
owh@ieee.org SS-3406 1

Programming BASIC Stamp I

SS-3406 Introduction to Robotics

Programming?!

owh@ieee.org SS-3406 2

MCU: BASIC STAMP 2

owh@ieee.org SS-3406 3

Robot Brain: Microcontroller

• Microcontroller or Microcontroller Unit (MCU) is the
electronic device that act as the brain of a robot.

• MCU is a computer on a single integrated circuit (IC)
chip.

• It reads sensors as its inputs and controls its
actuators as its outputs.

owh@ieee.org SS-3406 4

MCU

I
N
P
U
T

O
U
T
P
U
T

Inputs: sensors’ data,
e.g. switches, are fed
in through the input
ports/pins.

Outputs: signals to
activate the
actuators, e.g. turn on
a light, are sent out
through the output
ports/pins.

Robot Program

• Remember MCUs are
computer?
– So, a robot program is a

computer program

• Computer program is a
sequence of instructions for a
computer (MCU) to follow.
– Note instructions lead to

events.

– E.g.
Read the bumper sensors,
if they indicate contact,
stop the wheels.

owh@ieee.org SS-3406 5

owh@ieee.org SS-3406 6

Programming a robot is about reading the input
ports (sensors), understand the inputs (perception),
and deciding (control) what actions to be taken at
the output ports (actuators).

Programming in Five Steps

1. What? What exactly do you want to program?
– E.g. Robot to follow a white line.

2. How? Design the program.
– Determine program logic (flow).

– Design details using flowchart and/or pseudocode.

3. Write it. Code the program.
– Know the language, know the IDE.

4. Test the program. Debugging.

5. Document and maintain.

owh@ieee.org SS-3406 7

Pseudocode

• Normal language
(our language)
statements to
describe the program
logic, i.e. the flow of
the sequence of
events or
instructions.

• Translates our
thinking to program.

owh@ieee.org SS-3406 8

owh@ieee.org SS-3406 9

When you write a program, think of it as you are
teaching a kid to perform a task – giving them every
steps.

That’s the pseudocode to your program.

Programming Concepts

• Sequence of instructions
– Get the order correct.

• Program flow control
– Conditional structure: do certain things based on a true or false, yes

or no decision.

– Looping structure: a list of instructions to do more than once.

• Program structure – language specific
– The template: different sections of the source code. Block of codes.

• Program syntax – language specific
– Instructions, symbols and statements in the source code.

• How to deal with the data: variables, constant, data
structures.(e.g. array).

owh@ieee.org SS-3406 10

Programming a Microcontroller

• Three things required:
– Microcontroller (MCU)

– Programmer (Hardware)

– Programming Environment (Software)

owh@ieee.org SS-3406 11

MCU: BASIC Stamp 2

• There are many version of BASIC Stamp MCU.

owh@ieee.org SS-3406 12

Programmer: Education Board

owh@ieee.org SS-3406 13

Software: BASIC Stamp Editor

owh@ieee.org SS-3406 14

Preparation

• Download BASIC Stamp Editor from Parallax website
(or from Moodle):
– https://www.parallax.com/sites/default/files/downloads/

BS-Setup-Stamp-Editor-v2.5.3-%28r2%29.exe

• Install the BASIC Stamp Editor.

owh@ieee.org SS-3406 15

https://www.parallax.com/sites/default/files/downloads/BS-Setup-Stamp-Editor-v2.5.3-(r2).exe
https://www.parallax.com/sites/default/files/downloads/BS-Setup-Stamp-Editor-v2.5.3-(r2).exe

PROGRAMMING: ACTUATORS

owh@ieee.org SS-3406 16

BS2 Program Structure

• Always start with

• Add from toolbar

• Run from toolbar

owh@ieee.org SS-3406 17

' {$STAMP BS2}
' {$PBASIC 2.5}

(Switch to 1)

0 – OFF
1 – ON (no power to motors)
2 – ON (power to motors)

Messages from the Robot (MCU)

• Use of DEBUG command (instruction) for the MCU
to communicate with PC (programmer).

• Exercise: Try other messages.

owh@ieee.org SS-3406 18
(Programmer)

(Robot)

DEBUG "Hello, this is a message from your Boe-Bot."

