
owh@ieee.org CO 2206 1

Registers and Register
Transfers

CO 2206 Computer Organization

owh@ieee.org CO 2206 2

Topics

• Registers
– Register with Parallel Load

• Register Transfer Operations
– Microoperations

• Register Transfer Language

• Shift Registers

• Counters

• Register Cell Design

• Register Transfer Structures

• Serial Operations

CPU Recall: 8086 Architecture

owh@ieee.org CO 2206 3

Identify Control and Datapath?

owh@ieee.org CO 2206 4

Registers

• Each flip-flop is capable of storing one bit of
information

• A register includes a set of flip-flops, with gates
that implement their state transitions

• An n-bit register has a group of n flip-flops
capable of storing n bits

• Registers are useful for storing and manipulating
information

• Simplest possible register consists of only flip-
flops without any external gates

owh@ieee.org CO 2206 5

4-bit Register: an Example

• Common Clock input triggers
all flip-flops on the rising edge
of each pulse

– four input values transferred into
the register

• 4 outputs sampled to obtain
the info stored in the register

• (Clear)’ used to clear all
register to 0’s

– 0 must be applied to flip-flops

owh@ieee.org CO 2206 6

Register with Parallel Load - 1

• Loading – transfer of info into register

• Parallel-loading

– all bits loaded simultaneously with a single clock
pulse

– Master-clock generator supplies a continuous train of
clock pulses to all registers in the system

– A separate control signal (Load) decides what specific
clock pulses will have an effect on particular register

owh@ieee.org CO 2206 7

Register with Parallel Load - 2

• When Load = 1,

– input transferred into register on next clk

• When Load = 0,

– inputs inhibited

– D reloaded with present value

– Feedback necessary for D

owh@ieee.org CO 2206 8

Register Transfer Operations

• The movement of data stored in registers and processing
performed on the data are referred as register transfer
operations

• Register transfer operations are specified by 3 basic
components:

– The set of registers in the system

– The operations performed on the data stored

– The control that supervises the sequence of operations

• A register has the capability to perform one or more
elementary operations such as load, count, add, subtract
and shift

owh@ieee.org CO 2206 9

Microoperation

• An elementary operation performed on data
stored in registers is called a microoperation.
Four common microop:

– Transfer: data between registers

– Arithmetic: arithmetic on data in registers

– Logic: bit manipulation on data in registers

– Shift: shift data (bits) within registers

owh@ieee.org CO 2206 10

Register Transfer Language

• Register transfer language (RTL) is used to
represent registers and specify the operations on
their contents

owh@ieee.org CO 2206 11

RTL: Example

Operation: transfer from R1 to R2 when K1=1
RTL: K1:(R2 R1)

Note operation only executed upon triggering

owh@ieee.org CO 2206 12

RTL Operators

owh@ieee.org CO 2206 13

RTL: Examples 1

owh@ieee.org CO 2206 14

RTL: Examples 2

owh@ieee.org CO 2206 15

Shift Registers - 1

• Shift register

– a register capable of shifting its stored bits either to
the right and/or left.

– consists of chain of flip-flops connected in cascade,
with output of one connected to input of next

owh@ieee.org CO 2206 16

Shift Registers - 2

• All flip-flops receive a common clk pulse

• Each clk shifts the contents of the register one
bit position to the right

• SI determines what goes into leftmost flip-flop
during shift

• SO taken from output of rightmost flip-flop prior
to application of pulse

owh@ieee.org CO 2206 17

Shift Register with Parallel Load - 1

• A shift register with accessible flip-flop outputs
and parallel load can be used for converting
incoming parallel data to outgoing serial data
and vice-versa

• 2 control inputs – shift, load

owh@ieee.org CO 2206 18

Shift Register with Parallel Load - 2

• Parallel load
allows for an
initial bit pattern
to be loaded,
which can then be
shifted around
the registers

owh@ieee.org CO 2206 19

4-bit Universal Shift Register - 1

• 4 Mux have 2 common selection s0, s1

– When s1s0 = 00,

• no change of states

– When s1s0 = 01,

• shift right

– When s1s0 = 10,

• shift left

– When s1s0 = 11,

• parallel load the multiplexers act as switches to
reconfigure the interconnections to

realise different operations

owh@ieee.org CO 2206 20

4-bit Universal Shift Register - 2

owh@ieee.org CO 2206 21

Serial – Parallel Conversion

• Shift registers can be used for converting serial
data to parallel data and vice versa

– If we’ve all the flip-flop outputs of a shift register,
then info entered serially by shifting can be taken out
in parallel

– If parallel-load capability is added, data entered in
parallel can be taken out in serial fashion by shifting
data stored in register

owh@ieee.org CO 2206 22

Counters

• Counter

– goes through prescribed sequence of states upon application of
input pulses

– useful for counting the number of occurrences of an event and
generating timing sequence to control the operations in a digital
system

• Binary counter

– Follows binary number sequence

– n-bit binary counter consists of n flip-flops and can count in
binary from 0 to 2n-1.

