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Abstract— This paper presents a comparison of the effect
of change in ego-vehicle in two different pipelines of imitation
learning for autonomous driving (AD) between direct control-
based and waypoint-based pipelines. Control-based pipeline
involves predicting control signals directly to control the car,
whereas a waypoint-based pipeline predicts the future tra-
jectory of the car and uses a controller module to generate
the control signals from the predicted waypoints. In this
study, CIL++ was used for the control-based method whereas
TransFuser was used for the waypoint-based method. In our
experiments, we used CARLA simulator and deployed both
imitation learning models, without retraining or re-tuning
the controller parameters, on various cars different from the
car used during training. We used Town05 from CARLA’s
Leaderboard benchmark to evaluate the performance based
on driving score, the main metric used in the benchmark.
Based on the experiment results, TransFuser is more robust
in adapting to different ego-vehicles than CIL++. TransFuser
performed better when deployed to different vehicles. However,
the performance still suffered when there was a significant
change in the car classes. The source code of this work is made
publicly available at https://github.com/ailabspace/Comparison-
of-Autonomous-Driving-IL-Pipeline-for-Ego-Vehicle-Changes.

I. INTRODUCTION

Autonomous driving (AD) often refers to a system that

enables a vehicle to drive by itself and navigate without

human intervention. It holds the potential to transform the

future of the transportation industry by enhancing safety,

efficiency, and accessibility. Nowadays, there are various

solutions to achieve AD, among them are classical modu-

lar approach and modern end-to-end learning. End-to-end

learning or learning-based approach in which an ego-vehicle

utilizes deep learning algorithms to control the car is the

current trend for AD solution. Among different learning-

based approaches, imitation learning is the most widely

used. Imitation learning is when an agent tries to learn to

mimic an expert demonstrator to do a specific task or action.

For instance, an agent is learning to drive a car from the

observation data of an expert driver. For imitation learning,

there are several pipelines to achieve AD, each of them

having different input and output modalities and even, neural

network architecture. This paper will focus on comparing

two different pipelines of imitation learning: (1) Control-

based imitation learning model where the model learns to
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predict vehicle controls directly (2) Waypoint-based imita-

tion learning model where the model predicts a sequence

of waypoints or future trajectory of the ego-vehicle but to

control the ego-vehicle, a controller like PID (Proportional-

Integral-Derivative) controller, is used to generate the control

signals. In this study, we have chosen CIL++ [1] and Trans-

Fuser [2] as the representative work for control-based and

waypoint-based imitation learning approaches respectively.

In their original studies, both models were tested on the

default ego-vehicle (Lincoln MKZ 2017), the same car used

to record the training data. We wondered what would happen

if we changed the ego-vehicle to a different vehicle with

different dynamics, without retraining with new training data.

Which imitation learning pipeline is more robust to change

in the ego-vehicle? Thus, in this paper:

• We evaluated both imitation learning pipelines, by train-

ing and testing using the default ego-vehicle in the

same test conditions (same town, routes, scenario, and

weathers) in CARLA [3].

• We conducted an empirical evaluation of the models

obtained from the two imitation learning pipelines when

deployed on new vehicle models of different car classes,

which was not used for data collection and training.

II. LITERATURE REVIEW

End-to-end learning for autonomous driving (AD) has

become an active research topic over the years, especially

with the development of research tools and platforms like

CARLA [3], a simulator that is built for autonomous driving

research, which has allowed rapid growth in the field. Recent

works of learning-based approach fall into two paradigms:

(1) Reinforcement learning where this method lets the

ego-vehicle learn from trial and error, exploring different

actions and improving its driving policy. Significant works

that utilize reinforcement learning for autonomous driving

are ROACH [4], WOR [5], and Learning to Drive in a Day

[6]. (2) Imitation learning is a method where the ego-

vehicle learns from demonstrations of experts such as human

drivers or privileged agents. This is supervised learning,

where the model learns from the training data collected from

the demonstrations. This method is the dominant paradigm

in AD at the moment.

Existing imitation learning approaches are seen to be

taking one of the two distinct learning pipelines in terms

of output modality. One directly predicts control signals

like steering angle, throttle, and brake as shown in Fig. 1,

or another pipeline that predicts waypoints of the ego-

vehicle as shown in Fig. 2. Besides the difference in the



Fig. 1. Control-based imitation learning pipeline.