Breadboard: Prototyping

owh@ieee.org SS-3406 19

Resistors

owh@ieee.org SS-3406 20

Light Emitting Diode (LED)

owh@ieee.org SS-3406 21

Turn ON LED

owh@ieee.org SS-3406 22

Turn ON LED by MCU

• Output PIN commands: HIGH and LOW.

• Exercise: Try to turn ON/OFF LED connected to PIN
14.

• Comments: start with single quote (‘)
– They are not commands, and will be ignored by MCU.

owh@ieee.org SS-3406 23

HIGH 14 ‘Send HIGH to PIN 14

LOW 14 ‘Send LOW to PIN 14

(Switch to 1)

Time Delay

• PAUSE

• Exercise: Try

owh@ieee.org SS-3406 24

PAUSE 1000 ‘Wait for 1000ms (1s)

HIGH 13 ‘Send HIGH to PIN 13
LOW 13 ‘Send LOW to PIN 13

HIGH 13 ‘Send HIGH to PIN 13
PAUSE 1000 ‘Wait for 1000ms (1s)
LOW 13 ‘Send LOW to PIN 13
PAUSE 1000 ‘Wait for 1000ms (1s)

Keep Going: LOOP

• DO … LOOP

• Exercise: Try

owh@ieee.org SS-3406 25

HIGH 13 ‘Send HIGH to PIN 13
PAUSE 500 ‘Wait for 500ms (0.5s)
LOW 13 ‘Send LOW to PIN 13
PAUSE 500 ‘Wait for 500ms (0.5s)

DO
 HIGH 13 ‘Send HIGH to PIN 13
 PAUSE 500 ‘Wait for 500ms (0.5s)
 LOW 13 ‘Send LOW to PIN 13
 PAUSE 500 ‘Wait for 500ms (0.5s)
LOOP

ON OFF

Exercise

• DEBUG “Hello!” once every second

owh@ieee.org SS-3406 26

DEBUG "Hello!“, CR

Store Numbers: CON

• Convenient and flexible way of storing numbers: use
constant.

• Exercise: Try

owh@ieee.org SS-3406 27

redLED CON 13 ‘the variable redLED store a constant number 13

DO
 HIGH redLED
 PAUSE 1000
 LOW redLED
 PAUSE 1000
LOOP

Exercise

• Try flash two LEDs at:
– 1s ON, 1s OFF

– 0.5s ON, 1s OFF

• You can play with different ON/OFF time.

owh@ieee.org SS-3406 28

Variables and Maths

• Similar to constant (CON), variables (VAR) are
container for numbers (data).

• In contrast to constant (CON), content of variables
(VAR) can be altered when program is running.

• Variables make dealing with numbers convenient.

owh@ieee.org SS-3406 29

13 + 3 = 16
x = 13
y = 3
z = x + y

vs

z = ?

owh@ieee.org SS-3406 30

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

value VAR Word ' Declare variables
anotherValue VAR Word

value = 500 ' Initialise variables
anotherValue = 2000

DEBUG ? value ' Display variables
DEBUG ? anotherValue

value = 10 * anotherValue

DEBUG ? value
DEBUG ? anotherValue

END

Note: Variable name usually starts with lower case.

Exercise: Try

Counting

• FOR … NEXT
– Keep going for a fixed number of times.

• Exercise: Try

owh@ieee.org SS-3406 31

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

myCounter VAR Word

FOR myCounter = 1 TO 10
 DEBUG ? myCounter
 PAUSE 500
NEXT

DEBUG CR, "All done!"

END

Send Pulses

• Looping ON/OFF is equivalent to sending pulses.

• Exercise: Determine the duration value for PULSOUT
for a 1.5ms pulse. Can you do a 1.5ms pulse using
HIGH and LOW?

owh@ieee.org SS-3406 32

PULSOUT Pin, Duration ‘e.g. PULSOUT 13, ?

The Duration is in units of 2us. And it is limited to
16-bit, i.e. 65,535. Therefore, the longest duration
is 131,070us = 131 ms.

PULSOUT Pin, Duration
HIGH Pin
PAUSE Duration*
LOW Pin

≡

The Duration is in units of 2us.
The Duration is in units of 1ms.

Servo Motor

• PULSOUT will be useful to move a servo motor.
– Servo motors are moved (controlled) by pulse width.

• Two types of servo motor:
– Standard: pulse width control rotation angle.

