions are discovered through their activities
and can be used to help better monitor the patient. To reach
this goal, we have presented an unsupervised framework for
3-D skeleton-based human activity to discover the performed
activities from untrimmed streaming and unlabeled data in
which each sequence contains multiple activity samples without
prior knowledge about the performed activities. Our proposed
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framework consists of two main stages (the diagram of the
proposed framework is given in Fig. 1 of supplementary).
In the first stage, we propose an approach that can extract high-
quality features in an unsupervised manner. Three crucial factors
should be taken into account in this matter. First, not all the
captured frames are important. Due to the similarity of frames
and noises, HAD performance reduces sharply. Therefore, we
need frames that show the salient features of the activities. Also,
not all the joints have a significant role in discovering activities,
such as the torso, which is constant in most activities. Extracting
features from these joints increases time complexity. Second, the
extracted features should accurately reflect all aspects of human
activity by considering all factors such as spatial and temporal.
Third, the feature dimension needs to be minimal to ease the
clustering process (a larger dimension confuses the clustering
process). To meet the requirement in the first stage, we present
a preprocessing method [shown in Fig. 1 (Stage 1) of supple-
mentary]. We employ an innovative approach based on kinetic
energy to select representative frames of the video sequences
as keyframes. In other words, we seek to select the frames that
show the most prominent characteristics of the activities as the
keyframes. However, the selection of keyframes without losing
the required information is a challenging task. When only the
local maximum kinetic energies are considered keyframes, the
sequence of activities may break up and no longer represent
activities. For example, in the walking activity, considering
keyframes with high local energy, only positions where both
legs move away from each other are considered keyframes. In
contrast, positions, where both legs are placed together, show a
part of the walking process that is lost, if only the maximum
kinetic energies are considered. For this reason, we perform
keyframe selection based on local maximum and minimum
kinetic energy that can find a sequence of representative frames
while reducing complexity. To minimize computational time
and overlapping among activities, we select joints (informa-
tive) that have a vital role in displaying activities and avoid
similarity between different activities based on experimental
tests. To increase the discovery performance, it is necessary to
extract features to represent all aspects of each activity. for this
purpose, we design a method to represent the activities based on
spatial and temporal displacement, statistical, and orientation
features. The displacement-based representations provide the
view-invariant spatio-temporal human representations indepen-
dent of the position and orientation of the person with respect to
the camera. To obtain features that are invariant to human scale
changes, orientation-based representations are extracted to find
relative information between human joints. Statistical features
describe how activity evolves over time, especially when dis-
tinguishing the actions of the arms from the legs. Therefore,
statistical time-domain characteristics represent changes in a
set of postures for a time-domain activity. We employ PCA
to address the third factor to reduce dimensionality and make
the extracted feature more clusterable while high-importance
features are kept. We adopt a sliding window over the stream of
skeleton sequences to perform activity discovery. To increase
the number of samples and avoid pruning important events

like a transition between activities we employ overlapping
sliding windows.

In the second stage, we propose a novel clustering algorithm
based on hybrid PSO called HPGMK to discover human ac-
tivities [shown in Fig. 1 (Stage 2) of supplementary]. The key
benefit of PSO is that there are fewer parameters to set. Contrary
to genetic algorithms, PSO does not use complex evolution-
ary operators like the crossover, making it less complicated.
However, the issue is that its convergence speed slows down
when it approaches the global optimum. For this reason, we
combine PSO with K-means to use the fast speed of K-means
to reach the local optimum to improve PSO’s performance.
The Gaussian mutation is employed on the global best parti-
cle to search for areas around it to generate diverse solutions
and strike a balance between exploitation and exploration. In
the following subsections, the details of each part of the
methodology are described.

A. Keyframe Selection

Keyframe selection is a process of selecting frames reflecting
the main activities in the video. Some methods like [7] and [18]
have tried to select some frames that are more distinguishing
compared to other frames. However, these methods were applied
to each activity sample separately. In other words, in methods [7]
and [18], keyframes were selected in a supervised manner. In our
proposed method, keyframes are selected without knowing the
beginning and end of the activities. To find the keyframes, the
kinetic energy E(fi) of each frame fi is calculated [7] using
(1), based on the displacement of joints over time. In this way,
the movement of a joint j between frame i and i-1 is calculated
for all joints (J). The sum of the movements for all joints is
the energy of the current frame. Frames with local maxima
and minima amount of kinetic energy compared to neighboring
frames are considered keyframes (see Fig. 2 of supplementary)
Because these are the energy’s extreme points, which are meant
to resemble crucial posture data.

