
owh@ieee.org CO 2206 1

Computer Design Basics

CO 2206 Computer Organization

owh@ieee.org CO 2206 2

Topics

• Digital Systems – Datapath and Control Unit

• Datapath

– Arithmetic Logic Unit

– Shifter

– Function Unit

– Control Word

• Control Unit

– Instruction Set Architecture

– Instruction Format

– Instruction Specification

– Single-cycle Hardwired Control

– Instruction Decoder

• Single Cycle Computer Issues

owh@ieee.org CO 2206 3

Digital Systems: Modular Design

• Digital systems are designed using a
modular, hierarchical approach

– The system is partitioned into subsystems or
modules

– The modules are constructed hierarchically
from functional blocks e.g. registers, counters,
decoders, primitive gates, etc

– Subsystems communicate with data and
control signals

owh@ieee.org CO 2206 4

Digital Systems: Subsystems

• Generally partition digital system into

– Datapath, which performs data-processing
operations

– Control unit, which determines the sequence of those
operations

owh@ieee.org CO 2206 5

Subsystem: Control Unit

• Control signals activate the various data-
processing operations
– To activate a sequence of operations, the control unit

sends the proper sequence of control signals to the
datapath

– Control unit receives status bits from the datapath to
determine the next sequence of operations to be
performed

• Datapath and control unit may also interact with
memory, IO logic, etc

owh@ieee.org CO 2206 6

Subsystem: Datapath

• Datapath is defined by their registers and
operations performed on data stored

• Examples of register operations are
– load,

– clear,

– shift and

– count

• The movement of data stored in registers and
processing performed on the data are referred as
register transfer operations

owh@ieee.org CO 2206 7

Datapath and Control

• Datapath and control unit are the 2 parts of the
processor or CPU:

– Datapath - performs data transfer and processing operations

– Control Unit - Determines the enabling and sequencing of the
operations

Control

inputs

Data

inputs

Data

outputs

Datapath

Control

outputs

Control signals

Status signalsControl

unit

The control unit receives:
- External control inputs
- Status signals

The control unit sends:
- Control signals
- Control outputs

Status Signals describe
properties of

the state of the datapath

CPU Recall: 8086 Architecture

owh@ieee.org CO 2206 8

Identify Control and Datapath?

owh@ieee.org CO 2206 9

Datapath

owh@ieee.org CO 2206 10

Datapath – 1

• In addition to the registers, the datapath
contains the digital logic that implements the
various microoperations

• The datapath includes registers, selection logic
for registers, ALU, shifter, multiplexers

• The control unit directs the information flow by
applying signals to the select inputs

owh@ieee.org CO 2206 11

Datapath - 2

• Computer systems often employ a no. of
registers in conjunction with a shared ALU

• To perform a microoperation

– The contents of specified source registers are applied
to the inputs of the ALU

– ALU performs an operation

– Result transferred to a destination register

• With ALU as combinational circuit, the entire
register transfer operation is performed during
one clock cycle

owh@ieee.org CO 2206 12

• CPU Datapath
Example:

We will build this!

owh@ieee.org CO 2206 13

Arithmetic Logic Unit

• ALU is a combinational circuit that performs a
set of basic arithmetic and logic microoperations

– Has a no. of selection lines used to determine the
operation to be performed

– k selection lines can specify up to 2k distinct
operations

owh@ieee.org CO 2206 14

ALU: Function Selection

• S2 = 0

– Arithmetic
operations

– S0, S1, Cin specify 8
arithmetic
operations

• S2 = 1

– S0 and Cin specify 4
logic operations

owh@ieee.org CO 2206 15

ALU – Arithmetic Circuit

• Basic component of an arithmetic circuit is a
parallel adder

– Constructed with a no. of cascading FA

– Value of Y is controlled by S0, S1

owh@ieee.org CO 2206 16

Arithmetic: Function Table

owh@ieee.org CO 2206 17

Arithmetic: Implement Selection

• B input logic can be implemented with

– n multiplexers

• Data inputs to each multiplexer in stage i are 0, Bi, Bi’

