
Optimizing Odometry Accuracy through Temporal Information in
Self-Supervised Deep Networks

Nazrul Ismail
School of Digital Science

Universiti Brunei Darussalam
Brunei Darussalam

20m8540@ubd.edu.bn

Ong Wee Hong
School of Digital Science

Universiti Brunei Darussalam
Brunei Darussalam

weehong.ong@ubd.edu.bn

Owais Ahmed Malik
School of Digital Science

Universiti Brunei Darussalam
Brunei Darussalam

owais.malik@ubd.edu.bn

Abstract— In this paper, we propose a self-supervised deep re-
current convolutional network with a self-attention pipeline for
LiDAR-Inertial odometry estimation that leverages temporal
information. In contrast to existing learning-based approaches,
our network does not require expensive ground truth and it
utilizes sliding window optimization for self-supervisory signal
for training. The results indicate that the proposed network
is able to achieve accuracy levels comparable to conventional
model-based methods and outperform other learning-based
approaches that do not incorporate temporal information. Our
findings provide strong evidence for the potential of incorporat-
ing temporal information in deep networks for LiDAR-Inertial
odometry and highlight the effectiveness of our proposed self-
supervised approach.

I. INTRODUCTION

Ego-motion estimation is crucial for safe navigation in
robotics and autonomous driving. With the success of the
deep neural network, recent progress has attracted many
researchers in solving odometry estimation via learning from
data. However, scalability issues and ground truth require-
ments pose challenges for real-world applications. To address
this, we propose a self-supervised learning approach that
does not require ground truth labels. We use LiDAR and
IMU data to improve the accuracy and robustness of LiDAR
odometry (LO) systems. Our contributions in this paper are
highlighted as follows:

• We demonstrate that the use of temporal information in
deep networks improves odometry estimation accuracy.

• We present a self-supervised convolutional network
for odometry estimation with no ground truth poses
required which can help to reduce the reliance on
expensive ground truth data.

• Unlike previous learning-based approaches, our network
uses a scene agnostic sliding window optimization with
plane normal, 3D geometric and trajectory constraints
to refine poses, eliminating the need for loop closure.
This makes our approach more robust and adaptable to
different environments.

Traditional methods: Conventional LiDAR odometry
(LO) methods include Iterative Closest Point (ICP) [1]
followed by feature-based approaches which have been the
standard for real-time performance in the literature. Typi-
cally, these approaches iteratively find matching points via
the nearest-neighbor searching method and optimize its rigid

transformation i.e rotation and translation. However, due to
the sparsity and irregularity of LiDAR point cloud data,
establishing correspondences can be challenging. Over the
decade, the performance of model-based LiDAR Odometry
And Mapping (LOAM) [2] has dominated in several bench-
mark datasets and is the state-of-the-art in LiDAR odometry.
Although LOAM achieves state-of-the-art results, it does not
consider the dynamic objects present in the environment,
which may cause performance degradation [3]. In order
to increase the robustness and improve the performance,
researchers exploit IMU measurements as supplemental in-
formation, hence extending LOAM to LeGO-LOAM [4].

Deep Learning based methods: The use of learning
approaches can provide a robust estimation without dis-
carding any information from data, as sampling points and
tedious parameter tuning plagues the performance of the
traditional approaches. In the works of [5], [6], the authors
demonstrate the feasibility of using deep neural network
for LiDAR odometry in autonomous driving application.
However, these approaches are constrained to labeled data for
training, making them impractical as annotating LiDAR data
is time-consuming. As a result, [7] have incorporated self-
supervised learning strategy using geometric losses. How-
ever, it did not outperform the existing learning methods.
Recent approaches, such as Godard et al. [8], follow the
same principle using image warping as part of reconstruc-
tion loss to create a self-supervision signal similar to our
proposed network. With the existing approaches to learning-
based odometry only capturing just-in-moment information,
temporal information in the sequence of frames is, however
unused. Motivated by the issues mentioned above, to capture
spatio-temporal features, in this study we proposed a self-
supervised recurrent convolutional odometry network that
accepts LiDAR and IMU as input.