E(fi) =
J∑

j=1

E(f j
i ) = 1/2

J∑
j=1

(f j
i − f j

i−1)
2. (1)

B. Feature Extraction

To represent the activities, a set of statistical displacements,
angles, and orientation features for encoding key aspects of ac-
tivities are extracted. These important features are extracted from
selected (informative) joints in the data to describe the shape and
movement of human. Selected joints have been obtained based
on experimental tests that included left and right hand, foot, hip,
shoulder, elbow, and knee. These joints have more movement
and contribution than other joints such as torso in activities.
We use information related to the position and movement of
joints, the orientation and angle between a pair of bones, and
activity variation over time. The normalization procedure [11]
is performed on all features.

1) Displacement Features: Joint displacement-based fea-
tures encode information on the position and motion of body
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Fig. 2. (a) Spatial displacement of pairwise joints in the same frame. Temporal
displacement of current frame from (b) previous frame and (c) the neutral frame.

joints, particularly displacement between joints of a pose and po-
sition differences of skeleton joints across time [11] as follows.

1) Spatial joint displacement is computed using pairwise
Euclidean distances between joints Pi and Pj (i �= j) in
3-D space in the same frame (2). The joint pairs used are
both hands, hands and head, and hip and feet at both sides,
giving five features per frame, [see Fig. 2(a)].

Pairwise distances =
√∑

x,y,z

(Pi − Pj)2. (2)

2) Temporal joint displacement is calculated based on two
modes. Tcp is the difference between each selected joint
Pi in current frame P c

i and previous frame P c−1
i [see

Fig. 2(b)] to determine the small changes in joint move-
ment over time (3). Tcn is the difference between each
selected joint of current frame and the frame of neutral
pose (we randomly select a standing position as a neu-
tral position) Pn

i , illustrated in Fig. 2(c), to find general
changes in joint movements as given in (4).

Tcp = P c
i − P c−1

i (3)

Tcn = P c
i − Pn

i . (4)

2) Statistical Features: The mean and standard deviation
of time-domain features express how activity changes over
time, particularly in distinguishing between activities related
to the arms and legs. Thus, statistical time-domain features
encode variations across a collection of poses of an activity in
time-domain. These features are calculated by the difference
of selected joint P c

i in current frame from mean P(i,mean)

and standard deviation P(i,std) of the selected joint coordinates
within an activity sequence as given by (5) and (6) [11]. They
are as follows:

1) Joint coordinate-mean difference

P c
i(mean)

= P c
i − P(i,mean), P(i,mean) =

1

N

N∑
c=1

P c
i ; (5)

N is the number of frames.
2) Joint coordinate-standard deviation difference

P c
(i,std) = P c

i −
√∑N

i=c(P
c
i − P(i,mean))2

N
. (6)

3) Orientation Features: The 3-D coordinate system {x,y,z
∈ R3} represents points as joints. x, y, and z denote the 3-D

Fig. 3. (a) Illustration of the rotation between two bones A and B. α, β, and
γ are the orientation of angles. (b) The angles of the selected body bones. The
angles of elbow-wrist and shoulder-elbow at both sides and angles between
the bones of hip-knee and knee-ankle at both sides are used to calculate angle
features.

coordinates of joints. Joints and bones can be described by the
orthonormal vectors [17] as follows:

P f
i = xf

i e1 + yfi e2 + zfi e3 (7)

Bf
ij = (xf

i − xf
j )e1 + (yfi − yfj )e2 + (zfi − zfj )e3 (8)

where P f
i is the ith skeleton joint in the fth frame and e1, e2, e3

are orthonormal vectors. Bf
ij is the bone between two adjacent

joints P f
i and P f

j . Moreover, magnitude and direction of two
bones a and b are represented by geometric product where this
product is the sum of internal (a.b) and external (a ∧ b) product.
where the inner product is used to compute the length and angle
between two bones a and b. The outer product of two bones
can be regarded as an oriented plane containing a and b. The
orientation and angles between bones features are obtained in
the process described as follows.

1) The rotation matrix is a transformation matrix that de-
scribes the rotation from a bone to another. Three angles
are required to define the rotation matrix between two
bones. The rotation angles are considered as orientation
features. The elements of these features are the rotation of
bones relative to the x, y, and z axes [see Fig. 3(a)].