and 1 (as per Y), corresponding to S1S0

• thus, arithmetic circuit can be constructed with n FA
and n 4x1 mux

– n combinational circuit

• Reduced no. of gates

owh@ieee.org CO 2206 18

Arithmetic: Selection K-Map

owh@ieee.org CO 2206 19

Arithmetic: Selection Circuit

• Logic diagram of 4-
bit arithmetic circuit

owh@ieee.org CO 2206 20

ALU – Logic Circuit

• One stage (cell) of logic circuit: MUX to select
function

owh@ieee.org CO 2206 21

ALU – Arithmetic & Logic

• Note that S0 of one
stage logic circuit is

connected to Ci, and

S0 to S1: strange
connection to
provide more
systematic encoding
of the control
variables when the
shifter is added later

owh@ieee.org CO 2206 22

ALU: Selection

• S2 = 0,

– Arithmetic operations selected

• S2 = 1,

– Logic operations selected

• S0,S1 and Cin control the selection of arithmetic
and logic operations

owh@ieee.org CO 2206 23

ALU: Full Function Table

owh@ieee.org CO 2206 24

Shifter

• To shift an operand by m bit positions, a shifter
must perform a series of m 1-bit position shifts

– Taking m clock cycles

• In datapath applications, data often must be
shifted more than 1 bit position in a single clock
cycle

• A barrel shifter is a combinational circuit that
shifts or rotates in one clock cycle

owh@ieee.org CO 2206 25

Barrel Shifter

• A barrel shifter can rotate left and right
– e.g. a left rotation by 3 position is same as right

rotation by 1 position (for 4-bit shifter)

– In a 2n-bit barrel shifter, i position of left rotation is
same as 2n–i bits of right rotation

owh@ieee.org CO 2206 26

Barrel Shifter

• A barrel shifter with 2n input and output lines
requires

– 2n multiplexers, each with 2n data inputs and n
selection input

owh@ieee.org CO 2206 27

Datapath Example: Performing a
Microoperation
Microoperation: R0 ← R1 + R2

• Apply 01 to A select to place
contents of R1 onto Bus A

• Apply 10 to B select to place
contents of R2 onto B data and
apply 0 to MB select to place
B data on Bus B

• Apply 0010 to G select to perform
addition G = Bus A + Bus B

• Apply 0 to MF select and 0 to MD
select to place the value of G onto BUS
D

• Apply 00 to Destination select to enable
the Load input to R0

• Apply 1 to Load Enable to force the
Load input to R0 to 1 so that R0 is
loaded on the clock pulse (not shown)

• The overall microoperation requires 1
clock cycle

MD select 0 1
MUX D

V

C

N

Z

n

n

n

n

n

n

n

n

n n

n

2 2

n

n

A data B data

Register file

1 0

MUX B Address
Out
Data
Out

Bus A
Bus B

n

n

Function unit

A B n
G select

4

Zero Detect

MF select

n
n

n
F

MUX F

H select
2

n

A B
S2:0 || Cin

Arithmetic/logic
unit (ALU)

G

B
S

Shifter

H

MUX

0

1

2

3

MUX

0

1

2

3

0 1 2 3

Decoder

Load

Load

Load

Load

Load enable

Write
D data

D address
2

Destination select

Constant in

MB select

A select

A address

B select

B address

R3

R2

R1

R0

Bus Dn

Data In

ILIR0 0

0 1

owh@ieee.org CO 2206 28

Datapath Representation: Register
File - 1

• A set of registers may be organised into a register file
(register array)

• A typical register file permits one or more words to be
read and written, all simultaneously

– A address access a word (register) to be read onto A data

– B address access a word (register) to be read onto B data

– D address access a word (register) to be written into from D data

• All register access occur in the same clock cycle

• Size of register file is 2m x n
– m is the no. of bits used to identify the register

– n is the no. of bits per register (word size)

owh@ieee.org 29

owh@ieee.org CO 2206 30

Function Unit

• Function unit is formed by grouping the shifter, ALU and
multiplexer MUX F

• Function unit has 4 status bits
– V (overflow), C (carry), N (sign), Z (zero)

• FS input selection bits determine the microoperation to
be carried out by the function unit