II. METHODOLOGY

The proposed approach learns a mapping function from
unlabeled LiDAR scan sequences and raw IMU measure-
ments to regress 6-DoF motion. This function predicts the
pose as the system moves through the environment. The slid-
ing window traverses to the next window when the number
of inferred poses satisfies the window size parameter w. To
ensure a fair comparison with mapping-based approaches,

our method incorporates a backend optimization adapted
from LOAM [2]. Fig. 1 provides an overview of our proposed
method.

Deep Odometry
Network

Input

LiDAR IMU

Sliding
Window

Optimization

Scan-to-Map
module

Front-end

Pose-graph Optimizer

Keyframe?

Back-end
Yes

No

K
ey

fr
am

e
D

at
ab

as
e

- Point clouds
- Poses

Feedback
loop

Retrieve
poses

Fig. 1. System overview of the proposed approach

It is important to note that the mapping modules are only
used in evaluating the system and were not included in the
training of the network.

A. Data preprocessing

a) LiDAR Scan: This work proposes a pose estimator
that infers 3D transformations without relying on ground
truth data. It uses LiDAR point cloud scans from three
time steps, St−1, St, St+1, for estimation. To reduce the
sparsity of the point cloud data, a projection step is applied,
projecting each point onto a cylindrical coordinate system
to obtain a 2D image representation. This projection allows
the utilization of Convolutional Neural Networks (CNNs)
for extracting spatial and geometric features. The projection
involves mapping from R3 to RH×W by discretizing azimuth
and polar angles in spherical coordinates and keeping only
the nearest points at each pixel’s location. The projection
function is defined using the equations:

α = arctan(y/x)/∆α

β = arcsin
(
z/

√
x2 + y2 + z2

)
/∆β

(1)

Here, α and β represent the indexes of the projected
matrix, and ∆α and ∆β denote the average angular reso-
lution between consecutive beam emitters in the horizontal
and vertical directions, respectively. The resulting matrix has
dimensions H × W × 4, where H represents the height
(number of vertical line scans) and W is the total number of
points. The matrix includes the (x, y, z) coordinates of the
points as well as their range r from the LiDAR sensor.

b) Inertial Measurement Unit: To process the IMU
data for our deep neural network, we concatenate the mea-
surement sequence into a single matrix. The raw IMU
measurements are sampled and arranged as shown in Eqn. 2.

Each row in the matrix represents the linear acceleration as a
and angular velocity as v of the IMU at a given time stamp,
and the number of samples is denoted by n. The resulting
matrix, denoted by M, has dimensions of n× 6.

M =


a00 a01 a02 v00 v01 v02
a10 a11 a12 v10 v11 v12
... · · ·

...
... · · ·

...
an0 · · · an2 vn0 · · · vn2

 ∈ Rn×6 (2)

where a and v are linear acceleration and angular velocity,
respectively. To further refine the preprocessing of the IMU
data, we apply a low pass filter to remove high frequency
noise and apply standardization to ensure that the data
is centered around zero mean and has unit variance. By
preprocessing the IMU data in this way, we can effectively
use the temporal information to improve the accuracy of
odometry estimation in our network.

B. Network architecture

We formulate our network as a sequential learning prob-
lem to leverage temporal dependencies, processing sequences
of LiDAR scans and IMU data to estimate the 6 Degrees of
Freedom (DoF) relative pose. The approach consists of three
deep networks: Odometry network, IMU processing network,
and Pose regression network. Importantly, our network op-
erates solely on raw sensor data, eliminating the need for
sensor calibration during inference.

a) Odometry network: Similar to other tasks involv-
ing deep network architecture designs, our architecture is
built upon an existing backbone network. We have adopted
ResNet32 [9] as the foundation for feature extraction, specif-
ically to extract geometric features from LiDAR scans. The
network generates a feature mapping of size (N, (512)∗t, H

2 ,
W
32), where t represents the consecutive scans between time
steps. To obtain a single value for each channel, adaptive
average pooling is applied along the height and width of the
feature map. The resulting feature map is then combined
with a feature map generated by the Inertial Measuring
Unit (IMU) processing network in a sensor fusion module.
Circular padding is applied throughout all convolutional
layers to emulate the behavior of a true (imaginary) 360◦

circular image.
b) Inertial Measuring Unit processing network:

