
owh@ieee.org CO 2206 1

RISC and CISC

CO 2206 Computer Organization

owh@ieee.org CO 2206 2

Topics

• RISC vs CISC

• Pipelining

• RISC Implementation
– Modifications

– ISA

– Organization

• Data Hazard

• Data Hazard Solutions

• Control Hazard

• Control Hazard Solutions

owh@ieee.org CO 2206 3

RISC vs CISC: RISC

• Architecture paradigms - not so contrast nowadays

• RISC = Reduced Instruction Set Computer

– Minimal instruction set

• direct decoding of instruction set (without microcodes)

– Relatively few addressing modes
• memory access limited to load and store instructions

• all operations are done within the registers of the CPU

– Reduced hardware complexity for performance

– Require more programming effort

• more instructions to perform a task, hence larger program

• use more storage resource

– Usually fixed instruction length and time of execution

• suitable for pipelining

• single-cycle instruction execution

– E.g. PowerPC, MIPS, SPARC

owh@ieee.org CO 2206 4

RISC vs CISC: CISC

• CISC = Complex Instruction Set Computer
– Has many and complex instructions – usually more than 200

instructions

• many microcodes to implement each instruction

• some instructions that perform specialized tasks and are
used infrequently

– A large variety of addressing modes - typically 5 to 20 different
modes
• instructions that manipulate operands in memory

– Increased hardware complexity, hence increased hardware delay

– Less programming effort

• smaller program, less storage required

– Variable instruction length and time of execution

• not easy for pipelining

– E.g. Motorola 68000, x86 based

owh@ieee.org CO 2206 5

Single-Cycle CPU Datapath

• A max. of 12ns is required to
perform a single microop

– max. rate at which the
microoperations can be performed
is 83.3MHz

– this is max. frequency at which clock
can be operated since 12ns is the
smallest clock period that will allow
completion with certainty

owh@ieee.org CO 2206 6

Pipelining

• In a single-cycle computer, the rate of execution
of instructions equals to clock frequency

• Possible to reduce clock period and increase
clock frequency through pipelining
– the resulting datapath is known as pipelined datapath

• Pipelining
– an implementation technique in which multiple

instructions are overlapped in execution

– a key to making processors fast

– exploits parallelism among instructions in a
sequential instruction stream

owh@ieee.org CO 2206 7

Pipelined Datapath: Example

• Original datapath is divided into
3 independent parts or stages

• Place registers wherever there
are dividing lines between
stages, otherwise the
information is lost as the next
instruction enters that pipeline
stage

• A separate pipeline register for
write-back stage is redundant

owh@ieee.org CO 2206 8

Pipelined Datapath: Stages

• Stage 1

– Operand Fetch (OF)

• Stage 2

– Execution (EX)

• Stage 3

– Write-back (WB)

owh@ieee.org CO 2206 9

Pipelined Datapath: Performance

• Length of time or the clock period in each stages
is the same for all stages

• Length of time required to process an instruction
is called latency or execution time

• Pipelining improves instruction throughput
rather than individual instruction execution time

• Min. clock period = max. stage delay
– E.g. 5ns

• max. clock frequency = 200MHz

• 2.4 times better than non-pipelined datapath (83.3)

• time to fill pipeline initially is negligible

owh@ieee.org CO 2206 10

Pipelined Datapath

• Register file is shown
twice
– In OF stage, it is read

– In WB stage, it is written

• Pipeline registers store
the operand(s) for use in
next stage during the
next clock cycle

owh@ieee.org CO 2206 11

Microoperations through
Pipeline

• Each horizontal position represents a clock cycle

• Time required for pipeline execution = 9x5 =
45ns, compared to 7x12 = 84ns

owh@ieee.org CO 2206 12

Filling and Emptying

• Pipeline filling

– first 2 clock cycle when not all pipeline stages are
active

• Pipeline emptying

– last 2 clock cycle when not all pipeline stages are
active

owh@ieee.org CO 2206 13

Pipeline
Control

owh@ieee.org CO 2206 14

Pipeline Control: Stages - 1

• Instruction fetch (IF)

– added stage

– includes PC and instruction memory

• Decode and operand fetch (DOF)

