Robot Actions: Effectors & Actuators

SS-3406 Introduction to Robotics

RECAP

Summary of Prev Lecture

- Met My KeepON and iRobot
- Robot States:
 - Observability:
 - State space, Sensor space
- Sensors
 - Types: Proprioceptive, Exteroceptive
 - Types:
 - Challenges: low-level to high-level, uncertainty
 - Looked at a few sensors:

Today's Menu

- Actions
- Effectors & Actuators
- Motors
 - DC Motor
 - Gearing
 - Servos
 - Stepper Motors

ACTIONS

Properties of a Robot

Types of Actions in Robots

- Locomotion (interact with own body)
 - Going from one place to another, e.g. ground, sea, air.
- Manipulation (interact with environment)
 - Changing the environment, e.g. handling objects.
- Information Presentation (perception, communication)
 - Non-physical changes to the environment, e.g. sound, display.

A A

EFFECTORS & ACTUATORS

owh@ieee.org

Effectors

- Effectors
 - The parts of a robot that interact with the environment and have an **effect** on the environment.
 - Three types:
 - Physical effects (main focus in robotics):
 - Manipulators, e.g. arms.
 - Mobile, e.g. wheels, legs.
 - Perceptual, e.g. speaker, light bulb.
- End-effectors
 - The tool, gripper or other device mounted at the end of a manipulator or mobile effector.

manipulațor

end effector

Wheels

• Standard wheels

- 2-DOF, forward & reverse.
- Usually driven (actuated).
- Orientable wheels: forces the direction.
 - Centered: non swivel.
 - Off-centered (castor): swivel.
- **Ball** wheel: all direction.
 - More friction than orientable.
- Omni wheels: multi direction.
 - Usually driven (actuated).

Actuators

- Actuators
 - Mechanisms or devices that drives the effectors to produce their effect in the environment, e.g. motors, spring, artificial muscle.
- Two types
 - Passive: uses potential energy in the effectors, and its interaction with the environment without active power consumption.
 - Active: consumes energy from power source. Most commonly used.
 - E.g. gliding (passive) vs jet engine (activte).

Passive Actuators

• Not easy. Not common.

Active Actuators

- Electric motors use electricity.
 - Cheap, simple to use.
- Hydraulics use fluid pressure.
 - Powerful, fast, large, require much care to use.
- **Pneumatics** use air pressure.
 - Powerful, fast, large, require much care to use.
- Others: Photo-reactive materials, Chemically reactive materials, Thermally reactive materials, Piezoelectric materials.

Choosing Actuators

- Load (e.g. torque to overcome own inertia)
- **Speed** (fast enough but not too fast)
- Accuracy (will it move to where you want?)
- **Resolution** (can you specify exactly where?)
- **Repeatability** (will it do this every time?)
- **Reliability** (mean time between failures)
- **Power consumption** (how to feed it)
- Energy supply, weight, physical design, controllability

DC MOTOR

Electric Motors

- Two general categories:
 - **AC motor** runs on mains power supply.
 - DC motor runs on battery, or similar source.
- Power sources terminology:
 - AC: Alternating Current changing direction.
 - **DC**: Direct Current one direction.
- Mobile robots mostly use DC motors. Why?

Motor Characteristics

- (1) **Speed** (**Velocity**; we will be loose with the definition at this point)
 - How fast it can rotate, usually specified in revolutions per minute (rpm).
- (2) **Torque** (Max, Stall)
 - Also called **moment** or moment of force, or "turning force".
 - The measure of how much a force will rotate an object about an axis, fulcrum, or pivot.
 - Torque = Force × Radius

• (3) **Power**

- The amount of work that can be done in a certain amount of time.
- (3) Power = (2) Torque × (1) Rotational Speed
- Maximum power of a motor is fixed.
- Tradeoff between torque and speed.

Torque at Work

- **Torque** = Force × Radius (Distance)
- The nut requires a fixed amount of torque (to overcome the friction) to turn.
- However, we require different amount of force at different distances to turn the nut.

DC Motors

- Rotate when given **DC voltage**. Direction of rotation depends on direction of DC voltage.
- Generally used for locomotion.

Fast, continuous rotation.