Building on the success of using Convolutional Neural
Networks (CNNs) for extracting features from concatenated
IMU data, as demonstrated in [10], our IMU processing
network incorporates a module with 5 Convolutional blocks
and 2 skip connections inspired by the work of He et al. [9].
This module is applied to both the angular velocity and linear
acceleration measurements from the IMU to extract features
and model the data streams. Our implementation of the skip
connections are added every two blocks of CNN, effectively
merges low-level and high-level information, leading to
improved network robustness and accuracy. The network
parameters are summarized in Table I.

SENSOR FUSION
MODULE

IMU PROCESSING
NETWORK

ODOMETRY NETWORK
(ResNet32)

SLIDING WINDOW
OPTIMIZATION

Z

Y

X Z

Y

X
Z

Y

X

Raw LIDAR Scans

Text

 Training

Network flow

Self-supervisory
signal

Inferenced pose

Pose from Lidar
scans

IMU INPUT

Ti
m

e

KD-Tree

Text

LS
TM

LS
TM

LS
TM

KD-Tree

KD-Tree

Raw LIDAR Scans

Text

POSE REGRESSOR

Self-Attention
Mechanism

Self-Attention
Mechanism

Self-Attention
Mechanism

Fig. 2. Architecture overview: The proposed network pipeline takes 2D projected LiDAR scans and IMU measurements as inputs. There are two parallel
feature extractor networks; the odometry network (ResNet32) and the inertial processing network, a sensor fusion module for intermediate feature fusion.
Finally, feature outputs are propagated to a 2-layer LSTM for pose regression. A sliding window optimization step is applied during training for pose
refinements.

TABLE I
NETWORK PARAMETERS FOR IMU PROCESSING NETWORK

Layer Kernel size Stride Filter size Skip-connection

(Conv-1) x 2 3 x 5 3 64 Conv-2
Conv-2 3 x 5 3 128 Conv-3
Conv-3 3 x 5 3 256 Conv-4
Conv-4 3 x 5 3 256 -

c) Sensor Fusion module: The use of traditional tech-
niques like direct feature fusion, which combines interme-
diate features from multiple sensors, can be ineffective due
to the presence of non-discriminative or indistinct features,
resulting in diminishing returns [11]. This is particularly true
in real-world settings, where difficulties in synchronizing
and poor calibration between modalities are common. To
overcome these challenges, we have proposed a module
utilizing a self-attention mechanism [12] to selectively attend
to relevant features and learn the most pertinent ones for
feature mapping fusion. This approach allows the network to
be robust to the intrinsic white noise distribution and bias of
each sensor, and effectively deal with potential perturbations
in performing downstream tasks. This method of feature
mapping fusion is seen to yield better performance and
robustness in our network over direct feature fusion.

In our system, we have implemented a time step of 3,
i.e. (t − 1, t, t + 1), to capture temporal dependencies in
the feature matrices obtained from the Convolutional layers
of the odometry and Inertial Measurement Unit processing
network. These feature matrices are then passed through a
sensor fusion module, which combines the information from
multiple sensors and feeds it into a 2-layer Long Short Term
Memory (LSTM) network. The LSTM layer is specifically
designed to capture long-term dependencies and is used in

our system to perform regression on both the translation and
rotation estimates. By using the LSTM layer in this way, we
are able to significantly improve the accuracy of our pose
estimates and better handle the complex dynamic interactions
between different sensors.

C. Training

1) Hyperparameter: The training set had 24,801 point
cloud scans, with 2,791 scans reserved for testing. To
optimize our network, we used batch normalization, data
augmentation, and Stochastic Gradient Descent. We trained
the network with three consecutive 2D projected point cloud
scans and IMU matrix M , using a batch size of 32 for
90,000 iterations. The learning rate was set to 1e−3 with
a momentum of 0.9. Progress was monitored by evaluating
the validation error every 1,000 iterations.