• Counter may also follow any other sequence of states

owh@ieee.org CO 2206 23

Ripple Counter (Asynchronous)

• A binary ripple counter
– consists of a series connection of complementing flip-

flops

– the flip-flop output transition serves as a source for
triggering other flip-flops

– the flip-flop holding the least significant bit receives
the incoming clock pulse

• Ripple counter is asynchronous sequential
circuit and cannot be described by Boolean
equations developed for describing clocked
sequential circuit

owh@ieee.org CO 2206 24

Example: 4-bit Ripple Counter

owh@ieee.org CO 2206 25

Ripple Counter: Pros and Cons

• Advantage of ripple counter –
simple

• Disadvantage

– Delay dependence and
unreliable operation

– Large ripple counter can be slow
due to the length of time
required for the ripple to finish

owh@ieee.org CO 2206 26

Synchronous Binary Counters

• In contrast to ripple counter,

– Synchronous counter have the clock applied to the C
inputs of all flip-flops

– The common clock pulse triggers all flip-flops
simultaneously rather than one at a time

owh@ieee.org CO 2206 27

4-bit Synchronous Counter

Serial Gating

X1

X2

X3

X0

X1

X2

X3

X0• Logic

– XOR complements each

bit

– AND chain causes

complement

of a bit if all bits toward

LSB

from it equal 1

• Parallel gating

– fixed 1 AND gate delay

owh@ieee.org CO 2206 28

Up-down Parallel Binary Counter

• Up = 1, count up

• Up = 0, Down = 1, count down

• Up = Down = 0, no change in
state

• Count-up binary counter, flip-
flop at a position
complemented if all lower-
order bits are 1

• Count-down binary counter,
flip-flop at a position
complemented if all lower-
order bits are 0

owh@ieee.org CO 2206 29

Binary Counter with
Parallel Load - 1

• Counter often
require a parallel-
load capability for
transferring an
initial number prior
to the count
operation

owh@ieee.org CO 2206 30

Binary Counter with Parallel Load - 2

• Load = 1, disable count, D0 to D3 transfer into
flip-flops

• Load = 0, enable count, operates as a counter

• Load = Count = 0, no change in states

• Carry-out = 1, if all flip-flops = 1 while count
input is enabled

– useful for expanding to > 4 bits

owh@ieee.org CO 2206 31

BCD Counter

• Y = 1 when present state is 1001

– Y can enable the count of next decade when it switches from
1001 to 0000

owh@ieee.org CO 2206 32

BCD Counter: Using Binary
Counter

• Reset to 0000 (i.e. make D=0000) when Q=1001
(10d)

– using combinational logic, in this case an AND gate

owh@ieee.org CO 2206 33

BCD Counter: Using Sequential
Logic

• Input equations

– D1 = Q1’

– D2 = Q2 Q1Q8’

– D4 = Q4 Q1Q2

– D8 = Q8 (Q1Q8 + Q1Q2Q4)

– Y = Q1Q8

• Unused case are used as don’t care conditions

circuit can be build from four D flip-flops
and some logic gates

owh@ieee.org CO 2206 34

Modulo-N Counter

• A modulo-n counter is a counter that goes
through a repeated sequence of N states

– E.g.

• 4-bit binary counter is mod-16 counter

• BCD counter is mod-10 counter

• Sequence may follow the binary count or any
other arbitrary sequence

• The design follows the procedure for the design
of synchronous sequential circuit

owh@ieee.org CO 2206 35

Counting Modulo N

• The following techniques use an n-bit binary counter
with asynchronous or synchronous clear and/or parallel
load:
– Detect a terminal count of N in a Modulo-N count sequence to

asynchronously Clear the count to 0 or asynchronously Load in
value 0 (These lead to counts which are present for only a very
short time and can fail to work for some timing conditions!)