Fig. 2. Waypoint-based imitation learning pipeline.

output modalities of the imitation learning pipeline, there

are also different input modalities used in both pipelines.

Vision data is the most common input modality to train

autonomous driving models. For example, CIL++ [1] uses

multi-view cameras to perceive its surroundings, along with

other measurement and navigational data to generate the

control signals. Whereas, TransFuser [2] fuses both multi-

view cameras and LiDAR information as their input rep-

resentation for their transformer-based model. For direct

control-based imitation learning pipeline, among the first

to develop autonomous driving via end-to-end learning was

DAVE-2 by NVIDIA [7] where they trained a model using

convolutional neural network (CNN) to map image pixels to

vehicle steering angle. Conditional Imitation Learning (CIL)

[8] and its variants (CILRS [9], CIL++ [1]) learn to generate

vehicles’ control signals from the expert demonstrations

on how to control the ego-vehicle based on what it had

perceived. These variants use navigational commands like

”go straight”, ”turn left”, ”follow lane” and ”turn right”

to direct the ego-vehicle on where to go and deep neural

networks to generate the vehicle control signals to maneuver

the car. Another significant work that predicts vehicle control

signals based on the vehicle state is MILE [10] where their

model learned from driving videos of an expert demonstrator

to predict the vehicle actions. In all the works mentioned

above, their models were evaluated with the same ego-

vehicle used in the collection of the training data. Given that

the training data is dependent on the physics of the vehicle

used for data collection, we hypothesize the model will not

perform well when deployed to a vehicle different from the

vehicle used to collect the training data.

As for the waypoint-based imitation learning pipeline,

this approach focuses on learning to generate a sequence

of waypoints or future trajectories based on what it has

seen. Subsequently, a controller module like a PID controller

is used to generate the control signals from the predicted

waypoint sequence. TransFuser [2] and its variant (TF++

[11]), NEAT [12], LAV [13] are among some of the works

that predict waypoints to control the ego-vehicle. Compared

to the control signals, the waypoint sequence is less de-

pendent on the vehicle’s physics. In addition to this, TCP

[14] attempted to combine the two output modalities. It

predicts both control and waypoints together to use the future

trajectory as guidance to control the car.

For this study, we selected CIL++ [1] because the system

is a good representation of the control-based algorithm as it

is the current state-of-the-art for the control-based system.

CIL++ is the latest best-performing model at the time of

our work. As for waypoint-based, we selected TransFuser

as an ideal representation of the waypoint-based system that

is currently performing best. Even though TransFuser’s suc-

cessors, InterFuser [15] and ReasonNet [16] performed better

than TransFuser in CARLA Online Leaderboard [17], they

had added extra modules on top of the waypoint prediction

which is not what we are interested to evaluate. TransFuser

has a simpler system than the two models. What we are

interested in evaluating is the impact on the performance

of the imitation learning models based on waypoint-based

against control-based pipelines when they are deployed on

different cars. TCP [14] which combined both waypoint and

control has not shown better performance than the waypoint-

based model. Furthermore, most of the recent submissions

on the CARLA Leaderboard are waypoint-based systems.

However, none of the waypoint-based algorithms on the

CARLA Leaderboard have been tested on a real car. On the

other hand, one of the control-based approaches, CIL [8] has

been deployed on a physical remote-controlled car. Thus, due

to these reasons, we decided to select TransFuser [2] for the

waypoint-based system and CIL++ [1] for the control-based

system.

All the works in the literature have in common that they

were tested on the same ego-vehicle that was used in training

demonstration. In this work, we evaluated the performance

of the two different imitation learning pipelines when the

trained model was deployed on different ego-vehicles. The

purpose is to see the impact on the performance when two

models were deployed in car models different from the ego-

vehicles used in collecting the training data.

III. LEARNING METHODS

In this section, we describe the two models evaluated in

this work. In this study, for the waypoint-based pipeline,

we have selected TransFuser [2] and for the control-based

pipeline, Conditional Imitation Learning (CIL++) [1] was

selected. Both models have distinct pipelines in terms of their

neural network architecture, and input and output modalities.