To train the network, we follow a two-step process: pre-
training and full network training.

2) Pre-training: During the pre-training phase, we adopt
the training protocol outlined in [13] for the Odometry Net-
work branch. This involves utilizing fully connected layers,
with one dedicated to estimating rotation and another for
translation. For a comprehensive understanding of the pre-
training protocol, we refer readers to the original paper.

3) Full Network Training: After the pre-training of the
Odometry network branch, the entire network enters the
training phase. At this point, the Odometry network is frozen,
and only the IMU network, Sensor fusion module and Pose
regressor network continues to train. This approach ensures
that the learned features from the pre-training phase are ef-
fectively utilized during the subsequent training process. The
full network is trained using the sliding window optimization,
which will be explained in the following subsections.

4) Sliding window optimization: Our approach incorpo-
rates a sliding window optimization technique, which draws
inspiration from the cost functions employed in [10], [14].
For a detailed understanding of these techniques, we encour-
age readers to refer to the original papers. In the subsequent
section, we will specify the modifications we have made in
our work.

Intra-window optimization: The LiDAR-Inertial stream
⟨S0,M0⟩, . . . , ⟨Sn−1,Mn−1⟩ of each sliding window is uti-
lized for geometric inference generation and intra-window
optimization. The middle frame of the window is taken as the
target view, while others are source views. While the normals
n for each scan are precomputed offline, the Lnormals loss
includes two components, Lp2n and Ln2n.

a) Point-to-Plane Loss: For each point s in the trans-
formed source scan St, its distance to the corresponding point
ŝ in the target scan St+1 is computed and projected onto
the surface at that position. The point-to-plane loss function,
denoted as Lp2n, measures the accuracy of the transformation
between consecutive point cloud scans. It calculates the
difference between each point s in St and its corresponding
point ŝ in St+1 by projecting this distance onto the surface
at that position. The point-to-plane loss function is defined
as:

Lp2n =
1

N

N∑
i=1

|(ŝi − si) · n̂i| 22 (3)

Here, n̂i represents the target normal vector. If either the
source or target point la

b) Plane-to-Plane loss : The second loss compares
the surface orientation around two points by calculating the
difference between the normal vectors at the transformed
source location and the normal vectors at the target location.
The normal vector at the transformed source location is
represented by ni and the normal vector at the target location
is represented by n̂i.

Ln2n =
1

N

N∑
i=1

|n̂i − ni|22 (4)

The total plane normal loss is then calculated by adding the
point-to-plane loss, Lp2n, and the normal vector loss, Ln2n.
This total loss, represented by Lnormal, is used to optimize
the performance of the network.

Lnormal = Lp2n + Ln2n (5)

Inter window optimization: As it is prone to fall into a
local optimum by only relying on the optimization within
windowed frames, due to the lack of sequential constraint
that may cause the universal scale ambiguity and the accumu-
lated error problems in monocular odometry. We consider the
inter-window optimization, including trajectory consistency
check and 3D geometric consistency check. The point cloud
scan of the target view and estimated transformation matrix
⟨T i+1

i , . . . , T i+w−2
i+w−1 ⟩ between adjacent frames within the

window, are checked by following loss consistency:

c) 3D geometric consistency loss: To define the 3D
geometric consistency loss, L3D, we use a measure of
the accuracy of the transformation matrix, T t+1

t , between
consecutive scans. This loss is optimized during training
to improve the accuracy of the transformation matrix and
the overall performance of the network. The 3D geometric
consistency loss is expressed as:

L3D =

N∑
i=1

∣∣Si+1 − T i+1
i Si

∣∣
Si+1 + T i+1

i Si

(6)

where N is the number of samples found from the corre-
spondences search.

As relying on inter-window optimization are prone to local
minima [10], posses is exploited to estimate the prior trajec-
tory for the entire sequence. The estimated poses that aggre-
gated from the windowed estimation and the corresponding p
that estimated from the integrated sequential information are
checked for the trajectory consistency. The estimated poses
p that aggregated from the windowed estimation and the
corresponding p̃ that estimated from the integrated sequential
information are checked for the trajectory consistency by:

Ltraj =

N−1∑
i=1

∣∣p̂i+1
i − pi+1

i

∣∣ (7)

To summarize, the loss functions are computed as.