2) The angle features consist of the angles between the bones
of elbow-wrist and shoulder-elbow at both sides and the
angles between the bones of hip-knee and knee-ankle at
both sides. These angles are highlighted in Fig. 3(b) and
calculated below as follows:

θ = 180×
arctan2(

‖bonei∧bonej‖
‖bonei.bonej‖ )

π
+ 180 (9)

where bonei and bonej are determined by (8).

C. Feature Selection and Sampling

For fast clustering and complexity reduction, key features
are extracted by PCA. Then, sliding windows are used to
segment frames into time windows. Each window comprises
of 15 frames. The overlap of sliding windows increases per-
formance, because it increases the number of samples and
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Fig. 4. Illustration of sampling based on overlapping sliding windows. Each
sample (S1, S2, . . ., Sn), except the first sample, starts with the last frame of
the previous sample.

avoid pruning important events like transition between activ-
ities [49]. The first 15 frames do not overlap while in other
samples, their first frame starts from the last frame of the
previous sample (see Fig. 4).

D. Proposed Clustering

PSO is a population-based optimization algorithm [50]. A
population is made up of a number of particles and each particle
represents a solution and moves according to its speed. The
changes in velocity and position of the particles are calculated
based on the following formula (the illustration of how to decode
the PSO particles to obtain a set of clusters and evolving particles
is shown in Fig. 3 of supplementary material):

vi(t+ 1) = w × vi(t) + c1 × rand1 × (pbesti(t)− xi(t))

+ c2 × rand2 × (gbest(t)− xi(t)) (10)

xi(t+ 1) = xi(t) + vi(t+ 1) (11)

w = wmax − t

tmax
× (wmax − wmin) (12)

c1(t+ 1) = c1max
− (c1max

− c1min
)× t

tmax
(13)

c2(t+ 1) = c2min
+ (c2max

− c2min
)× t

tmax
(14)

In (11) and (10) xi(t) and vi(t) are the position and velocity of
the particle i at time t, respectively. pbesti is the best position
found by the particle i. gbest is the best position found in the
population. w is the inertial weight defined by (12) and starts
to decrease from wmax. c1 and c2 are acceleration coefficients
expressed by (13) and (14). The c1max

, c2max
and c1min

, c2min
are

initial and final values, respectively, t is the number of iterations,
and tmax is the maximum number of iterations [26]. rand1 and
rand2 are random variables between 0 and 1. Each solution is
evaluated by (15) which should be minimized to achieve proper
clustering.

SSE =

K∑
k=1

∑
∀x∈ck

‖xi − μk‖2 (15)

Fig. 5. Visualization of the Gaussian mutation operator. In each iteration of
hybrid PSO, one centroid (Cq) is chosen fromxgbest randomly. Then, Gaussian
distribution is applied on position and velocity of the selected centroid based on
(16) and (17) to create a new offspring C ′

q . The new global best (x′
gbest) is then

compared to xgbest. If x′
gbest has better fitness value than xgbest, x′

gbest is
replaced with new global best.

xi is a data point belonging to the cluster Ck and μk is the mean
of the cluster Ck. k is the number of clusters specified. To avoid
in local optimum, a Gaussian mutation operator based on [9]
and [10] is applied to the global particle as follows:

v′gbest(d) = vgbest(d)×G(0, h)

× (xmax(d)− xmin(d)) (16)

x′
gbest(d) = xgbest(d) +G(0, h)× v′gbest(d) (17)

where xgbest and vgbest represent the position and velocity
of global best particle. xmax and xmin are the maximum and
minimum value in dth dimension. Gaussian (0,h) is Gaussian
distribution with the mean 0 and the variance h. The value of h
starts with a high value (h(0) = 1) to increase the exploration
ability of the algorithm to find an interesting region at the
beginning of the search. Then, h decreases linearly during each
iteration according to (18), to increase the power of exploitation
at the end of the search to reach the optimum solution.

h(t+ 1) = h(t)− (1/tmax) (18)

where tmax is the maximum number of iterations. Fig. 5 is an
illustration of the Gaussian mutation.