– decoding of instruction register (IR) into control
signals

– AA, BA and MB are used here, the rest passed on (to
execution and writeback stage)

owh@ieee.org CO 2206 15

Pipeline Control: Stages - 2

• Execution (EX)

– ALU, shift or memory operation

– FS, MW used

– read part of data memory considered

• for a memory read, value of memory word addressed is
read from Data out of data memory

• Write-back (WB)

– write part of data memory considered

• memory write may occur (note register is sequential,
hence MW available a clock pulse earlier)

– DA, MD, RW are used

owh@ieee.org CO 2206 16

Pipeline Control: Performance

• Stage delays are balanced

• Delays per stage no more than 5ns

– Max. clock frequency = 200MHz

– However, each instruction takes 4x5 = 20ns to
execute

• Compared to 17ns in single-cycle computer

• Pipelining improves instruction throughput but
not latency or execution time

owh@ieee.org CO 2206 17

Reduced Instruction Set Computer

• RISC pipelining
– a pipelined datapath with a hardwired pipelined control unit

– analogous to single-cycle computer

• In order to implement RISC, modifications are made to
register file, function unit, bus structure
– Modification represent effects of

• longer instruction word length

• increased register file capacity

• to include multiple position shifts among elementary
operations

• also in response to control and data hazards associated
with pipelined designs

owh@ieee.org CO 2206 18

RISC ISA: Instruction Format - 1

• Larger register (32-bit) to hold addresses within single
instruction (single-cycle computer)

– 5-bit register fields SA, SB, DR

– 7-bit OPCODE, max. 128 operations

– Immediate and Target offset, 15-bit constant

owh@ieee.org CO 2206 19

RISC ISA: Instruction Format - 2

– Target address – effective address

• Formed by target offset + content of PC

• Branch taken if source register (specified in SA)
contains 0

• Destination register (specified in DR) is used to store
the return address for the branch (no stack)

– Rightmost 5 bits of 15-bit constant used as shift
amount SH for multiple bit shift

– Leftmost 17 bits filled to form a 32-bit operand

• Zero fill for logical operations

• Sign extension – sign bit 14 is copied to 17 bits

owh@ieee.org CO 2206 20

RISC ISA
RISC
Instruction Set

owh@ieee.org CO 2206 21

RISC Instruction Set

• Refer to table in previous slide

• All operations are elementary
– can be described by single register transfer statement

• Only Load and Store operations access memory
– all other operations only access registers

– minimize memory access to improve performance

• JML provides a mechanism for implementing
procedures.
– return from a called procedure can use JMR with SA equal to DR

• No status word register
– use BZ, BNZ and SLT for testing, comparison

owh@ieee.org CO 2206 22

RISC Addressing Modes

• Four addressing modes:

– Register

• three register type

– Register Indirect

• only Load & Store access memory

– Immediate

• two register type

– Relative

• branch type (branch and jump instructions)

• Other addressing modes implemented by multiple RISC
instructions

owh@ieee.org CO 2206 23

RISC

Organization

owh@ieee.org CO 2206 24

RISC Datapath Organization

• Only modifications highlighted

• Register file:
– 32 32-bit registers

• to fit operands/addresses for most operations

– Special reading register R0

• gives 0 when read, discard value when written

– Register file is no longer edge-triggered. Uses latch instead and
special timing signals are provided that permit the register file to
be written in the first half and to be read in the last half of the
cycle.

• in particular, in the 2nd half of the clock cycle , it is possible to
read data written into the register file during the first half of
the same clock cycle.

• this is called a read-after-write register file to avoid added
complexity for handling hazards and reduce cost of register
file

owh@ieee.org CO 2206 25

RISC Datapath Organization

• Function Unit:
– ALU is 32-bit

– replacement of 1-bit position shifter with barrel shifter

• SH is 5-bit input – 1 to 31-bit position shift

• Other parts:
– constant unit – performs zero fill for CS=0 and sign extension for

CS=1

– MUXA – to provide a path for the updated PC, PC-1 to the
register file for the implementation of Jump and Link (JML)
instruction.