L = Lnormal + λL3D + Ltraj (8)

To balance the convergence of the point-to-plane loss,
Lp2n, and the normal vector loss, Ln2n, we use the hyper-
parameter λ to assign more weight to the 3D geometric con-
sistency loss, L3D, as it significantly affects the performance
[11] of the network. In our experiments, we set λ to 1.2.

III. EXPERIMENT RESULTS

A. KITTI odometry dataset

In order to evaluate the performance of our proposed
LiDAR-Inertial sensor configuration odometry network, we
conducted experiments on the widely-used KITTI odometry
dataset. The training set consisted of Sequences 00 − 08,
while Sequences 09 − 10 were used as the test set. This
split is consistent with previous works such as LOAM [2],
LeGO-LOAM [4], SUMA [15], DeLORA [5], LO-Net [14],
DeepLO [16], and UnDeepLIO [7].

a) Evaluation metrics: We evaluated our method using
the KITTI odometry benchmark [17], which measures the
accuracy of the estimated trajectory with respect to the
ground truth. The benchmark defines the relative translation
error (trel) and relative rotation error (rrel) as the root
mean square error (RMSE) of the differences between the
estimated and ground truth trajectories, normalized by the
length of the ground truth trajectory. We report the trel
and rrel errors for our method on the KITTI dataset, and
compare them with state-of-the-art methods in the literature.
We evaluated the benchmark methods with only LiDAR

TABLE II
PERFORMANCE COMPARISON WITH AND WITHOUT INERTIAL MEASUREMENT UNIT (IMU) ON KITTI BENCHMARK DATASET WITH NO MAPPING

00 01 02 03 04 05 06 07 08 09 10

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

LeGO-LOAM [4] 1.44 0.65 21.12 2.17 2.69 0.99 1.73 0.99 1.70 0.69 0.98 0.47 0.87 0.45 0.77 0.51 1.35 0.58 1.46 0.64 1.84 0.74

LeGO-LOAM + IMU 7.24 2.44 20.07 0.61 2.56 0.91 x x 1.68 0.59 0.82 0.38 0.86 0.43 0.67 0.38 1.29 0.53 1.49 0.58 1.75 0.63

UnDeepLIO [7] 1.33 0.91 3.40 1.09 1.53 1.19 1.43 1.42 1.26 0.61 1.22 0.78 1.19 0.64 0.97 4.56 1.92 2.86 3.87 2.34 2.69 2.89

UnDeepLIO + IMU 1.38 0.62 3.46 0.98 1.42 0.67 x x 0.98 0.67 1.26 0.64 0.94 0.56 3.45 2.17 4.05 1.63 2.77 1.25 2.16 1.11

Ours (LiDAR) 0.97 0.78 1.71 0.78 1.39 0.81 0.93 0.82 0.81 0.87 1.06 0.72 1.71 0.72 1.53 0.75 0.95 0.72 1.44 0.68 1.49 0.85

Ours (LiDAR+IMU) 0.81 0.69 1.33 0.81 1.02 0.62 0.45 0.77 0.76 0.82 0.93 0.59 0.95 0.70 1.23 0.62 0.72 0.55 1.20 0.50 1.24 0.80

Note: The table includes only published results, except for the entry marked as ’x’. It is worth noting that LeGO-LOAM is the only traditional approach
presented in the table, and UnDeepLIO does not incorporate temporal features. The best results are highlighted in bold.

Fig. 3. Sample trajectory results on KITTI dataset for the proposed network(bottom) on Seq. 08-10. Both has similar performances and achieves very
good precision and the differences from ground truth (red) are barely visible.

point cloud scans to show the impact when the inertial
measurement unit is disabled (see Table II).