– Detect a terminal count of N - 1 in a Modulo-N count sequence to
Clear the count synchronously to 0

– Detect a terminal count of N - 1 in a Modulo-N count sequence to
synchronously Load in value 0

• Alternatively, custom design a modulo N counter as done
for BCD

owh@ieee.org CO 2206 36

Counting Modulo 7: 0 to 6
Synchronously Load on Terminal Count of 6

• A synchronous 4-bit binary
counter with a synchronous
load and an asynchronous
clear is used to make a
Modulo 7 counter

• Use the Load feature to
detect the count "6" and
load in "zero". This gives
a count of 0, 1, 2, 3, 4, 5, 6,
0, 1, 2, 3, 4, 5, 6, 0, ...

• Using don’t cares for states
above 0110, detection of 6 can be done with Load = Q4 Q2

D3 Q3

D2 Q2

D1 Q1

D0 Q0

CLEAR

CP

LOAD

Clock

0

0

0

0

Reset

owh@ieee.org CO 2206 37

Counting Modulo 6: 9 to 14
Synchronously Preset 9 on Reset and Load 9 on

Terminal Count 14
• A synchronous, 4-bit binary

counter with a synchronous
Load is to be used to make a
Modulo 6 counter.

• Use the Load feature to
preset the count to 9 on
Reset and detection of
count 14.

• This gives a count of 9, 10, 11, 12, 13, 14, 9, 10, 11, 12, 13, 14, 9, …

• If the terminal count is 15 detection is usually built in as Carry Out
(CO)

Clock

D3 Q3

D2 Q2

D1 Q1

D0 Q0

CLEAR

CP

LOAD

0

0

1

1

Reset

1

owh@ieee.org CO 2206 38

Arbitrary Count Sequence - 1

• DA = A B

• DB = C

• DC = B’C’

owh@ieee.org CO 2206 39

Arbitrary Count Sequence - 2

• Since there are 2 unused states,
we analyze the circuit to
determine their effect

owh@ieee.org CO 2206 40

Register Cell Design

• We can design an n-bit register with one or more
associated microoperations by

– Designing a register cell and make n copies of it

• Relationship between next state and flip-flop
output determine the design procedure

owh@ieee.org CO 2206 41

Register Cell Design: Example

• A register A is to implement the following
register transfer:

– AND: A A B

– EXOR: A A B

– OR: A A B

• Assume that

– Only one of AND, EXOR, OR is equal to 1

– For AND, EXOR, OR equal to 0, A remains
unchanged

AND

A

BOR

EXOR

owh@ieee.org CO 2206 42

Register Cell Design : Example - 1

• Approach 1 (ad hoc):

– Uses register with parallel load from D
flip-flops with EN

• LOAD = AND + EXOR + OR

• Di = A(t+1)i = ANDAiBi + EXOR(Ai
Bi) + OR(Ai +Bi)

• LOAD initiate the transfer, and the
combinational logic at Di execute the
transfer depending on operation
selected

to add combinational
circuit at inputs

owh@ieee.org CO 2206 43

Register Cell Design: Example – 2.1

• Approach 2 (seq. circuit design):

– Input equation

• Di = A(t+1)i = ANDAiBi + EXOR(AiBi’+Ai’Bi) +
OR(Ai +Bi) + AND’EXOR’OR’Ai

In Approach 1, the last term of the above equation was implemented
through the LOAD

owh@ieee.org CO 2206 44

Register Cell Design: Example – 2.2

– Simplified

• Di = ANDAiBi + EXOR(AiBi’+Ai’Bi) + OR(Ai +Bi) +
AND’EXOR’OR’Ai

= (OR + AND)AiBi + (OR + EXOR)(AiBi’+Ai’Bi) +
(AND + EXOR)’Ai

• Let

– C1 = OR + AND

– C2 = OR + EXOR

– C3 = (AND + EXOR)’

• Di = C1AiBi + C2(AiBi’+Ai’Bi) + C3Ai

Observations:
• Control variables (AND, OR,

EXOR) are common to all cells
and can be shared

• Individual signals (A, B) are for
each cell

• Split the above in the equations

owh@ieee.org CO 2206 45

Register Cell Design: Example – 2.3

Common to all cells Individual cell

owh@ieee.org CO 2206 46

Register Transfer Structures

• Multiplexer-Based Transfers - Multiple inputs are
selected by a multiplexer dedicated to the register