In general, the core of HPGMK is based on PSO which is a
population-based algorithm. The position of each particle in the
population represents a solution. In other words, each particle
contains the position of the cluster centers. Each particle updates
its position using its velocity to reach the optimum solution [51].
Furthermore, we have one objective function which is SSE (sum
square error). We evaluate each individual based on SSE (15).
In this process, an individual is chosen as the global best in
each iteration with the lowest SSE value among the rest of the
individuals. To increase the diversity of solutions, a Gaussian
mutation is applied to the position and velocity of the global
best particle. The velocity of the particles reduces quickly as
PSO approaches the global optimum, and in most circumstances,
the ideal solution is not achieved. For this reason, K-means is
applied to the obtained centroids from PSO to refine them. After
the completion of the PSO process, the global best solution is
selected based on the SSE value. Then, the selected solution is
modified by averaging the position of data points in each cluster
to select the best position for the cluster centers. This continues
until the position of the clusters does not change. The routine of
the proposed clustering algorithm is given in supplementary.
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IV. EXPERIMENTS

A. Datasets

Five datasets were used to evaluate the effectiveness of
proposed method: Cornell Activity Dataset (CAD-60) [15],
UTKinect-Action3D (UTK) [12], Florence3D (F3D) [52],
Kinect Activity Recognition Dataset (KARD) [37], and MSR
DailyActivity3D (MSR) [53]. These datasets have different
dimensions, features, and activities. More details about the
datasets are given in the supplementary.

B. Method

The performance of our proposed method (HPGMK) was
with three SOTA methods for HAD incuding ENSC, SSC, and
SC [4] and three recent deep clustering methods deep clustering
network (DCN) [54], structural deep clustering network (SDCN)
[55], and incomplete multiview clustering via contrastive pre-
diction (Completer) [56]. In addition, we compared our method
with conventional and well-known clustering methods including
K-means clustering (KM) and PSO. All parameters of each
compared method, such as dimensions and numbers of layers,
have been adjusted as described in their papers. KM and PSO
have been chosen for comparison as our proposed HPGMK is
based on them. ENSC was found to be most similar to our
work as an unsupervised algorithm requiring known cluster
number while SSC and SC were the original algorithms that
ENSC was based on. The three deep clustering methods were
chosen to compare our method with the latest methods that
use deep learning tools for clustering. To compare the perfor-
mance of the methods, the accuracy metric (calculated based
on [57]) was used. Moreover, F-score was used to show the
performance of each method in categorizing each activity and
the confusion between them was shown in the confusion matrix.
The convergence test and clustering time of HPGMK were
measured to evaluate the benefits of each component used in
the HPGMK on its performance. Information about parameters
setting and the computation complexity of HPGMK are given
in the supplementary.

C. Results and Discussion

Fig. 6 shows the accuracy of HPGMK with the SOTA tech-
niques for all subjects of each dataset based on the maximum,
minimum and average accuracies. The average overall accuracy
of the HPGMK was 77.53% for CAD-60, 56.54% for UTK,
66.84% for F3D 46.02% for KARD, and 40.12% for MSR.
As seen in Fig. 6, HPGMK has the best performance in terms
of maximum and average accuracy in all datasets. This shows
the effectiveness of the HPGMK for human activity discovery.
By utilizing the Gaussian mutation and KM along with PSO,
our approach brings performance improvement compared to the
other methods. ENSC and SSC, which are subspace clustering
algorithms, do not use an efficient search strategy [58]. In
these methods, there is no strategy for maintaining the balance
between exploitation and exploration in their search. Moreover,
parameters are required to be set and finding the right values
for them is tricky and complex such as size of subspace [59].

Fig. 6. Average accuracy for all subjects in (a) CAD-60, (b) UTK, (c) F3D,
(d) KARD, and (e) MSR.

Fig. 7. Effect of each component of each type of feature approach including
(a) displacement (D), (b) statistical (S), (c) orientation (O) features, and (d) their
various combinations together. Capital letters stand for different methods and
putting these letters together means combining relevant methods.

In contrast, HPGMK are not dependent to parameters like SSC
and ENSC and has several strategies for searching. First, it used
the PSO to search in large space area by using several particles
as potential solutions. To promote diversity, Gaussian mutation
is used. KM is also used to search in a small area of the global
best solution to refine the obtained centroids from PSO. These
search strategies enable HPGMK to have a relatively good per-
formance compared to the SSC and ENSC. Moreover, HPGMK
has performed better than the methods that use deep learning.
In HPGMK, both spatial features from each 3-D skeleton frame
and temporal features from sequences along with Orientation
and statistical information are extracted. However, in the deep
clustering this information is ignored. On the other hand, unlike
deep clustering methods that have used shallow clustering,
HPGMK has different search strategies for exploration and
exploitation to determine better clusters. Fig. 7(a)–(c) show the
effect of each component of each type of the proposed hybrid
feature extraction method based on the discovery accuracy of
the activities performed by subject one in the CAD-60 dataset.
Percentages represent the discovery accuracy using the different
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Fig. 8. Illustration of the effect of selecting the keyframe based on kinetic
on “walking” in MSR where distinct frames compared to adjacent frames are
selected from similar frames. A window of frames is shown with a few selected
frames based on the local maximum (blue) and local minimum (red) energy.