Table II presents a comparison of our method’s perfor-
mance with other state-of-the-art approaches on the KITTI
benchmark dataset, in terms of translation (trel) and rotation
(rrel) errors. Our method outperforms LeGO-LOAM and Un-
DeepLIO in all tested sequences, particularly in Sequences
01, 02, and 04. When the IMU is included in LeGO-LOAM
and UnDeepLIO, a decrease in performance can be observed,
especially in Sequence 03, likely due to the noise and bias
present in the IMU data [17]. Our method, on the other
hand, effectively utilizes the IMU data to improve over-
all performance, resulting in lower translation and rotation
errors. These results demonstrate the effectiveness of our
proposed LiDAR-Inertial based odometry estimation system.
It is worth noting that our deep learning approach compares
favorably to the traditional method of LeGO-LOAM and the
learning-based method of UnDeepLIO. While LeGO-LOAM
relies on hand-crafted features and geometric constraints,
and UnDeepLIO utilizes a deep neural network for feature
extraction, our method directly learns the mapping between
the IMU and LiDAR data through end-to-end training, allow-
ing for more flexible and accurate modeling. This superior
performance of our deep learning approach highlights the
benefits of using this method for IMU-based odometry
estimation.

Table III provides a comprehensive assessment of LiDAR-

Inertial odometry systems, categorized by the presence or
absence of mapping functionalities. Among the learning-
based algorithms listed, all except ours do not utilize tem-
poral features, while LOAM stands as the only classical
method in the table. The approaches are evaluated on all
possible sequences of lengths ranging from 100 to 800
meters. The translational error was measured in percentage,
and the rotational error was measured in degrees per 100
meters. Among the approaches that do not employ mapping,
our approach performs relatively well, with a translational
error of 1.50% and a rotational error of 1.23 degrees per 100
meters on the training Sequences 00-08. On Sequence 09, our
approach performed even better, with a translational error of
0.80% and a rotational error of 0.58 degrees per 100 meters.
On Sequence 10, our approach achieved a translational error
of 1.20% and a rotational error of 0.93 degrees per 100
meters. The higher errors in Sequence 10 can be attributed
to the sharp motions present in the trajectory, as depicted in
the most right column of Fig. 3. These motions present a
challenge for neural network-based approaches in accurately
predicting the odometry.

Our approach demonstrates strong performance across
different scenarios, including those involving mapping. In
the training Sequences 00-08, we achieved a translational
error of 0.64% and a rotational error of 0.58 degrees per
100 meters. These results were consistently maintained in
Sequence 10, where our approach exhibited a similar level of

TABLE III
COMPARISON OF TRANSLATIONAL (%) AND ROTATIONAL (
deg

100m
] ERRORS ON ALL POSSIBLE SEQUENCES OF LENGTHS

OF (100, 200, ..., 800) METERS FOR THE KITTI ODOMETRY
BENCHMARK ON LIDAR-INERTIAL ODOMETRY.

Training Seq. 00-08 Sequence 09 Sequence 10

Mapping trel rrel trel rrel trel rrel

No

DeepLO [16] 3.68 0.87 4.87 1.95 5.02 1.83

UnDeepLIO [7] 2.42 1.13 2.77 1.25 2.16 1.11

LO-Net [14] 1.27 0.67 1.37 0.58 1.80 0.93

DeLORA [5] 3.00 1.38 6.05 2.15 6.44 3.00

Ours 1.50 1.23 0.80 0.58 1.20 0.93

Yes

LOAM [2] 1.26 0.50 1.20 0.48 1.51 0.57

SUMA [15] 3.06 0.89 1.90 0.80 1.80 1.00

LO-Net [14] 0.81 0.44 0.77 0.38 0.92 0.41

DeLORA [5] 1.78 0.73 1.54 0.68 1.78 0.69

Ours 0.64 0.58 0.68 0.42 0.72 0.55

Note: Table includes LOAM as the only classical method and several
learning-based methods, with our method being the only one incorporating
temporal features. Best results are highlighted in bold.

accuracy, with a translational error of 0.72% and a rotational
error of 0.55 degrees per 100 meters. Notably, our approach
outperformed other methods in the test sequences, except
for the rotational mapping, where LOAM showed better
performance. Overall, our approach performed competitively
with other methods on the KITTI odometry benchmark for
LiDAR-Inertial odometry, delivering relatively low transla-
tional and rotational errors. This indicates its effectiveness,
especially in sequences without mapping.

