
owh@ieee.org CO 2206 1

Laboratory 2
VHDL Simili and Sonata

CO 2206 Computer Organization

owh@ieee.org CO 2206 2

Objectives

• To be introduced to VHDL Simili 2.0

• To have some hands-on with VHDL
programming

owh@ieee.org CO 2206 3

VHDL Simili and Sonata
• VHDL Simili is a collection of tools that facilitate the

design, development and verification of hardware
models using VHDL

• Sonata, on the other hand, is VHDL Simili’s IDE
(Integrated Development Environment) tool for
designing, verifying and managing HDL projects
– Sonata is capable of handling complex projects consisting of

multiple libraries where each library is built with zero or more
HDL files

• Sonata project management tasks can be broken down
into the following broad categories:
– The workspace
– Working with libraries
– Compilation
– Simulation

owh@ieee.org CO 2206 4

The workspace

• Each project is represented by a workspace (also called a project)

– Before Sonata can be used for anything, a workspace must be created

• Workspace functions such as opening, saving, closing and creating
workspaces can be accessed using the File menu

• A workspace can be created in a directory of your choice

– all files and libraries will be maintained in this workspace relative to this
directory

• Creating a workspace will also create a library with the same name

– becomes the current working library (which can be changed later)

• Sonata project files are stored in files with the extension .sws

– highly recommended to backup the project files along with source code
(i.e. .vhd files and associated directories)

owh@ieee.org CO 2206 5

Working with Libraries

• The function of libraries can be summarized using the
following key points:
– Every Sonata project is a workspace that manages one or more

libraries
– A library contains a set of design units

• design units are entities, architectures, configurations,
packages and package bodies

– There is always a concept of the current working library
• the current working library is displayed in the top left area of

the project management window
– All actions related to project management typically apply to the

current working library
– Each library can be associated with a set of source files (VHDL

files)
• files can be added or detached. Note that detaching a file

does not physically remove the file from the file system.

owh@ieee.org CO 2206 6

Compilation

• The Compile menu provides access to compilation tasks
– using this menu, you can compile the current file being edited,

selected files or all files

• When a VHDL source file is compiled, the results of a
successful compilation are placed in a library
– in other words, the design units contained within a VHDL source

file are compiled into a library

• When using a VHDL compiler or simulator, there is
always a concept of a current working library
– if no particular library is specified as the current working library,

the current working library is assumed to be "work". You can
associate the "work" library with any other library. When using
Sonata, work is always associated (mapped) with an actual
library that is registered with the project.

owh@ieee.org CO 2206 7

Simulation

• The Simulation menu provides access to
simulation tasks

• Basically, this involves identifying the test bench,
start the simulation and inspecting the waveform
(a graphical representation of a record of the
history of changes that have occurred to a given
simulation object)

owh@ieee.org CO 2206 8

Task 1.1: Adding a Library

• Start up Sonata

• You are about to create a library called lcdf_vhdl in your project directory

• Download func_prims.vhd from My Moodle and copy this file into your
working directory

• Create a new workspace called “lcdf_vhdl”
– this will create a workspace (with a .sws extension) and a similarly named

library (with a .sym extension)

• Select Project > Add Files... and choose func_prims.vhd
– a file called func_prims.vhd appears just below the lcdf_vhdl library in the

Project Management Pane

• Double-click func_prims.vhd to view the file in the Document Pane
– you will notice this library consisted of predefined entity such as logic gates

• Compile func_prims
– if you are asked to add the vhd file to the current working directory, click Yes

• Note the “Finished compilation session” message in the bottom right
Console Pane indicating successful compilation

• Close the workspace

owh@ieee.org CO 2206 9

Task 1.2: Creating a Design Entity

• Create a new workspace called “comb_circ”

• Select File > New to start entering your VHDL
code

– a new file called Textfile0* appears in the Document
Pane.

– type the code shown in next slide in Textfile0*

• Save your file as “decoder_2_to_4_st.vhd”

– don’t forget the .vhd extension

• Compile your vhd file

owh@ieee.org CO 2206 10

Task 1.3: Entity Code

-- 2-to-4 Line Decoder with Enable: Structural
VHDL Description

library ieee, lcdf_vhdl;

use ieee.std_logic_1164.all,
lcdf_vhdl.func_prims.all;

entity decoder_2_to_4_st is

port(EN, A0, A1: in std_logic;

