Tutorial 3 Logic Circuit Design
 CO 2206 Computer Organization

Task 1: Karnaugh Map Exercise

- Simplify the following Boolean functions using Karnaugh map:
$-\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,1,5,7)$
- $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,1,2,4,6)$
- $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(1,4,6,7,8,9,10,11,15)$
$-\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,2,5,6,8,10,13,14,15)$
- Find the simplest sum of products form for the function F using the don't care condition G, where
$-F(a, b, c, d)=\sum m(0,2,8,10,14)$ and
- $G(a, b, c, d)=\sum m(5,7,12,13)$
- Simplify $F(A, B, C, D)=\Pi M(1,3,4,6,9,11)$ together with the don't care conditions $\mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,2,5,10,12,14)$ in (i) sum of products and (ii) products of sums
- Simplify the even parity function using XOR

Task 2: Quine-McCluskey

- Minimize the following functions using the Quine-McCluskey minimization:

$$
\begin{aligned}
& -\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(\mathrm{o}, 1,2,4,6) \\
& -\mathrm{f} 1(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4)=\sum \mathrm{m}(\mathrm{o}, 6,7,9,13,14,15) \\
& -\mathrm{f} 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4, \mathrm{x} 5)=\sum \mathrm{m}(\mathrm{o}, 2,6,10,13,16,18,20,21, \\
& \quad 23,24,26,30,31)
\end{aligned}
$$

Task 3: Implementation

- Ignoring gate-input cost:
- Implement all functions in Task 1 using any combination of logic gates
- Implement all functions in Task 2 using NAND only
- Draw the NOR implementation of the function $\mathrm{F}=\Sigma \mathrm{m}(0,1,2,8,10,11,14,15)$. Hint: Use $\mathrm{F}^{\prime}=$ SOP.