A. TransFuser

TransFuser [2] introduced a novel method to integrate

multiple sensor information from multi-view camera images

and LiDAR by using Transformer architecture [18]. The

model will then predict the sequence of waypoints or future



trajectories of the ego-vehicle to navigate safely around

other dynamic agents to the destination while adhering to

traffic rules. TransFuser addresses challenges in autonomous

driving tasks by utilizing transformer-based sensor fusion

techniques for improved performance and adaptability in

complex driving scenarios.

TransFuser designed a rule-based expert agent that has

access to privileged information from the simulator to control

the vehicle for its training data. It is similar to CARLA traffic

manager autopilot. The TransFuser system pipeline (Fig. 3)

and the details are as follows:

Input and output: TransFuser uses multiple sensors

which are RGB images of multi-view cameras and LiDAR

bird-eye-view images for its inputs to the neural network.

The image inputs are from three RGB cameras (left, front,

and right). The point cloud data of LiDAR is transformed

into a 2-bin histogram over a 2D bird-eye-view grid which

results in a 3-channel bird-eye-view image, where in this

image, the goal location information is included. As for the

output, TransFuser generates a sequence of 2D waypoints

(x,y) for four future timesteps.

Network architecture: ResNet [19] was used for fea-

ture extractions from the images from the RGB cameras

(Image Branch) and LiDAR (BEV Branch). Self-attention

structures of transformers are used to combine multi-modal

information to generate a global 3D scene information of the

environment. Next step, the information generated is used as

inputs to GRU-based neural networks to predict the waypoint

sequence of the ego-vehicle. Apart from learning to predict

waypoints, TransFuser also incorporates multi-task learning

to address the complex temporal and spatial scene config-

urations. The auxiliary tasks are depth prediction, HD map

prediction, semantic segmentation, and vehicle detection.

Fig. 3. The TransFuser system [2]

Controller: The predicted waypoint sequences are then

fed into a classical PID controller (not shown in the figure) to

generate control signals (steering angle, throttle and brake) to

drive the vehicle. TransFuser utilizes two PID controllers for

lateral and longitudinal controls. Apart from PID controllers,

TransFuser applies a couple of rule-based controls, creeping

and safety heuristics, to improve vehicle control.

Fig. 4. The neural network architecture of CIL++ [1]

B. CIL++

Conditional Imitation Learning (CIL++) [1] is an imita-

tion learning algorithm that directly predicts control signals

(steering angle, throttle, and brake) of the vehicle. Comparing

this model with TransFuser, this model pipeline does not

need a PID controller to obtain the control signal values. For

their training data, CIL++ uses ROACH [4], a reinforcement

learning trained expert agent. The overview of the CIL++

system (Fig. 4) is as follows:

Input and output: For its input to the neural network,

CIL++ uses multi-view RGB camera images (left, central

and right) only. The model does not use LiDAR. Instead,

it additionally uses measurement information like forward

speed and navigational commands like ”follow lane”, ”turn

right”, and ”change lane to left” as inputs. Navigational

command acts as ”conditions” to direct the car on what

to do in that instance. These commands are generated by

a rule-based navigation module. The role of CIL++ is to

generate control signals directly from the inputs with the

neural network. Thus, the outputs are steering angle and

acceleration. The acceleration value is used to derive the

throttle and brake values. These outputs are enough to control

the vehicle. Thus, it does not need a classical or rule-based

controller to obtain the control signal values.

Network architecture: CIL++ also uses ResNet to ex-

tract features from the multi-view RGB images. Extracted

features of the images are flattened and their feature maps

are concatenated. Positional embedding is applied to the

resulting feature maps of the images. As for the measurement

information inputs, the ego-vehicle’s forward speed and

navigational command were subjected to linear projection

using a fully connected layer respectively. The input rep-

resentation for the transformer-based neural network is the

state embedding which is comprised of the concatenation

of processed input information earlier which are forward

speed, navigational command, and the set of images from

the multi-view cameras. Like TransFuser, CIL++ also uses

the attention mechanism of transformers to combine multiple

information. The transformers’ output consequently led to

predictions of the actions, which are the control signals. This

imitation learning pipeline does not incorporate any auxiliary

tasks for its model to learn. Hence, it is more lightweight than

TransFuser.



IV. EXPERIMENTS

In this section, we describe the experiments conducted.

We used CARLA, an open-source simulation for autonomous

driving research that provides a platform for data collection,

testing, and evaluation.

