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RISC and CISC

CO 2206 Computer Organization
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Topics

• RISC vs CISC

• Pipelining

• RISC Implementation
– Modifications

– ISA

– Organization

• Data Hazard

• Data Hazard Solutions

• Control Hazard

• Control Hazard Solutions
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RISC vs CISC: RISC

• Architecture paradigms - not so contrast nowadays

• RISC = Reduced Instruction Set Computer

– Minimal instruction set

• direct decoding of instruction set (without microcodes)

– Relatively few addressing modes
• memory access limited to load and store instructions

• all operations are done within the registers of the CPU

– Reduced hardware complexity for performance

– Require more programming effort

• more instructions to perform a task, hence larger program

• use more storage resource

– Usually fixed instruction length and time of execution

• suitable for pipelining

• single-cycle instruction execution

– E.g. PowerPC, MIPS, SPARC
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RISC vs CISC: CISC

• CISC = Complex Instruction Set Computer
– Has many and complex instructions – usually more than 200 

instructions

• many microcodes to implement each instruction

• some instructions that perform specialized tasks and are 
used infrequently

– A large variety of addressing modes - typically 5 to 20 different 
modes
• instructions that manipulate operands in memory

– Increased hardware complexity, hence increased hardware delay

– Less programming effort

• smaller program, less storage required

– Variable instruction length and time of execution

• not easy for pipelining

– E.g. Motorola 68000, x86 based
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Single-Cycle CPU Datapath

• A max. of 12ns is required to 
perform a single microop

– max. rate at which the 
microoperations can be performed 
is 83.3MHz

– this is max. frequency at which clock 
can be operated since 12ns is the 
smallest clock period that will allow 
completion with certainty
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Pipelining

• In a single-cycle computer, the rate of execution 
of instructions equals to clock frequency

• Possible to reduce clock period and increase 
clock frequency through pipelining
– the resulting datapath is known as pipelined datapath

• Pipelining
– an implementation technique in which multiple 

instructions are overlapped in execution

– a key to making processors fast

– exploits parallelism among instructions in a 
sequential instruction stream
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Pipelined Datapath: Example

• Original datapath is divided into 
3 independent parts or stages

• Place registers wherever there 
are dividing lines between 
stages, otherwise the 
information is lost as the next 
instruction enters that pipeline 
stage

• A separate pipeline register for 
write-back stage is redundant
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Pipelined Datapath: Stages

• Stage 1

– Operand Fetch (OF)

• Stage 2

– Execution (EX)

• Stage 3

– Write-back (WB)
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Pipelined Datapath: Performance

• Length of time or the clock period in each stages 
is the same for all stages

• Length of time required to process an instruction 
is called latency or execution time

• Pipelining improves instruction throughput
rather than individual instruction execution time

• Min. clock period = max. stage delay
– E.g. 5ns

• max. clock frequency = 200MHz

• 2.4 times better than non-pipelined datapath (83.3)

• time to fill pipeline initially is negligible
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Pipelined Datapath

• Register file is shown 
twice
– In OF stage, it is read

– In WB stage, it is written

• Pipeline registers store 
the operand(s) for use in 
next stage during the 
next clock cycle



owh@ieee.org CO 2206 11

Microoperations through 
Pipeline

• Each horizontal position represents a clock cycle

• Time required for pipeline execution = 9x5 = 
45ns, compared to 7x12 = 84ns
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Filling and Emptying

• Pipeline filling

– first 2 clock cycle when not all pipeline stages are 
active

• Pipeline emptying

– last 2 clock cycle when not all pipeline stages are 
active
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Pipeline 
Control
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Pipeline Control: Stages - 1

• Instruction fetch (IF)

– added stage

– includes PC and instruction memory

• Decode and operand fetch (DOF)

– decoding of instruction register (IR) into control 
signals

– AA, BA and MB are used here, the rest passed on (to 
execution and writeback stage)
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Pipeline Control: Stages - 2

• Execution (EX)

– ALU, shift or memory operation

– FS, MW used

– read part of data memory considered

• for a memory read, value of memory word addressed is 
read from Data out of data memory

• Write-back (WB)

– write part of data memory considered

• memory write may occur (note register is sequential, 
hence MW available a clock pulse earlier)

