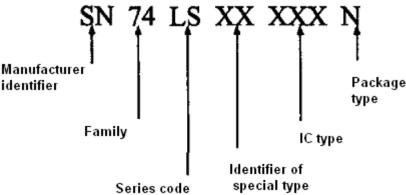
Tutorial 2 Digital Logic


CO 2206 Computer Organization

Digital IC Identifier

- There are huge amounts of different digital IC chips available in the market starting from simplest logical elements and ending with processors and gate arrays (FPGA)
 - lots of IC manufacturers offering IC's too
- There is no standard marking (identifier) system, although there are similar patterns to observe

• Lets look at the common marking of general digital chips

for TTL 74 series:

TTL IC Marking - 1

- Manufacturer identifier indicates the manufacturer name, e.g.
 - AD Analog Devices
 - DS Dallas Semiconductor
 - DM National Semiconductor (digital)
 - HD Hitachi (digital)
 - HI Harris
 - LM National
 - MC Motorola
 - SN Texas Instruments, TI (Standard)
- **Family** also indicates a temperature range:
 - 74 commercial (0...70° C), while CMOS chips has a range of (-40...+85° C)
 - − 54 − military where working temperature range is (-55...+125° C)

TTL IC Marking - 2

- **Series code** up to three symbols:
 - none standard TTL
 - LS Low power Schottky
 - S Schottky TTL
 - ALS Advanced Schottky TTL (one of the most widely used)
 - F Tast TTL
 - HC- high speed CMOS
 - HCT High speed CMOS with TTL inputs
 - AC Advanced CMOS
 - ACT Advanced CMOS with TTL inputs
 - BCT BiCMOS technology
 - ABT- Advanced BiCMOS Technology
 - LVT Low Voltage Technology with low voltage power source
- Identifier of special type two symbols that can be excluded

TTL IC Marking - 3

- IC type IC type describing its function;
- Package type:
 - N plastic DIL (DIP)
 - J ceramic DIP
 - T flat metal
- Examples:
 - SN74ALS32N Quad 2-input OR Gate from Texas Instruments
 - SN74ALSo8N Quad 2-input AND Gate from Texas Instruments

Logic Gate ICs

- **Task 1:** Determine (research) a part number of the IC for the following logic gates:
 - 2-input NAND gates
 - 3-input NAND gates
 - 2-input NOR gates
 - 3-input NOR gates
 - NOT gates
 - OR gates
 - AND gates
 - XOR gates

Boolean Algebra - 1

- Task 2: Solve the following problems
 - Prove the *absorption law* using *Boolean Algebra*: $x \cdot (x+y) = x$
 - Prove the implementations of AND, OR and NOT using NAND
 - Prove above using *Truth Table* and *Boolean Algebra*
 - Prove the implementations of AND, OR and NOT using NOR
 - Prove above using *Truth Table* and *Boolean Algebra*
 - Prove equivalence, (xyz)' = x' + y' + z' by means of *truth table*
 - Prove equivalence by means of Boolean algebra:
 - $(x+y)' \cdot (x'+y')' = 0$
 - xy = (x+y)(x+y')(x'+y)
 - xy + x'z = xy + x'z + yz

Boolean Algebra - 2

- **Task 3**: Solve the following problems
 - Demonstrate by means of truth tables the validity of the following identity:
 - XOR's inverse: $(x \oplus y)' = x \oplus y'$
 - Prove the identity of each of the following *Boolean equations*, using algebraic manipulation:
 - Prove A'B' + AB = $(A \oplus B)$ '. Hint: use double negation
 - $(a \oplus b)' \oplus c = a'b'c' + abc' + a'bc + ab'c$
 - Simplify the following logic functions using *Boolean algebra* rules:
 - ab + ab'
 - xyz + x'y + xyz'x' + xy + xz' + xy'z'
 - Obtain the truth table of the function (xy + z)(y + xz) and express the function in *sum-of-minterms* and *product-of-maxterms*