Types of DC Motors

Brushed

- Uses brushes, usually carbon brush, to connect to external wiring such that it maintains its direction of rotation.
- Low cost, simple control, however short lifespan (brush maintenance).

Brushless

- Converts DC to AC, and moves motor coils to stator (body) to avoid using the brushes.
- Higher cost, not simple control, however long lifespan (no brush maintenance).

Motor Driver

- Motors require **higher current** than what the controller (control circuit) can supply.
- Motor driver circuit receives signal from the controller and switches the motor using its own power supply – in desired direction.

Motor Driver: H-Bridge

GEARING

Changing Speed of a Motor

SS-3406

- Use **gear**: change gear ratio.
 - To be discussed in next section.
- Change driving **power** to the motor.
 - The power through the H-Bridge

Gears

• A gear or cogwheel is a rotating machine part having cut teeth, or cogs, which mesh with another toothed part in order to transmit torque.

Types of Gears

Driver, Follower and Idler

- Driver (input) gear
 - The gear turned by an actuator (e.g., attached to the motor)
- Follower (driven, output) gear
 - The gear turned by the driver (e.g., attached to the wheel)
- Idler gear
 - Between driver and follower.
 - Does not effect the ratio.
 - Changes direction.

Functions of Gears

- Change planes of rotation
- Transfer motion
- Change speed of rotation
- Change torque
- Change direction

Gear Ratios

- **Gear ratio** = no. of follower teeth / no. of driver teeth.
 - E.g. 24/8 or 3:1 if driver has 8T and follower has 24T.
- Bigger gear => more teeth. Smaller gear => less teeth.
- Based on the torque equation: Torque = Force × Radius.

owh@ieee.org

Gear Ratios Exercise

- The **spec** of a DC brushed motor RS441-5361:
 - Supply Voltage: 12V
 - Max Output Torque: 5.4mNm
 - Output Speed: 8700rpm
 - Shaft Diameter: 1.5mm
- Calculate:
 - Power of the motor.
 - Output torque and speed if A is driver.
- Recall
 - Power (W) = Torque (Nm) × Rotational Speed (rad/s)
 - With units: $P(W) = \tau(Nm) \times \frac{2\pi \times \omega(rpm)}{60}$

Ganged Gears

- Gears in series.
- Gear ratios multiply.

Gears are Precisely Machined

- Backlash too loose.
- High resistance, or **jam** too tight.

Geared DC Motors

SERVOS

Servo Motor (Servo)

- **Servo** = DC Motor + Gear + Position Sensor + Position Control Circuit.
- Commonly used in robots.
 - Easy control of position.
- Two types:
 - Standard: position
 - Continuous: rotation rate
- Control of position (or speed) by
 - Pulse Width Modulation (PWM).
 - See next slide.

Potentiometer (Position Sensor)

Potentiometer (Variable Resistance)

Translates motor shaft movement (position of the end-effector, e.g. wheel) into resistance.

R2 > R1

Changing resistance changes voltage and current: can be measured.

Servo Parts

Pulse Width Modulation (PWM)

STEPPER MOTORS

owh@ieee.org

Stepper Motor

- Direct control of rotor position (no sensing needed).
- Low resolution. Slow, high precision.

Actions in My Keepon

Actions in iRobot Create

Reading List

 Then and Now Servos by Tom Carroll in Servo Magazine:

http://www.robotshop.com/media/files/PDF/servomagazine-then-now-0804.pdf

To Do List

- Give five examples, with diagrams or photos, of endeffectors.
- Make a comparison table between DC, servo and stepper motors. For each motor, state in what application one is chosen.

Summary

- Three **types of actions**: locomotion, manipulation and information presentation.
- Robots execute their actions through **effectors** and **actuators**.
- The actuators provide the moving energy to drive the effectors in order to interact with their environment.
- Example effector for mobile robot: **wheels**.
- Actuators can be **active** or **passive**.
- Example active actuators: **motors**.
- Motors: DC, Servos, Stepper.
- Motor speed control: gearing, driving power.

References

- The Robotic Primer by Maja J Mataric
- Introduction to Robotics and Intelligent Systems by Ioannis Rekleitis of University of South Carolina.