– DA, MD, RW are used



owh@ieee.org CO 2206 16

Pipeline Control: Performance

• Stage delays are balanced

• Delays per stage no more than 5ns

– Max. clock frequency = 200MHz

– However, each instruction takes 4x5 = 20ns to 
execute

• Compared to 17ns in single-cycle computer

• Pipelining improves instruction throughput but 
not latency or execution time
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Reduced Instruction Set Computer

• RISC pipelining
– a pipelined datapath with a hardwired pipelined control unit

– analogous to single-cycle computer

• In order to implement RISC, modifications are made to 
register file, function unit, bus structure
– Modification represent effects of

• longer instruction word length

• increased register file capacity

• to include multiple position shifts among elementary 
operations

• also in response to control and data hazards associated 
with pipelined designs
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RISC ISA: Instruction Format - 1

• Larger register (32-bit) to hold addresses within single 
instruction (single-cycle computer)

– 5-bit register fields SA, SB, DR

– 7-bit OPCODE, max. 128 operations

– Immediate and Target offset, 15-bit constant
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RISC ISA: Instruction Format - 2

– Target address – effective address

• Formed by target offset + content of PC

• Branch taken if source register (specified in SA) 
contains 0

• Destination register (specified in DR) is used to store 
the return address for the branch (no stack)

– Rightmost 5 bits of 15-bit constant used as shift 
amount SH for multiple bit shift

– Leftmost 17 bits filled to form a 32-bit operand

• Zero fill for logical operations

• Sign extension – sign bit 14 is copied to 17 bits
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RISC ISA
RISC 
Instruction Set
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RISC Instruction Set

• Refer to table in previous slide

• All operations are elementary
– can be described by single register transfer statement

• Only Load and Store operations access memory
– all other operations only access registers

– minimize memory access to improve performance

• JML provides a mechanism for implementing 
procedures.
– return from a called procedure can use JMR with SA equal to DR 

• No status word register
– use BZ, BNZ and SLT for testing, comparison
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RISC Addressing Modes

• Four addressing modes:

– Register

• three register type

– Register Indirect

• only Load & Store access memory

– Immediate

• two register type

– Relative

• branch type (branch and jump instructions)

• Other addressing modes implemented by multiple RISC 
instructions
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RISC

Organization
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RISC Datapath Organization

• Only modifications highlighted

• Register file:
– 32 32-bit registers

• to fit operands/addresses for most operations

– Special reading register R0

• gives 0 when read, discard value when written

– Register file is no longer edge-triggered. Uses latch instead and 
special timing signals are provided that permit the register file to 
be written in the first half and to be read in the last half of the 
cycle.

• in particular, in the 2nd half of the clock cycle , it is possible to 
read data written into the register file during the first half of 
the same clock cycle.

• this is called a read-after-write register file to avoid added 
complexity for handling hazards and reduce cost of register 
file



owh@ieee.org CO 2206 25

RISC Datapath Organization

• Function Unit:
– ALU is 32-bit

– replacement of 1-bit position shifter with barrel shifter

• SH is 5-bit input – 1 to 31-bit position shift

• Other parts:
– constant unit – performs zero fill for CS=0 and sign extension for 

CS=1

– MUXA – to provide a path for the updated PC, PC-1 to the 
register file for the implementation of Jump and Link (JML) 
instruction.

– additional input to MUX D helps implement Set if Less Than 
(SLT) if R[SA] < R[SB] set R[DR] = 1



owh@ieee.org CO 2206 26

RISC Control Organization

• Modifications include:

– modified instruction decoder to deal with new 
instructions

– SH field added in IR

– CS bit added to the instruction decoder

– new control logics for PC

• MUX C to select updated PC

• Adder to compute target address
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Data Hazards

• Hazards are timing problems that arise because

– the execution of an operation in a pipeline is delayed 
by one or more clock cycles

• Hazard reduces throughput

• Data hazards occur

– if a subsequent instruction tries to use the result of an 
operation as an operand before the result is available
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Data Hazards: Illustration

• e.g. 1 MOVA R1, R5

2 ADD R2, R1, R6

3 ADD R3, R1, R2

2 data hazards



owh@ieee.org CO 2206 29

Data Hazards Solution: Software

• Software solution: NOPs

– Have compiler or programmer generate machine code to delay 
instructions using NOPs

• needs to have detailed info on how pipeline operates
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Data Hazards Solution: Stalling

• Hardware solution 1: Stalling

– When operand is found at the DOF stage that has not 
been written back yet,

• associated EX and WB are delayed by stalling the 
pipeline for 1 clock cycle

– The pipeline is said to contain a bubble in subsequent 
clock cycles and stages
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Stalling: Illustration