Fig. 5. Car models used for the experiments [3]

A. Car Models

In this work, we selected five car models of different

types like sedan, compact, and SUV as shown in Fig. 5 to

compare the performance between TransFuser and CIL++

when deployed to cars different from the default ego-vehicle

used in the training demonstration. With respect to the car

types, the selected car models are as follows: (1) 4-door

Sedan: Lincoln MKZ (used in training) and Tesla Model

3. (2) 4-door Compact: Citroen C3 and Toyota Prius. (3)

Sport utility vehicle (SUV): Nissan Patrol. Each car has

different vehicle physics and dynamics. The details are given

in tables Table I and Table II. All information was obtained

from CARLA. For vehicle size, there is no exact information

available. For this, we have used the bounding box size of

each car model to report its size.

TABLE I

VEHICLE SIZE AND MASS

Car Model Bounding box size (m)
(X ×Y ×Z)

Mass (kg)

Lincoln MKZ 4.90×2.13×1.51 2404

Tesla Model3 4.79×2.16×1.49 1845

Citroen C3 3.99×1.85×1.62 1365

Toyota Prius 4.51×2.01×1.52 1775

Nissan Patrol 4.60×1.93×1.85 2355

B. Evaluation

We used the CARLA Offline Leaderboard as a benchmark

to evaluate the performance of TransFuser and CIL++ on

different car models in completing the tasks. CARLA Offline

Leaderboard comprises a list of routes and scenarios of

multiple towns for its training and testing set. From the

testing list, we have used 10 routes in Town05 in our

experiment. Town05 is an urban environment with many

wide multi-lane roads and intersections and it is linked to

TABLE II

VEHICLE PHYSICS AND DYNAMICS

Car Model Maximum
RPM

Forward gear
ratio

Wheel radius
(cm)

Lincoln MKZ 5800 3.59 35.5

Tesla Model3 15000 2.50 37.0

Citroen C3 3750 3.46 34.0

Toyota Prius 5200 2.60 37.0

Nissan Patrol 3600 4.56 39.0

the elevated highway network which also functions as a ring

road. This is a suitable test environment for both imitation

learning pipelines given the complexity of the environment.

Each run of each car was tested in the same test conditions

of the same set of routes and weather settings. Basically,

each run had one set of experiments comprised of five

selected cars, with all running the same route set and weather

conditions. Each test set was conducted on the two models.

We run the evaluation with three runs for each experiment

set and report the average in the results. Each model was

tested on multiple car models with no retraining of the

imitation learning models or re-tuning of the parameters for

the classical controller used.

We note that the comparison is not about the driving

performance of TransFuser versus CIL++. The comparison

is about the impact on the performance of each imitation

learning model when the ego-vehicle is different from that

used in collecting training data.

C. Metrics

To compare the two imitation learning pipelines across

different car models, we used the scoring metrics set utilized

by the CARLA Leaderboard for evaluation: route completion

(RC), infraction score (IS), and driving score (DS). Route

completion is the percentage of route distance covered by an

ego-vehicle. The infraction score compiles penalty scores for

different types of infractions caused by the ego-vehicle, each

infraction with its own specific penalty score, and aggregates

them using a geometric series. As for the driving score, it is

the product of route completion and infraction score and this

will be the main metric to evaluate the driving performance

of an ego-vehicle.

V. RESULTS & DISCUSSION

TABLE III

CIL++ RESULTS

Car model Driving score
(DS) ↑

Route comple-
tion (RC) ↑

Infraction
score (IS) ↑

Lincoln MKZ 60.73 ± 2.57 88.56 ± 1.70 0.67 ± 0.02

Tesla Model3 3.73 ± 0.79 18.43 ± 3.06 0.32 ± 0.07

Citroen C3 4.02 ± 0.65 10.80 ± 1.32 0.39 ± 0.01

Toyota Prius 4.12 ± 0.37 11.55 ± 0.27 0.40 ± 0.00

Nissan Patrol 2.53 ± 0.65 7.61 ± 1.64 0.39 ± 0.02

The results are presented in Fig. 6 to Fig. 8 and Table III

to Table V. For CIL++, as we can see from both Table III



Fig. 6. CIL++ results of different car models

and Fig. 6, the Lincoln MKZ, the default ego vehicle has

achieved the highest values in all the metrics; driving score,

route completion, and infraction score. This was expected

because the training data for the CIL++ model was acquired

using the Lincoln MKZ and the same car was used for

evaluation in the test conditions. Once we changed the

vehicle to a car different from Lincoln MKZ, the model failed

to control the car. This happened to all car models, including

cars of similar car type as Lincoln MKZ, which is a sedan.