• Bus-Based Transfers - Multiple inputs are selected by a
shared multiplexer driving a bus that feeds inputs to
multiple registers

• Three-State Bus - Multiple inputs are selected by
3-state drivers with outputs connected to a bus that feeds
multiple registers

• Other Transfer Structures - Use multiple multiplexers,
multiple buses, and combinations of all the above

owh@ieee.org CO 2206 47

Multiplexer-based Transfers - 1

Example: If (K1=1) then (R0 R1) else if (K2=1) then (R0 R2)

• RTL: K1:R0R1, K1’K2:R0R2

–when K1=1, R1 loaded into R0 irrespective of K2

–when K1=0 and K2=1, R2 loaded into R0

– else no change

n-to-1 transfer

RTL format: controls: register transfer, controls: register transfer, …

owh@ieee.org CO 2206 48

Multiplexer-based Transfers - 2

Elaborated circuit of previous slide

owh@ieee.org CO 2206 49

Multiplexer-based Transfers - 3

• Generalization for n sources

owh@ieee.org CO 2206 50

Dedicated MUX-Based Transfers

• Multiplexer connected to
each register input
produces a very flexible
transfer structure =>

• Characterize the
simultaneous transfers
possible with this
structure.

S0

S1

S2

L0

L1

L2

n

n

MUX

S
0

1

n

R0

Load

n

n

MUX

S
0

1

n

R1

Load

n

n

MUX

S
0

1

n

R2

Load

n*(n-to-1) transfer

owh@ieee.org CO 2206 51

Bus-Based Transfers - 1

• A typical digital system has many registers

• Path needed to transfer data from one register to
another

• Excessive logic and interconnection if each
register is to own dedicated multiplexers

• Use shared transfer path - bus

owh@ieee.org CO 2206 52

Bus-Based Transfers - 2

comparison of mux and bus based: number of wires

no simultaneous transfer

owh@ieee.org CO 2206 53

Bus-Based Transfers - 3

• Select – determines the source register that will
provide the multiplexer output

• Load – determines the destination register(s)

owh@ieee.org CO 2206 54

Three-State Bus - 1

• A bus can be constructed with tri-state buffers
instead of multiplexers

– Many tri-state buffer outputs can be combined to
form a bit line of a bus, implemented using only one
level of logic gates

– Potential for reductions in number of connections

– Signals can travel in 2 directions on a three-state bus

– Multiplexer requires a high fan-in OR, which requires
multiple layers of OR gates, introducing more logic
and increasing delay

– Practical way to construct fast buses with many
sources

owh@ieee.org CO 2206 55

Three-State Bus - 2
Same register-transfer capability
Three-State: three data connections per bit to the bus
Multiplexer: six data connections per bit to the bus

owh@ieee.org CO 2206 56

Serial vs Parallel Transfer

• Serial transfer

– info transferred and manipulated one bit at a time

– by shifting bits out of source register into destination
register using shift registers

– slow, less wires/connections, long distance

• Parallel transfer

– all bits of the register transferred at the same time

– fast, more wires/connections, limited distance

owh@ieee.org CO 2206 57

Serial Transfer - 1

• Serial transfer from Reg A to B:

– While data is transferred to Reg B, Reg A can:

– receive 0’s, other info or its own data

• Shift input controls when and how many times
the registers are shifted: clock pass through only
when Shift is 1

owh@ieee.org CO 2206 58

Serial Transfer - 2

For 4-bit shift register, Shift will be maintained at high for 4 clock pulses

owh@ieee.org CO 2206 59

Serial Microoperation

• Parallel mode
– All bits transferred/manipulated simultaneously

during one clock pulse, thus faster mode of operation

• Serial mode
– Slower because of the time it takes to

transfer/manipulate info in and out of shift registers,
one bit at a time

– Requires less hardware

– Control signals must be maintained for a period equal
to one word time

owh@ieee.org CO 2206 60

Serial Addition - 1

owh@ieee.org CO 2206 61

Serial Addition - 2

• 2 binary numbers to be added serially stored in 2
shift registers

– Initially, A holds augend, B holds addend and carry
flip-flop cleared to 0

• Bits added sequentially through a single full-
adder

– Carry out of FA is transferred to a D flip-flop.