• Data hazard will occur if there is a destination register at 
EX that is to be written back and that is to be read at the 
current DOF
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Stalling: Implementation - 1

–Conditions for stalling

–MA in DOF must be 0
•A operand is coming from the register 

file

–AA in DOF equals DA in EX
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Stalling: Implementation - 2

– RW in EX is 1

• DA in EX will definitely be written in WB

– OR () of all bits of DA is 1

• Register to be written is not R0

– If either HA or HB is 1, data hazard

• DHS = 1, stall is required

– Inverted DHS signal is used to initiate a bubble

• IR, PC, PC-1, PC-2 stopped from changing because their 
load signals become 0
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Stalling: Implementation - 3

• Bubble produced by using AND gates to force RW and 
MW to 0

– Force DA to become 0 to prevent stalling in the next and 
subsequent clock cycles because  will then return 0

– Thus, in clock cycle 3 when data hazard for R1 is 
detected

• A bubble is launched into EX for ADD

• At clock cycle 3, IF and DOF are stalled, thus info. is 
retained

• At clock cycle 4, since DAEX=0, no stall, so execution of 
stalled ADD proceeds

– Data hazard stall has the same throughput penalty as 
NOPs
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Data HazardsStalling 
Implementation
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Data Hazards Solution: Data 
Forwarding

• Hardware solution 2: Data forwarding

– Does not have the penalty mentioned

– Based on the fact that results are available in the 
pipeline before it is written back to the destination 
register

• Thus, mux is needed to select data from register file or 
the pipeline

• Logic is similar to stalling except now HA and HB are 
used



owh@ieee.org CO 2206 37

Data Forwarding: Illustration

– Data forwarding may adds delay, causing clock period 
to be somewhat longer

• Data hazards can also occur with memory access 
as in ST and LD instructions
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Data HazardsData Forwarding 
Implementation
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Control Hazard - 1

• Control hazards are associated with branches in 
the control flow of a program

• e.g. 1 BZ R1, 18

2 MOVA R2, R3

3 MOVA R1, R2

4 MOVA R4, R2

20 MOVA R5, R6

– If R1=0, branch to location 20 (addressing is PC relative)



owh@ieee.org CO 2206 40

Control Hazard - 2

– But R1=0 is not detected until EX, so PC is set to 20 
on the clock edge at end of clock cycle

– Thus, 2 instructions (not supposed to be executed) 
already in the pipeline in EX and DOF respectively
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Control Hazard Solution: Delayed 
Branch

• Delayed branch:

– 2 NOPs are inserted and performed regardless of 
whether branch is taken

– increase processing by 2 clock cycles

– wasted cycles can be avoided by rearranging the order 
of instructions
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Control Hazard Solutions: Stalling

• Branch hazard stall:
– Reduction in throughput

• Branch prediction:
– Predicts the branch will never be taken

– Fetch and decode next instruction in PC+1

– If branch is not taken after all, no delay

– If branch is taken, need to cancel instructions 
rendered invalid
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Control Hazard Solution: Stalling 
Illustrated

– Cancellation is done by

• Inserting bubbles into EX and WB
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Branch Stalling 
Implementation
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Branch Stalling Implementation

– Whether a branch is taken is determined by looking at 
selection input of MUX C

– If branch is taken

• Cancel 1st instruction by:

– Making RW, MW 0 to prevent writing of register file and 
data memory; and making BS 0 to prevent branch taking 
if it is a branch instruction

• 2nd instruction is replaced with NOP by making IR all 
0’s (NOP OPCODE)

– Can also assume branch is always taken

• Thus branch target address computed and used for 
fetching the target instruction
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Summary

• RISC: simple ISA, simple hardware, considerable programming effort, 
effective for pipelining

• CISC: complex ISA, complex hardware, flexible to program

• Pipelining: CPU performance improvement technique

– break datapath and control into sections – interfaced with registers

• RISC Implementation

– Modifications: more registers

– ISA: mostly deal with registers, only store/load for memory

– Organization: pipelined

• Data Hazard: operand fetch stage requiring data modified in execute stage 
(before write back)

• Data Hazard Solutions: NOPs, Stalling, Data Forwarding

• Control Hazard: branch taken and unwanted instructions in pipeline

• Control Hazard Solutions: NOPS, Stalling
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