Tutorial 6 - Sample Solution Sequential Circuit

CO 2206 Computer Organization

Task 1

- A sequential circuit with two D flip-flops, A and B; two inputs x and y, and one output z, is described by the following input and output equations:

$$
\begin{aligned}
& -\mathrm{A}(\mathrm{t}+1)=\mathrm{x}^{\prime} \mathrm{y}+\mathrm{xA} \\
& -\mathrm{B}(\mathrm{t}+1)=\mathrm{x}^{\prime} \mathrm{B}+\mathrm{xA} \\
& -\mathrm{z}=\mathrm{B}
\end{aligned}
$$

a. Is the design in Mealy or Moore model?
b. Draw the diagram for the circuit.
c. Derive the state table.
d. Derive the state diagram.

Task 1: Ans. a, b

- Moore model - output (z) depends only on state (B)
- Note $\mathrm{DA}=\mathrm{A}(\mathrm{t}+1)$ and $\mathrm{DB}=\mathrm{B}(\mathrm{t}+1)$

Task 1: Ans. c

	Present State		Inputs		Next State			Output Z
	A	B	X	Y			$B(t+1)$	
	0	0	0	0	0	0	0	
	0	0	0	1	1	0	0	
	0	0	1	0	0	0	0	
	0	0	1	1	0	0	0	
	0	1	0	0	0	1	1	
	0	1	0	1	1	1	1	
	0	1	1	0	0	0	1	
	0	1	1	1	0	0	1	
	1	0	0	0	0	0	0	
	1	0	0	1	1	0	0	
	1	0	1	0	1	1	0	
	1	0	1	1	1	1	0	
	1	1	0	0	0	1	1	
	1	1	0	1	1	1	1	
	1	1	1	0	1	1	1	
	1	1	1	1	1	1	1	
owh@ieee.org								

Task 1: Ans. d

- Two state variables (A, B) hence $22=4$ states.

Task 2

- For the state table shown in next slide:
a. Can the circuit be designed with Moore model? Why?
b. Extend the table for design using JK flip-flops.
c. Derive the flip-flop input equations and output equation.
d. Draw the circuit diagram for the above design.

Task 2 (State Table)

Task 2: Ans. a, b

- No. The output (z) depends on both state and inputs, e.g. in state oo, the output can either be o (when inputs are 0o or 01) or 1 (when inputs are 10 or 11).
- In each row, look at changes in A \& B from present to next state. Determine the required values for JA, KA, JB and KB to give the change, by referring to excitation table of JK flip-flop.

Task 2: Ans. b

Present State	Inputs	Next State	Output		Inputs				
A B	X Y	DA DB	Z	JA	KA JB	KB			
00	00	00	0	0	$\times 0$	x			
00	01	01	0	0	$\times 1$	x			
0	10	10	1	1	x 0	x			
0	11	11	1	1	x 1	x			
01	00	01	1	0	x x	0			
01	01	10	1	1	x x	1			
01	10	10	0	1	x x	1	Exxitation Table		
01	11	0	0	0	x x	1			
10	00	11	1	x	01	x	${ }^{\text {Q(t) }}$	${ }^{\text {Q (}+1)}$)	JK Operatio
10	01	11	0	x	01	x	\bigcirc	0	
10	10	11	1	x	01	x	\bigcirc	。	
10	11	10	0	x	00	x	1	$1 \times$	x 0 No Change
11	00	0	0	x	1 x	1			
1	01	0	1	x	1 x	1			
1	10	0	0	x	1 x	1			
1	11	01	1	x	1 x	0			
owh@ieee.org			CO 2206						9

Task 2: Ans. c

- Five equations to determine: Z, JA, KA, JB, KB. Input variables are $\mathrm{A}, \mathrm{B}, \mathrm{X}$ and Y .

Alternative: $\mathrm{J}_{\mathrm{A}}=\mathrm{XY} \mathrm{Y}^{\prime}+\mathrm{B}^{\prime} \mathrm{X}+\mathrm{BX}^{\prime} \mathrm{Y}$

A

$$
Z=A^{\prime} B^{\prime} X+A^{\prime} B X^{\prime}+A B Y+A B^{\prime} Y^{\prime}
$$

Task 2: Ans. d

- DIY. Take note of the common clock connection. The circuit will have two J/K flip-flops.

Task 3 \& 4

- Task 3: Design a sequential circuit with two D flip-flops A and B and one input X . When $\mathrm{X}=1$, the state of the circuit remains the same. When $\mathrm{X}=\mathrm{o}$, the circuit goes through the state transitions from 00 to 10 to 11 to 01, back to 00, and then repeats.
- Task 4: Use 4-bit binary counter with synchronous parallel load (in block diagram) and logic gates to design the following counters:
a. Modulo- 3 that counts $0,1,2$ repeatedly
b. Modulo-6 that counts $2,3,4,5,6,7$ repeatedly

Task 3: Ans. 1

- Steps involved:
- Draw the state diagram based on requirements in the question
- Draw the state table from the state diagram - define the necessary columns: A, B, X, DA, DB
- Derive flip-flop input functions (DA, DB)
- Draw the circuit diagram

Task 3: Ans. 2

- State diagram:

Task 3: Ans. 3

- State table:

Present State		Inputs	Next State	
A	B	X	DA DB	
0	0	0	1	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	0	
1		1	0	
1				

Task 3: Ans. 4

- Flip-flop input equations:

- Circuit diagram: DIY. Take note of the common clock connection. There shall be 2 D flip-flops.