– Continuous rotation: pulse width control rotation speed.

owh@ieee.org SS-3406 33

Pulse Width Modulation (PWM)

owh@ieee.org SS-3406 34

Continuous Rotation Servo

• When first use, send a “neutral” or “stop” pulse
width and tune motor to stop.
– 1.5ms = 750 stop (each 1 is 2us)

– 1.3ms = 650 full clockwise speed

– 1.7ms = 850 full anticlockwise speed

owh@ieee.org SS-3406 35

(Switch to 2)

PULSOUT to Control Servo

• Connect two Continuous Rotation servos as below:

• Note the motors are now connected to P12 and P13.

• Exercise: Send a “stop (750)” signal to each motor. If
the motor(s) is turning, “tune” it to stop (see next
slide).

owh@ieee.org SS-3406 36

DO
 PULSOUT 12, 750
 PAUSE 20
LOOP

Tune (Center) a Servo

• Do this very slowly to get the servo stop, when
sending a “stop” signal.

owh@ieee.org SS-3406 37

Exercises

• Center servo

• Rotate servo clockwise, anticlockwise, change speed

• Rotate two servos, in opposite directions, in same
directions.

owh@ieee.org SS-3406 38

Standard Servo

• They are controlled in exact same way as the
continuous rotation servo.
– 1.5ms = 750 neutral position

– 0.4ms = 200 full clockwise (check the angle)

– 2.4ms = 1200 full anticlockwise (check the angle)

– The above values are dependent on individual servo. If
the servo is vibrating, then you have exceeded its limit.

owh@ieee.org SS-3406 39

counter VAR Word

FOR counter = 1 TO 220
 PULSOUT 12, 750
 PAUSE 20
NEXT

Note: without the pulse, the servo
is “free”. Depending on
application, to “hold” the servo in a
position, we need to loop (FOR …
NEXT or DO … LOOP).

Another actuator: Buzzer

• The buzzer will buzz when we send a continuous
pulse (with same ON/OFF duration) at audible
frequency.

• Exercise: Try different frequency.
– Audible frequency: 20Hz to 20 kHz (for perfect ears)

owh@ieee.org SS-3406 40

FREQOUT 4, 2000, 3000 'send frequency 3000 Hz for 2000 ms to PIN 4

FREQOUT Pin, Duration, Frequency

Quick Sum Up

• By now you know how to program three types of
actuators (outputs):
– LEDs, Servo motors, Buzzers.

– DEBUG from MCU to PC (programmer, human).

• In addition to a few programming concepts:
– Arranging sequence of instructions.

– Program flow control: infinite loop, for loop.

– Program structure: start of the program.

– Program syntax: the commands, the comments.

– How to deal with the data: variables, constant.

owh@ieee.org SS-3406 41

	Slide 1: Programming BASIC Stamp I
	Slide 2: Programming?!
	Slide 3: MCU: BASIC Stamp 2
	Slide 4: Robot Brain: Microcontroller
	Slide 5: Robot Program
	Slide 6
	Slide 7: Programming in Five Steps
	Slide 8: Pseudocode
	Slide 9
	Slide 10: Programming Concepts
	Slide 11: Programming a Microcontroller
	Slide 12: MCU: BASIC Stamp 2
	Slide 13: Programmer: Education Board
	Slide 14: Software: BASIC Stamp Editor
	Slide 15: Preparation
	Slide 16: Programming: Actuators
	Slide 17: BS2 Program Structure
	Slide 18: Messages from the Robot (MCU)
	Slide 19: Breadboard: Prototyping
	Slide 20: Resistors
	Slide 21: Light Emitting Diode (LED)
	Slide 22: Turn ON LED
	Slide 23: Turn ON LED by MCU
	Slide 24: Time Delay
	Slide 25: Keep Going: LOOP
	Slide 26: Exercise
	Slide 27: Store Numbers: CON
	Slide 28: Exercise
	Slide 29: Variables and Maths
	Slide 30
	Slide 31: Counting
	Slide 32: Send Pulses
	Slide 33: Servo Motor
	Slide 34: Pulse Width Modulation (PWM)
	Slide 35: Continuous Rotation Servo
	Slide 36: PULSOUT to Control Servo
	Slide 37: Tune (Center) a Servo
	Slide 38: Exercises
	Slide 39: Standard Servo
	Slide 40: Another actuator: Buzzer
	Slide 41: Quick Sum Up