With the mapping modules disabled, our method per-
formed comparably to Li et al. [14] and Nubert et al. [5].
Figure 3 shows qualitative results of our predicted odom-
etry trajectories. Despite being trained only on sequence
00 − 08, our method achieved similar performance to the
conventional model-based approach. It produced accurate
odometry estimates with minimal drift, even on challenging
sequences with dynamic objects (Sequence 09 and 10).
Incorporating mapping refinement modules further improved
performance. Quantitatively, our proposed network matched
the performance of a comparable learning-based LiDAR
odometry approach [14], and surpassed it when used without
mapping.

IV. CONCLUSIONS

We evaluate a deep learning approach for LiDAR-Inertial
odometry that incorporates temporal information and out-
performs existing learning-based methods while achieving
comparable accuracy to traditional model-based methods.
Our self-supervised training strategy employs sliding win-
dow optimization to ensure 3D geometric and trajectory
consistency. Our approach has the potential to serve as a
complementary method to traditional localization estimation

techniques and effectively interpret the environment as de-
tected by a multi-modal sensor configuration. While memory
and resource requirements are currently a limitation, we plan
to investigate lightweight network architecture designs for
low-resource constraint devices in future work.

REFERENCES

[1] P. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239–256, 1992.

[2] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time,” in Proceedings of Robotics: Science and Systems (RSS ’14),
July 2014.

[3] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. M. Montiel, and J. D.
Tardós, “ORB-SLAM3: an accurate open-source library for visual,
visual-inertial and multi-map SLAM,” CoRR, vol. abs/2007.11898,
2020.

[4] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 4758–4765, 2018.

[5] J. Nubert, S. Khattak, and M. Hutter, “Self-supervised learning of lidar
odometry for robotic applications,” CoRR, vol. abs/2011.05418, 2020.

[6] M. Velas, M. Spanel, M. Hradis, and A. Herout, “CNN for
IMU assisted odometry estimation using velodyne lidar,” CoRR,
vol. abs/1712.06352, 2017.

[7] Y. Tu and J. Xie, “Undeeplio: Unsupervised deep lidar-inertial odom-
etry,” CoRR, vol. abs/2109.01533, 2021.

[8] H. Zhan, R. Garg, C. S. Weerasekera, K. Li, H. Agarwal, and
I. D. Reid, “Unsupervised learning of monocular depth estima-
tion and visual odometry with deep feature reconstruction,” CoRR,
vol. abs/1803.03893, 2018.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CoRR, vol. abs/1512.03385, 2015.

[10] P. Wei, G. Hua, W. Huang, F. Meng, and H. Liu, “Unsupervised
monocular visual-inertial odometry network,” in Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI-20 (C. Bessiere, ed.), pp. 2347–2354, International Joint Con-
ferences on Artificial Intelligence Organization, 7 2020. Main track.

[11] Y. Almalioglu, M. Turan, A. E. Sari, M. R. U. Saputra, P. P. B.
de Gusmão, A. Markham, and N. Trigoni, “Selfvio: Self-supervised
deep monocular visual-inertial odometry and depth estimation,” CoRR,
vol. abs/1911.09968, 2019.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
CoRR, vol. abs/1706.03762, 2017.

[13] M. Valente, C. Joly, and A. de La Fortelle, “An lstm network for
real-time odometry estimation,” in 2019 IEEE Intelligent Vehicles
Symposium (IV), pp. 1434–1440, IEEE, 2019.

[14] Q. Li, S. Chen, C. Wang, X. Li, C. Wen, M. Cheng, and J. Li, “Lo-net:
Deep real-time lidar odometry,” CoRR, vol. abs/1904.08242, 2019.

[15] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d laser
range data in urban environments,” in Proc. of Robotics: Science and
Systems (RSS), 2018.

[16] Y. Cho, G. Kim, and A. Kim, “Deeplo: Geometry-aware deep lidar
odometry,” CoRR, vol. abs/1902.10562, 2019.

[17] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