– additional input to MUX D helps implement Set if Less Than
(SLT) if R[SA] < R[SB] set R[DR] = 1

owh@ieee.org CO 2206 26

RISC Control Organization

• Modifications include:

– modified instruction decoder to deal with new
instructions

– SH field added in IR

– CS bit added to the instruction decoder

– new control logics for PC

• MUX C to select updated PC

• Adder to compute target address

owh@ieee.org CO 2206 27

Data Hazards

• Hazards are timing problems that arise because

– the execution of an operation in a pipeline is delayed
by one or more clock cycles

• Hazard reduces throughput

• Data hazards occur

– if a subsequent instruction tries to use the result of an
operation as an operand before the result is available

owh@ieee.org CO 2206 28

Data Hazards: Illustration

• e.g. 1 MOVA R1, R5

2 ADD R2, R1, R6

3 ADD R3, R1, R2

2 data hazards

owh@ieee.org CO 2206 29

Data Hazards Solution: Software

• Software solution: NOPs

– Have compiler or programmer generate machine code to delay
instructions using NOPs

• needs to have detailed info on how pipeline operates

owh@ieee.org CO 2206 30

Data Hazards Solution: Stalling

• Hardware solution 1: Stalling

– When operand is found at the DOF stage that has not
been written back yet,

• associated EX and WB are delayed by stalling the
pipeline for 1 clock cycle

– The pipeline is said to contain a bubble in subsequent
clock cycles and stages

owh@ieee.org CO 2206 31

Stalling: Illustration

• Data hazard will occur if there is a destination register at
EX that is to be written back and that is to be read at the
current DOF

owh@ieee.org CO 2206 32

Stalling: Implementation - 1

–Conditions for stalling

–MA in DOF must be 0
•A operand is coming from the register

file

–AA in DOF equals DA in EX

4

0

4

0

() ()

() ()

DOF EX DOF EX EX i

i

DOF EX DOF EX EX i

i

HA MA DA AA RW DA

HB MB DA BA RW DA

DHS HA HB

=

=

= =

= =

= +

owh@ieee.org CO 2206 33

Stalling: Implementation - 2

– RW in EX is 1

• DA in EX will definitely be written in WB

– OR () of all bits of DA is 1

• Register to be written is not R0

– If either HA or HB is 1, data hazard

• DHS = 1, stall is required

– Inverted DHS signal is used to initiate a bubble

• IR, PC, PC-1, PC-2 stopped from changing because their
load signals become 0

owh@ieee.org CO 2206 34

Stalling: Implementation - 3

• Bubble produced by using AND gates to force RW and
MW to 0

– Force DA to become 0 to prevent stalling in the next and
subsequent clock cycles because will then return 0

– Thus, in clock cycle 3 when data hazard for R1 is
detected

• A bubble is launched into EX for ADD

• At clock cycle 3, IF and DOF are stalled, thus info. is
retained

• At clock cycle 4, since DAEX=0, no stall, so execution of
stalled ADD proceeds

– Data hazard stall has the same throughput penalty as
NOPs

owh@ieee.org CO 2206 35

Data HazardsStalling
Implementation

owh@ieee.org CO 2206 36

Data Hazards Solution: Data
Forwarding

• Hardware solution 2: Data forwarding

– Does not have the penalty mentioned

– Based on the fact that results are available in the
pipeline before it is written back to the destination
register

• Thus, mux is needed to select data from register file or
the pipeline

• Logic is similar to stalling except now HA and HB are
used

owh@ieee.org CO 2206 37

Data Forwarding: Illustration

– Data forwarding may adds delay, causing clock period
to be somewhat longer

• Data hazards can also occur with memory access
as in ST and LD instructions

owh@ieee.org CO 2206 38

Data HazardsData Forwarding
Implementation

owh@ieee.org CO 2206 39

Control Hazard - 1

• Control hazards are associated with branches in
the control flow of a program

• e.g. 1 BZ R1, 18

2 MOVA R2, R3

3 MOVA R1, R2

4 MOVA R4, R2

20 MOVA R5, R6

– If R1=0, branch to location 20 (addressing is PC relative)

owh@ieee.org CO 2206 40

Control Hazard - 2

– But R1=0 is not detected until EX, so PC is set to 20
on the clock edge at end of clock cycle