This can be seen from Fig. 6, where the driving score for all

vehicles other than the ego-vehicle was consistently less than

5% (decreased by more than 50%) which was contributed by

the low values of route completion and infraction score.

Fig. 7. TransFuser results of different car models

As for TransFuser, similar to CIL++, the driving score of

the Lincoln MKZ was the highest compared to the rest of

the vehicles as shown in Fig. 7 and Table IV. However, the

driving score across different car models was more stable

than CIL++ with only 5%-25% lower than with the Lincoln

MKZ. Sedan cars like Lincoln MKZ and Tesla Model3, have

quite similar driving score with only 2% difference. When we

used the same TransFuser model on compact cars, Citroen

C3 and Toyota Prius, the driving score decreased but by only

less than 5% difference. However, if the car features are

TABLE IV

TRANSFUSER RESULTS

Car model Driving score
(DS) ↑

Route comple-
tion (RC) ↑

Infraction
score (IS) ↑

Lincoln MKZ 53.29 ± 3.78 79.72 ± 2.00 0.67 ± 0.00

Tesla Model3 51.77 ± 7.94 84.26 ± 5.41 0.63 ± 0.08

Citroen C3 48.68 ± 2.57 73.03 ± 5.09 0.73 ± 0.04

Toyota Prius 41.77 ± 7.58 77.33 ± 1.02 0.59 ± 0.10

Nissan Patrol 29.51 ± 3.60 87.64 ± 3.01 0.34 ± 0.04

significantly different as in the case of an SUV car, Nissan

Patrol, the driving score declined by 25% when compared to

the training ego-vehicle’s driving score.

Fig. 8. Driving score of two imitation learning models

TABLE V

DRIVING SCORE (DS) OF TRANSFUSER AND CIL++

Car model TransFuser CIL++

Lincoln MKZ 53.29 ± 3.78 60.73 ± 2.57

Tesla Model3 51.77 ± 7.94 3.73 ± 0.79

Citroen C3 48.68 ± 2.57 4.02 ± 0.65

Toyota Prius 41.77 ± 7.58 4.12 ± 0.37

Nissan Patrol 29.51 ± 3.60 2.53 ± 0.65

Fig. 8 and Table V compare the driving scores of the

two imitation learning models when deployed on each of

the cars. From Fig. 8, when deployed on the same ego-

vehicle as the trained model, CIL++ performed better than

TransFuser as seen by its higher driving score. However,

CIL++ failed to control the car when it was deployed on

a vehicle different from the ego vehicle it was trained on.

TransFuser was more robust to vehicle model change as

the waypoint prediction is less dependent on the vehicle’s

physics. Although it still suffered if there was a significant

difference between the characteristics of the vehicle used

in training the model and the vehicle where the model is

deployed, the waypoint-based model is superior since the

prediction provides an intermediate representation of the

driving task, and this is less dependent on the specific

dynamics of the training vehicle compared to the direct



prediction of control signals, as observed in the control-

based model. Essentially, this approach focuses on reaching

the destination rather than executing specific maneuvers. The

generation of control signals for maneuvering is left to the

classical PID controller not fitted to the ego-vehicle in the

training data. The PID controller can potentially be tuned to

the physical properties of a vehicle irrespective of traveling

routes.

VI. CONCLUSIONS

Waypoint-based imitation learning pipeline is more robust

than a control-based pipeline in learning an autonomous

driving agent for deployment to different car models. Nev-

ertheless, the performance of the waypoint-based model still

deteriorates when there is a significant difference in the

vehicle’s physical properties. The potential solution to this

problem could be tuning PID parameters for each vehicle

model while maintaining the rest of the imitation learning

pipeline components. Another solution could be replacing

classical PID controllers with another approach such as

learning-based controllers. The fine-tuning of PID controllers

should require significantly less data and computation than

re-training the whole pipeline in the case of a control-based

approach.
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