– Output of D flip-flop used as input carry for next pair
of significant bits (next clock)

owh@ieee.org CO 2206 62

Serial Addition - 3

• Sum shifted into A

– A used for storing augend and sum bits

• SI of B able to receive new binary number while
addend shifted out during addition

• Shift control enables registers and flip-flop for a
number of clk pulses equal to no. of bits in
registers

owh@ieee.org CO 2206 63

Serial Adder vs. Parallel Adder

• Registers used

– Parallel adder - registers with parallel-load

– Serial adder - uses shift registers

• No. of FA

– parallel adder – n FA for n bits binary number

– serial adder – one FA and a carry flip-flop

• Excluding the registers

– parallel adder is a combinational circuit

– whereas serial adder is a sequential circuit

owh@ieee.org CO 2206 64

Summary

• Registers store n-bit information, using n flip-flops

• A register has the capability to perform one or more
elementary operations such as load, count, add, subtract
and shift; these operations are called microoperations

• Register Transfer Language is symbolic description of
register transfer operations

• Different types of registers: Shift Registers, Counters

• Register Cell Design: ad hoc or sequential circuit design

• Register Transfer Structures: multiplexer-based, bus-
based, three-state bus and others

• Serial Operations: transfer and addition

	Slide 1: Registers and Register Transfers
	Slide 2: Topics
	Slide 3: CPU Recall: 8086 Architecture
	Slide 4: Registers
	Slide 5: 4-bit Register: an Example
	Slide 6: Register with Parallel Load - 1
	Slide 7: Register with Parallel Load - 2
	Slide 8: Register Transfer Operations
	Slide 9: Microoperation
	Slide 10: Register Transfer Language
	Slide 11: RTL: Example
	Slide 12: RTL Operators
	Slide 13: RTL: Examples 1
	Slide 14: RTL: Examples 2
	Slide 15: Shift Registers - 1
	Slide 16: Shift Registers - 2
	Slide 17: Shift Register with Parallel Load - 1
	Slide 18: Shift Register with Parallel Load - 2
	Slide 19: 4-bit Universal Shift Register - 1
	Slide 20: 4-bit Universal Shift Register - 2
	Slide 21: Serial – Parallel Conversion
	Slide 22: Counters
	Slide 23: Ripple Counter (Asynchronous)
	Slide 24: Example: 4-bit Ripple Counter
	Slide 25: Ripple Counter: Pros and Cons
	Slide 26: Synchronous Binary Counters
	Slide 27: 4-bit Synchronous Counter
	Slide 28: Up-down Parallel Binary Counter
	Slide 29: Binary Counter with Parallel Load - 1
	Slide 30: Binary Counter with Parallel Load - 2
	Slide 31: BCD Counter
	Slide 32: BCD Counter: Using Binary Counter
	Slide 33: BCD Counter: Using Sequential Logic
	Slide 34: Modulo-N Counter
	Slide 35: Counting Modulo N
	Slide 36: Counting Modulo 7: 0 to 6 Synchronously Load on Terminal Count of 6
	Slide 37: Counting Modulo 6: 9 to 14 Synchronously Preset 9 on Reset and Load 9 on Terminal Count 14
	Slide 38: Arbitrary Count Sequence - 1
	Slide 39: Arbitrary Count Sequence - 2
	Slide 40: Register Cell Design
	Slide 41: Register Cell Design: Example
	Slide 42: Register Cell Design : Example - 1
	Slide 43: Register Cell Design: Example – 2.1
	Slide 44: Register Cell Design: Example – 2.2
	Slide 45: Register Cell Design: Example – 2.3
	Slide 46: Register Transfer Structures
	Slide 47: Multiplexer-based Transfers - 1
	Slide 48: Multiplexer-based Transfers - 2
	Slide 49: Multiplexer-based Transfers - 3
	Slide 50: Dedicated MUX-Based Transfers
	Slide 51: Bus-Based Transfers - 1
	Slide 52: Bus-Based Transfers - 2
	Slide 53: Bus-Based Transfers - 3
	Slide 54: Three-State Bus - 1
	Slide 55: Three-State Bus - 2
	Slide 56: Serial vs Parallel Transfer
	Slide 57: Serial Transfer - 1
	Slide 58: Serial Transfer - 2
	Slide 59: Serial Microoperation
	Slide 60: Serial Addition - 1
	Slide 61: Serial Addition - 2
	Slide 62: Serial Addition - 3
	Slide 63: Serial Adder vs. Parallel Adder
	Slide 64: Summary