• MF, G and H select are determined from FS

– MF = 1, when FS(3:2) = 11

• H determines the shift function

– When MF = 0,

• G determines the ALU function

owh@ieee.org CO 2206 31

Function Unit: Function Table

owh@ieee.org CO 2206 32

An Example: Micro-coding

• Consider a register file with 8 registers R0 to R7

• Register file inputs to function unit through Bus
A and Bus B

• MUX B selects between constant values or
register values on B data

• MUX D selects the function unit output or data
on Data in as input for register file

owh@ieee.org CO 2206 33

Control signals
are numbered as
bit position;
giving a 16-bit
Control Word

owh@ieee.org CO 2206 34

Control Word: Bit Assignment

• The 16-bit control word specifies the
microoperation

– DA, AA, BA selects the registers

– MB determines the selection in MUX B

– FS controls the operation of function unit

– MD determines the selection in MUX D

– RW determines write on register

owh@ieee.org CO 2206 35

Control Word: Encoding

owh@ieee.org CO 2206 36

Control Word: Example Microop

Many microoperations can be performed by the same datapath

owh@ieee.org CO 2206 37

Control Word: Example Encoding

Sequences of microoperations can be realized by providing a control unit
that produces the appropriate sequences of control words

Changes in registers appear in the clock cycle after the microoperation is specified

owh@ieee.org CO 2206 38

Eight 8-bit registers:
reg0 to reg7 are 8-
bit registers

Unsigned decimal
representation is
used for all multiple-
bit signals

owh@ieee.org CO 2206 39

Control Unit

owh@ieee.org CO 2206 40

A Simple Computer Architecture - 1

• A portion of input to the processor consists of a
sequence of instructions

• Each instruction specifies

– The operation to perform

– Operands to use

– Where to place the result

– Which instructions to execute next, in some cases

• Instructions are usually stored in memory

owh@ieee.org CO 2206 41

A Simple Computer Architecture - 2

• Memory address of the instruction to be
executed comes from the PC register

– PC has logic for counting

– PC needs parallel load capability

• Thus, the Control Unit contains a PC and
necessary logic to interpret instruction

• Executing an instruction means activating the
necessary sequence of microoperations in the
datapath

CPU Recall: 8086 Architecture

owh@ieee.org CO 2206 42

Identify Control and Datapath?

owh@ieee.org CO 2206 43

Instruction Set Architecture

• A collection of instructions for a computer is the
instruction set

• An instruction set architecture consists of

– Storage resources - instructions and data are usually
stored together in the same memory

– Instruction formats

– Instruction specifications

• The Instruction Set Architecture (ISA) is the part
of the processor that is visible to the
programmer or compiler writer

owh@ieee.org CO 2206 44

Storage Resources

• Specifies the
resources the user
sees available for
storing information

owh@ieee.org CO 2206 45

Quotes from the Art of Assembly
Language by Randy Hyde - 1

The instruction set architecture (or ISA) is one of
the most important design issues that a CPU
designer must get right from the start. Features like
caches, pipelining, superscalar implementation,
etc., can all be grafted on to a CPU design long
after the original design is obsolete. However, it is
very difficult to change the instructions a CPU
executes once the CPU is in production and people
are writing software that uses those instructions.
Therefore, one must carefully choose the
instructions for a CPU.

owh@ieee.org CO 2206 46

Quotes from the Art of Assembly
Language by Randy Hyde - 2

An instruction set, or instruction set architecture
(ISA), is the part of the computer architecture
related to programming, including the native data
types, instructions, registers, addressing modes,
memory architecture, interrupt and exception
handling, and external I/O. An ISA includes a
specification of the set of opcodes (machine
language), the native commands implemented by a
particular CPU design.

owh@ieee.org CO 2206 47

Quotes from the Art of Assembly
Language by Randy Hyde - 3

Instruction set architecture is distinguished from the
microarchitecture, which is the set of processor
design techniques used to implement the
instruction set. Computers with different
microarchitectures can share a common instruction
set. For example, the Intel Pentium and the AMD
Athlon implement nearly identical versions of the
x86 instruction set, but have radically different
internal designs.

owh@ieee.org CO 2206 48

Instruction Formats - 1

• An instruction is divided into fields:
– Opcode

– Operand(s)/Others

• Opcode is a field that specifies an operation e.g.
add, subtract, shift.

