Tutorial 6 Sequential Circuit

CO 2206 Computer Organization

Task 1

- A sequential circuit with two D flip-flops, A and B; two inputs x and y, and one output z, is described by the following input and output equations:

$$
\begin{aligned}
& -\mathrm{A}(\mathrm{t}+1)=\mathrm{x}^{\prime} \mathrm{y}+\mathrm{xA} \\
& -\mathrm{B}(\mathrm{t}+1)=\mathrm{x}^{\prime} \mathrm{B}+\mathrm{xA} \\
& -\mathrm{z}=\mathrm{B}
\end{aligned}
$$

a. Is the design in Mealy or Moore model?
b. Draw the diagram for the circuit.
c. Derive the state table.
d. Derive the state diagram.

Task 2

- For the state table shown in next slide:
a. Can the circuit be designed with Moore model? Why?
b. Extend the table for design using JK flip-flops.
c. Derive the flip-flop input equations and output equation.
d. Draw the circuit diagram for the above design.

Task 2 (State Table)

Present State		Inputs		Next State		$\begin{aligned} & \text { Output } \\ & \text { Z } \end{aligned}$
A	B	X	Y	$\mathrm{A}(\mathrm{t}+1)$	$\mathrm{B}(\mathrm{t}+1)$	
0	0	0	0	0	0	0
0	0	0	1	0	1	0
0	0	1	0	1	0	1
0	0	1	1	1	1	1
0	1	0	0	0	1	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	0	0	0
1	0	0	0	1	1	1
1	0	0	1	1	1	0
1	0	1	0	1	1	1
1	0	1	1	1	0	0
1	1	0	0	0	0	0
1	1	0	1	0	0	1
1	1	1	0	0	0	0
1	1	1	1	0	1	1
owh@ieee.org		CO 2206				

Task 3

- Task 3: Design a sequential circuit with two D flip-flops A and B and one input X . When $\mathrm{X}=1$, the state of the circuit remains the same. When $\mathrm{X}=\mathrm{o}$, the circuit goes through the state transitions from 00 to 10 to 11 to 01, back to 00, and then repeats.