D0, D1, D2, D3: out std_logic);

end decoder_2_to_4_st;

architecture structural_1 of decoder_2_to_4_st is

component NOT1

port(in1: in std_logic;

out1: out std_logic);

end component;

component AND2

port(in1, in2: in std_logic;

out1: out std_logic);

end component;

signal A0_n, A1_n, N0, N1, N2, N3: std_logic;

begin

 g0: NOT1 port map (in1 => A0, out1 =>A0_n);

 g1: NOT1 port map (in1 => A1, out1 => A1_n);

 g2: AND2 port map (in1 => A0_n, in2 => A1_n, out1 => N0);

 g3: AND2 port map (in1 => A0, in2 => A1_n, out1 => N1);

 g4: AND2 port map (in1 => A0_n, in2 => A1, out1 => N2);

 g5: AND2 port map (in1 => A0, in2 => A1, out1 => N3);

 g6: AND2 port map (in1 => EN, in2 => N0, out1 => D0);

 g7: AND2 port map (in1 => EN, in2 => N1, out1 => D1);

 g8: AND2 port map (in1 => EN, in2 => N2, out1 => D2);

 g9: AND2 port map (in1 => EN, in2 => N3, out1 => D3);

end structural_1;

owh@ieee.org CO 2206 11

Task 2.1: Creating Test Bench

• Now it’s time to test your design by first creating
a test bench:

– Create a new file just like before and enter the code
shown in next slide

– Save the file as “decoder_2_to_4_st_tb.vhd”

– Compile the vhd file

owh@ieee.org CO 2206 12

Task 2.2: Test Bench Code

library ieee, lcdf_vhdl ;

use ieee.std_logic_1164.all,
lcdf_vhdl.func_prims.all;

entity decoder_2_to_4_st_tb is

-- no need for any ports or generics

end decoder_2_to_4_st_tb;

architecture testbench of decoder_2_to_4_st_tb is

component decoder_2_to_4_st is

port(EN, A0, A1: in std_logic;

D0, D1, D2, D3: out std_logic);

end component;

signal ENt, A0t, A1t, D0t, D1t, D2t, D3t:
std_logic;

constant prop_delay: time:= 10 ns ;

begin

decoder: decoder_2_to_4_st port map(ENt, A0t,
A1t, D0t, D1t, D2t, D3t);

test: process

begin

 ENt <= '0'; A0t <= '0'; A1t <= '0';

 wait for prop_delay;

 ENt <= '0'; A0t <= '1'; A1t <= '0';

 wait for prop_delay;

 ENt <= '0'; A0t <= '0'; A1t <= '1';

 wait for prop_delay;

 ENt <= '0'; A0t <= '1'; A1t <= '1';

 wait for prop_delay;

 ENt <= '1'; A0t <= '0'; A1t <= '0';

 wait for prop_delay;

 ENt <= '1'; A0t <= '1'; A1t <= '0';

 wait for prop_delay;

 ENt <= '1'; A0t <= '0'; A1t <= '1';

 wait for prop_delay;

 ENt <= '1'; A0t <= '1'; A1t <= '1';

 wait;

 end process;

end testbench;

owh@ieee.org CO 2206 13

Task 2.3: Simulation

• Once you have completed the code, you are ready to simulate your design:
– Select Simulate > Select Toplevel… > decoder_2_to_4_st_tb

– a top-level design is the name of an entity or architecture or a configuration that
will serve as the root of your design. In most instances, this is actually your test
bench. If a top-level design is already established, you will see it listed in the top-
left area of the Hierarchy Pane (Workspace pane)

– Select Simulate > Go, or click the button

– Waveform Waveform0.wfs will be displayed in the Waveform Pane (in the
Document Pane)

• initially, the waveform window does not have any objects displayed

– To display waveforms for VHDL signals (or non-subprogram variables), they
have to be added to the waveform window

• in the bottom left Objects Pane, right click to Add all signals to waveform

– At the very beginning, simulation is paused just prior to time zero

• this means that no simulation time has elapsed and advancing the simulation in
any way would potentially advance time. Simulation can be advanced in one of
two ways:

– use the run button to advance simulation

– running the simulation will display the simulation behavior of the signals being
probed in the waveform window

owh@ieee.org CO 2206 14

Task 3: 2-to-4 Decoder

• Rewrite decoder_2_to_4_st.vhd (simply create
a new architecture on top of the previous
architecture) using

– std_logic_vector notation instead of std_logic
notation

– implicit specification of the component input and
output names by their order in package func_prims in
library lcdf_vhdl

– for example, g0: NOT1 port map (A0, A0_n);

• Compile, simulate and verify the circuit

owh@ieee.org CO 2206 15

Task 4: Combinational Circuit

• Using the figure below as a framework, write a structural
VHDL description of the circuit

– Consult package func_prims for information on the various gate
components

• Compile your VHDL, and simulate your VHDL for all
possible input combinations to verify your description's
correctness

	Slide 1: Laboratory 2 VHDL Simili and Sonata
	Slide 2: Objectives
	Slide 3: VHDL Simili and Sonata
	Slide 4: The workspace
	Slide 5: Working with Libraries
	Slide 6: Compilation
	Slide 7: Simulation
	Slide 8: Task 1.1: Adding a Library
	Slide 9: Task 1.2: Creating a Design Entity
	Slide 10: Task 1.3: Entity Code
	Slide 11: Task 2.1: Creating Test Bench
	Slide 12: Task 2.2: Test Bench Code
	Slide 13: Task 2.3: Simulation
	Slide 14: Task 3: 2-to-4 Decoder
	Slide 15: Task 4: Combinational Circuit