– Thus, 2 instructions (not supposed to be executed)
already in the pipeline in EX and DOF respectively

owh@ieee.org CO 2206 41

Control Hazard Solution: Delayed
Branch

• Delayed branch:

– 2 NOPs are inserted and performed regardless of
whether branch is taken

– increase processing by 2 clock cycles

– wasted cycles can be avoided by rearranging the order
of instructions

owh@ieee.org CO 2206 42

Control Hazard Solutions: Stalling

• Branch hazard stall:
– Reduction in throughput

• Branch prediction:
– Predicts the branch will never be taken

– Fetch and decode next instruction in PC+1

– If branch is not taken after all, no delay

– If branch is taken, need to cancel instructions
rendered invalid

owh@ieee.org CO 2206 43

Control Hazard Solution: Stalling
Illustrated

– Cancellation is done by

• Inserting bubbles into EX and WB

owh@ieee.org CO 2206 44

Branch Stalling
Implementation

owh@ieee.org CO 2206 45

Branch Stalling Implementation

– Whether a branch is taken is determined by looking at
selection input of MUX C

– If branch is taken

• Cancel 1st instruction by:

– Making RW, MW 0 to prevent writing of register file and
data memory; and making BS 0 to prevent branch taking
if it is a branch instruction

• 2nd instruction is replaced with NOP by making IR all
0’s (NOP OPCODE)

– Can also assume branch is always taken

• Thus branch target address computed and used for
fetching the target instruction

owh@ieee.org CO 2206 46

Summary

• RISC: simple ISA, simple hardware, considerable programming effort,
effective for pipelining

• CISC: complex ISA, complex hardware, flexible to program

• Pipelining: CPU performance improvement technique

– break datapath and control into sections – interfaced with registers

• RISC Implementation

– Modifications: more registers

– ISA: mostly deal with registers, only store/load for memory

– Organization: pipelined

• Data Hazard: operand fetch stage requiring data modified in execute stage
(before write back)

• Data Hazard Solutions: NOPs, Stalling, Data Forwarding

• Control Hazard: branch taken and unwanted instructions in pipeline

• Control Hazard Solutions: NOPS, Stalling

	Slide 1: RISC and CISC
	Slide 2: Topics
	Slide 3: RISC vs CISC: RISC
	Slide 4: RISC vs CISC: CISC
	Slide 5: Single-Cycle CPU Datapath
	Slide 6: Pipelining
	Slide 7: Pipelined Datapath: Example
	Slide 8: Pipelined Datapath: Stages
	Slide 9: Pipelined Datapath: Performance
	Slide 10: Pipelined Datapath
	Slide 11: Microoperations through Pipeline
	Slide 12: Filling and Emptying
	Slide 13: Pipeline Control
	Slide 14: Pipeline Control: Stages - 1
	Slide 15: Pipeline Control: Stages - 2
	Slide 16: Pipeline Control: Performance
	Slide 17: Reduced Instruction Set Computer
	Slide 18: RISC ISA: Instruction Format - 1
	Slide 19: RISC ISA: Instruction Format - 2
	Slide 20: RISC ISA
	Slide 21: RISC Instruction Set
	Slide 22: RISC Addressing Modes
	Slide 23
	Slide 24: RISC Datapath Organization
	Slide 25: RISC Datapath Organization
	Slide 26: RISC Control Organization
	Slide 27: Data Hazards
	Slide 28: Data Hazards: Illustration
	Slide 29: Data Hazards Solution: Software
	Slide 30: Data Hazards Solution: Stalling
	Slide 31: Stalling: Illustration
	Slide 32: Stalling: Implementation - 1
	Slide 33: Stalling: Implementation - 2
	Slide 34: Stalling: Implementation - 3
	Slide 35: Data Hazards
	Slide 36: Data Hazards Solution: Data Forwarding
	Slide 37: Data Forwarding: Illustration
	Slide 38: Data Hazards
	Slide 39: Control Hazard - 1
	Slide 40: Control Hazard - 2
	Slide 41: Control Hazard Solution: Delayed Branch
	Slide 42: Control Hazard Solutions: Stalling
	Slide 43: Control Hazard Solution: Stalling Illustrated
	Slide 44
	Slide 45: Branch Stalling Implementation
	Slide 46: Summary