combination of features and each piece of graphs shows the ratio
of the impact of one component in discovery improvement to the
rest of the other components in each type of feature. This ratio
is obtained based on dividing discovery accuracy obtained by
one of the components from a feature type by summation of
discovery accuracy obtained by all components of that feature
type. Overall, in three feature extraction methods comprising
displacement, statistical, and orientation features, when all their
components are combined, the discovery accuracy significantly
increased and obtained 65.45%, 62.54%, and 57.09%, respec-
tively. By contrast, if each component of the feature extraction
methods is used alone without considering other components
in the feature extraction, the accuracy of discovery decreases.
Fig. 7(d) shows the effect of different combinations of each of the
feature extraction methods. The size of each circle indicates the
effectiveness of the features. Based on the obtained results, it is
shown that the highest detection accuracy of 85.45% is obtained
by combining all the three methods. It indicates that in order to
better differentiate between activities, it is necessary to extract
features from different aspects of activities. Fig. 8 shows the
selected keyframes from walking activity in MSR. As is shown,
there are a lot of frames with high similarity that by extracting
their features not only do not help to improve discovery, but also
increase the computational complexity and increase the overlap
between other activities because these gestures occur in other
activities. However, using local maximum and minimum kinetic
energy can find representative frames and reduce complexity.
Looking at a window of frames, we can see the selected frames
based on the maximum and minimum local energy value. The
selected frames show the most differentiation to display the ac-
tivity sequence. It is worth mentioning that selecting keyframes
maintains the order of the activity.

It is worth to mention that the results related to confusion
matrix, clustering time of different components of HPGMK,
average F-score, and the Kruskal-Wallis test (p-value) between
HPGMK and KM, HPGMK and PSO, HPGMK and SSC,
HPGMK and ENSC, and HPGMK and SDCN are reported in
the supplementary.

V. CONCLUSION

Most of the proposed HAR frameworks are supervised or
semisupervised, making them unusable in real-world situations
due to a lack of access to the ground truth. In this article,
a HPGMK approach was proposed to solve human activity
discovery on skeleton-based data with no prior knowledge of
the label of the activities in the data. Five different datasets
were used to assess the performance of the method. The results
obtained have shown that HPGMK achieved an average overall
accuracy of 77.53%, 56.54%, 66.84%, 46.02%, and 40.12% in
datasets CAD-60, UTK, F3D, KARD, and MSR, respectively,
and validate the superiority of HPGMK over other methods
compared. In activities with high intraclass variation, corrupted
data and the same activity performed in sitting and standing
positions, HPGMK has performed better in activity discovery
than other SOTA methods.

We have examined the impact of each feature used. It was
found that the simultaneous combination of features together
further improves the results. The impact of the different com-
ponents in the proposed algorithm has shown that Gaussian
mutation has evolved particles to improve search algorithm and
K-means has increased discovery efficiency and improved the
convergence rate.

This work paves the way toward implementing fully unsuper-
vised human activity discovery in practical applications using
skeleton-based data. There are various factors in HPGMK that
need to be addressed to develop an effective HAD algorithm.
One factor is the number of clusters that were pre-configured
in the proposed algorithm. The HPGMK needs to be further
extended to automatically address human activity discovery by
estimating the number of activities by itself. Another factor
is detecting outliers. Outliers shift the cluster centers towards
themselves, thus affecting optimal cluster formation. Using
outlier detection methods in HPGMK to reject outliers will be
beneficial. The manual procedure used to build the PSO structure
in the suggested technique was based on the information and ex-
pertise that was gained. It takes a long time to manually introduce
changes because of trial and error, which makes it challenging to
thoroughly explore all potential algorithm setups. A potential fu-
ture study to address these concerns is automating the suggested
method’s setup to make it more effective in handling various
circumstances and datasets. Moreover, HPGMK’s potential for
wider application and improvement through PSO variants like
learning-aided [60], region-encoding [61], and triple archive
PSO [62] can be investigated.
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