Tutorial 7 Registers and RTL

CO 2206 Computer Organization

Task 1. Register

- Knowing the function of a D flip-flop with enable, complete the following timing diagram (for the outputs). Assume initially $\mathrm{Q}=\mathrm{o}$ and $\mathrm{Q}^{\prime}=1$.

Task 2. Shift Register

- Modify the 4-bit universal shift register on Slide 19, Chapter 7, such that the functions are:
- when s1so $=00$,
- no change of states
- when s1so = 01,
- parallel load
- when s1so $=10$,
- shift right
- when s1so = 11,
- shift left

Task 3. Register Cell Design

- Draw the circuit diagram to implement the ad-hoc register cell design on Slide 41, Chapter 7
- By referring to the ad-hoc design above, design (and draw the circuit of) a register cell to implement the following register transfer:
$-\mathrm{Op} 1: \mathrm{A} \leftarrow \mathrm{A}^{\prime}$
- Op2: A $\leftarrow \mathrm{A}+\mathrm{B}$
- Op3: A $\leftarrow \mathrm{A}-\mathrm{B}$
- Assume that
- Only one of Op1, Op2, Op3 is equal to 1
- For Op1, Op2, Op3 equal to o, A remains unchanged
- You can use NOT gate(s) and a Full Adder in your design.

Task 4. Mux-Based Transfer

- Determine the value for the select (S2, S1, So) signals and load (L2, L1, Lo) signals to perform the following register transfer operations:

$-\mathrm{R} 0 \leqslant \mathrm{R} 1$
$-\mathrm{R} 1 \leftarrow \mathrm{R} 2$
$-\mathrm{R} 1 \leftarrow \mathrm{R} 0, \mathrm{R} 2 \leftarrow \mathrm{R} 0$

Task 5. RTL

- Express the following statement in RTL
if $(A B C=001)$ then
$(R O=R 1)$ else if
$(A B C=010)$ then (R0
$=R 2)$ else if (ABC =
$011)$ then (RO = R3)
else if (ABC= 101)
then (RO $=R 0$ OR R1)

Operation	Text RTL	
Combinational Assignment	$=$	
Register Transfer	\leftarrow	
Addition	+	
Subtraction	\wedge	
Bitwise AND	\vee	
Bitwise OR	\oplus	
Bitwise XOR	sl	
Bitwise NOT	sr	
Shift left (logical)	$\mathrm{A}(3: 0)$	
Shift right (logical)	$\\|$	
Vectors/Registers		

Task 6. Serial Register Operation

- Modify the circuit on Slide 59 of Chapter 7 to perform a serial operation of the following logic function:
$-B=A^{\prime} B$ where A and B are both 16-bit

Task 7

- Task 7: Use 4-bit binary counter with synchronous parallel load (in block diagram) and logic gates to design the following counters:
a. Modulo-3 that counts $0,1,2$ repeatedly
b. Modulo-6 that counts $2,3,4,5,6,7$ repeatedly