– No. of bits required for opcode is a function of the
total no. of operations in the ISA

– Specific bit combination is assigned to each operation

owh@ieee.org CO 2206 49

Instruction Formats - 2

• An instruction must also specifies

– the registers or memory words in which the operands
are to be found

– where the result is to be placed

owh@ieee.org CO 2206 50

Instruction Formats - 3

• In (a), 3 or fewer registers are specified

– For some operation (by design), e.g. store to memory

• SA specify the register that contains the memory
address

• SB specify the register that contains the data to be
stored

• DR has no effect (this will prevent writing to
register file)

• In (b), the operand is specified in the instruction

• (c) does not change any register or memory
contents

owh@ieee.org CO 2206 51

Instruction Specifications

• For each instruction, the opcode can be
represented using mnemonics, and all field
specified in non-binary format

• An assembler is then used to convert this
representation to its binary equivalent

owh@ieee.org 52

Instruction Specifications

owh@ieee.org CO 2206 53

Example: Instruction
Representation

Assume R4=70, R5=80 before
instruction in 35

(register format)

(register format)

(immediate format)

(jump and branch format)

owh@ieee.org CO 2206 54

Example: Some Explanation

• In location 55,

– AD (Left) = 101, AD (Right) = 100

• AD = 101100 (left most is 1, i.e. -ve)

– Combine and sign-extended (to 16-bit) =
1111111111101100 = -20 in 2’s complement

– Assume that addition to PC occurs before PC has been
incremented

• If R6 = 0, next instruction = PC-20 = 35

• IF R6 ≠ 0, next instruction = PC = 56

owh@ieee.org CO 2206 55

Instruction to Microoperation

• Control unit uses address provided by PC to
retrieve instruction from memory

– Decodes the opcode and other instruction fields to
perform required microoperations

• A microoperation is specified by control word
in the h/w and decoded by the h/w

• A computer operation often requires a
sequence of microoperations

owh@ieee.org CO 2206 56

Single-cycle Hardwired Control - 1

• For convenience, instruction memory is included
with the control unit

• Instruction memory output goes to

– Instruction decoder

– Extend provide the address offset to PC

• Extension appends the leftmost bit of 6-bit AD address
offset

• Sign extension to preserve 2’s complement
representation i.e. if leftmost bit = 1, append all 1’s;
otherwise all 0’s

owh@ieee.org CO 2206 57

Block diagram for a
single-cycle computer

memory

(Sequential parts are in blue)

owh@ieee.org CO 2206 58

Single-cycle Hardwired Control - 2

– Zero Fill provide the constant input to the datapath
(for immediate format instructions)

• Appends 13 0’s to the left of the operand field to form
16-bit unsigned operand

• E.g. 110 becomes 0000000000000110 (+6)

• PC is updated in each clock cycle
– PC is a complex register

– behaviour depends on opcode, N and Z

• Single-cycle computer obtains and executes an
instruction all in a single clock cycle

owh@ieee.org CO 2206 59

Instruction Decoder - 1

owh@ieee.org CO 2206 60

Instruction Decoder - 2

• Instruction decoder

– A combinational circuit

– Provides all control words for the datapath

• Based on the contents of the fields of the instruction

• A no. of fields of the control word comes directly
from the instruction

– E.g. DA, AA, BA = DR, SA, SB, respectively

• Other bits are implemented through logic
– By careful divide of instructions into function types

owh@ieee.org CO 2206 61

Truth Table for Instruction
Decoder Logic: Function Division

owh@ieee.org CO 2206 62

Single-Cycle Computer Issues - 1

• Complex operations cannot be accomplished in a
single clock cycle

• Single-cycle computer uses 2 distinct memories
– one for instruction and one for data

– If both instructions and data are in the same memory,
2 read accesses are required

• First to obtain the instruction

• Second, if required, to read/write the data word

owh@ieee.org CO 2206 63

Single-Cycle Computer Issues - 2

– Since 2 different addresses must be applied to the
memory address inputs, at least 2 clock cycles are
required to obtain and execute the instruction

– Multiple-cycle computer uses a single memory

• Has a lower limit on the clock period based on
the worst delay path

owh@ieee.org CO 2206 64

Single-Cycle Computer
Issues - 3

– If the worst delay is 17ns, this
limits the clock frequency to
58.8MHz

• Too slow for modern computer
CPU

– To have a higher clock
frequency

• Reduce the delays of the
components on the path or

• Reduce the number of
components on the path

owh@ieee.org CO 2206 65

Summary - 1

• Digital systems can generally be partitioned into
two sections: Datapath and Control unit

• The datapath includes registers, selection logic
for registers, ALU, shifter, multiplexers

• ALU is a combinational circuit that performs a
set of basic arithmetic and logic microoperations

• A barrel shifter is a combinational circuit that
shifts or rotates n bits in one clock cycle

owh@ieee.org CO 2206 66

Summary - 2

• Control word specifies the microoperation

• The Instruction Set Architecture (ISA) is the part of the
processor that is visible to the programmer or compiler
writer including the native data types, instructions,
registers, addressing modes, memory architecture,
interrupt and exception handling, and external I/O

• Instruction decoder is a combinational circuit that
provides all control words for the datapath based on the
contents of the fields of the instruction

• Single-cycle computer uses 2 distinct memories and has
a lower limit on the clock period based on the worst
delay path

	Slide 1: Computer Design Basics
	Slide 2: Topics
	Slide 3: Digital Systems: Modular Design
	Slide 4: Digital Systems: Subsystems
	Slide 5: Subsystem: Control Unit
	Slide 6: Subsystem: Datapath
	Slide 7: Datapath and Control
	Slide 8: CPU Recall: 8086 Architecture
	Slide 9: Datapath
	Slide 10: Datapath – 1
	Slide 11: Datapath - 2
	Slide 12
	Slide 13: Arithmetic Logic Unit
	Slide 14: ALU: Function Selection
	Slide 15: ALU – Arithmetic Circuit
	Slide 16: Arithmetic: Function Table
	Slide 17: Arithmetic: Implement Selection
	Slide 18: Arithmetic: Selection K-Map
	Slide 19: Arithmetic: Selection Circuit
	Slide 20: ALU – Logic Circuit
	Slide 21: ALU – Arithmetic & Logic
	Slide 22: ALU: Selection
	Slide 23: ALU: Full Function Table
	Slide 24: Shifter
	Slide 25: Barrel Shifter
	Slide 26: Barrel Shifter
	Slide 27: Datapath Example: Performing a Microoperation
	Slide 28: Datapath Representation: Register File - 1
	Slide 29
	Slide 30: Function Unit
	Slide 31: Function Unit: Function Table
	Slide 32: An Example: Micro-coding
	Slide 33
	Slide 34: Control Word: Bit Assignment
	Slide 35: Control Word: Encoding
	Slide 36: Control Word: Example Microop
	Slide 37: Control Word: Example Encoding
	Slide 38
	Slide 39: Control Unit
	Slide 40: A Simple Computer Architecture - 1
	Slide 41: A Simple Computer Architecture - 2
	Slide 42: CPU Recall: 8086 Architecture
	Slide 43: Instruction Set Architecture
	Slide 44: Storage Resources
	Slide 45: Quotes from the Art of Assembly Language by Randy Hyde - 1
	Slide 46: Quotes from the Art of Assembly Language by Randy Hyde - 2
	Slide 47: Quotes from the Art of Assembly Language by Randy Hyde - 3
	Slide 48: Instruction Formats - 1
	Slide 49: Instruction Formats - 2
	Slide 50: Instruction Formats - 3
	Slide 51: Instruction Specifications
	Slide 52: Instruction Specifications
	Slide 53: Example: Instruction Representation
	Slide 54: Example: Some Explanation
	Slide 55: Instruction to Microoperation
	Slide 56: Single-cycle Hardwired Control - 1
	Slide 57
	Slide 58: Single-cycle Hardwired Control - 2
	Slide 59: Instruction Decoder - 1
	Slide 60: Instruction Decoder - 2
	Slide 61: Truth Table for Instruction Decoder Logic: Function Division
	Slide 62: Single-Cycle Computer Issues - 1
	Slide 63: Single-Cycle Computer Issues - 2
	Slide 64: Single-Cycle Computer Issues - 3
	Slide 65: Summary - 1
	Slide 66: Summary - 2

