## Sequential Logic

#### CO 2206 Computer Organization

## Topics

- Basics
- Building Blocks: Latches and Flip-Flops
- Sequential Circuit Analysis
- Sequential Circuit Design

## Sequential Logic

- Outputs of *sequential logic circuits* depend not only on present inputs, but also on stored values (states), which are a function of previously applied inputs
- Output determined by
  - inputs
  - present state of the storage elements
    - 'previous' outputs
- Timing is a factor

## Sequential Circuit

• A *sequential circuit* consists of a combinational circuit to which storage elements are connected to form a feedback path



• Next states and output(s) are interrelated. In some cases, the feedback consists of a simple interconnection of some outputs of the combinational circuit to its inputs.

## Two Types

- Main types are:
  - Synchronous sequential circuit
    - whose behaviour can be defined from the knowledge of its signals at discrete instants of time
    - All circuits in the system change their state at some precisely defined instant driven by a system clock
  - Asynchronous sequential circuit
    - whose behaviour depends upon the order in which its input signals change and can be affected at any instant of time
    - implies that all required inputs may not be valid at the same time

## Synchronous – the preferred

- Synchronization is achieved by a timing device a *clock generator* 
  - Which produces a periodic train of *clock pulses*
- The outputs of storage elements can change their value in the presence of clock pulses

## Synchronous





## Storage – using feedback

- Storage circuit can be
  - a simple interconnection from outputs to input
  - i.e. feedback
- Feedback can potentially introduce instability





(a) Stable circuit

(b) Unstable circuit

 Can't change information stored → need another input → as in latch (using NOR or NAND)

#### Building Blocks for Sequential Logic Circuits

- In the same way that gates are the building blocks of combinatorial circuits, latches and flip-flops are the building blocks for sequential circuits
- While gates had to be built directly from transistors, latches can be built from gates, and flip-flops can be built from latches
- Major differences among various types of latches (and flip-flops) are in
  - number of inputs they possess
  - manner in which inputs affect the binary state

## Latches

- A bistable multivibrator electronic device which has two stable states
- Latches can store one bit of information; it is the most basic storage element
- Today the word is mainly used for simple transparent storage elements

• Simplest of latches are constructed from 2 crosscoupled NOR gates or NAND gates



- Cross-coupled connection constitutes a feedback path
- When both S and R = 0, next output depends on current output
  - Under normal conditions, both inputs of the latch remain 0 unless the state is to be changed
  - the latch can be in either the set or reset state when both inputs = 0

- When S = 1, R = 1, both Q and Q' = 0
  - Violates the fact that they are the complement of each other
  - When input changes from 11 to 00, the output is also indeterminate
  - These can be avoided by making sure that 1's are not applied to both inputs simultaneously

- To write 1 into SR latch, set SR as 10
- To write 0, use SR = 01
- To retain a stored bit, keep SR at oo



## S'R' Latches (NAND) - 1

• This is an S'R' (active-low) latch because the NAND latch requires a 0 signal to change its state



## SR Latches with Control Input

- Control input (C) acts as an enable signal for the other 2 inputs
- When C returns to 0, circuit remains in current state



## D Latch - 1

• To eliminate indeterminate state, ensure S and R never equal 1 at the same time



## D Latch - 2

- D latch has only 2 inputs
  - D (data)
  - C (control)
- When control input is enabled (C=1)
  - data input of D latch is transferred to the Q output
- When control input is disabled (C=O)
  - Last data input value is retained until enabled again

## Graphic Symbols for Latches



## Problems with Latch

- D latch with clock pulses in its control input is triggered every time the pulse goes to logic 1 level
- The output and state of latches may keep changing as long as the clock pulse stays in the active level
  - Because of unpredictability, the output of the latch cannot be applied to the input of the same or another latch when the latches are triggered by a common clock source

# Flip-flops

- A bistable multivibrator that has two stable states and thereby is capable of serving as one bit of memory
- Today, the term flip-flop has come to mostly denote nontransparent (clocked or edge-triggered) devices
- Flip-flops operate properly because it is triggered only during signal *transition* 
  - From 0 to 1
     (positive-edge transition)
  - From 1 to 0 (negative-edge transition)



(b) Positive-edge response

(c) Negative-edge response

# Flip-flops vs. Latches

- Both latches and flip-flops are circuit elements whose output depends not only on the current inputs, but also on previous inputs and outputs
- The difference between a latch and a flip-flop are:
  - Latches are level triggered device while flip-flops are edge triggered device
  - Latches are asynchronous and transparent
    - the output follows any transition at the input
  - Flip-flops are synchronous and not transparent
    - it holds the captured value at the output
  - Flip-flops are often built from latches

## Master-slave Flip-flops: D - 1

• Master-slave D flip-flop



## Master-slave Flip-flops: D - 2

- Constructed from 2 separate latches: *master* and *slave*
- When Clk=1
  - External input D determine the value stored in master and output Y
  - Slave disabled because C at slave is o
- When Clk=0
  - Master is disabled, Slave is enabled
  - slave output Q = master output Y
- Note that the circuit changes its output value on the negative edge of the clock pulse

### Master-slave Flip-flops: Connectivity - 1

- Consider many master-slave flip-flops, with outputs of some going to inputs of other
- Assume Clk inputs to all flip-flops are synchronised (occur at the same time)
- At the beginning of Clk, some masters change state, but flip-flop outputs remain at previous values

Master-slave Flip-flops: Connectivity - 2

- After Clk=0, some outputs change state, but not affecting any other masters until next Clk
- Therefore content of first can be transferred to second and second to first, and occurring during the same Clk pulse
- Flip-flop's output may change only during –ve edge transition of the clock

## Edge-triggered D flip-flops



(a) Positive-edge

(a) Negative-edge

# JK flip-flops

- Input J and K behave like S and R to set and clear the flip-flop
- When both J = K = 1, flip-flop switches to its complement state



## T flip-flops

- T = 1, present state complemented
- T = 0, no change



(a) From JK flip-flop

(b) From D flip-flop

(c) Graphic symbol

#### Characteristic and Excitation Tables

- Function of a Combinational Logic Circuit can be described using a Truth Table
  - Truth Table, however does not contain time variable
- Characteristic table is useful for analysis and for defining flip-flop's operation
  - it specifies the next state when inputs and present state are known
  - it contains  $2^n$  rows, where **n** is the number of inputs
- Excitation table lists the required flip-flop inputs for a given change of state
  - It contains 2<sup>2m</sup> rows, where **m** is the number of state variables (which may be the same as the outputs in simple circuits)

## Characteristic and Excitation Tables: D and SR

Characteristic Table

 D
 Q(t+1)
 Operation

 0
 0
 Reset

 1
 1
 Set

| Q(t+1) | D | Operation |
|--------|---|-----------|
| 0      | 0 | Reset     |
| 1      | 1 | Set       |

Excitation Table

#### Characteristic Table

#### Excitation Table

| s | R | Q(t+1) | Operation |
|---|---|--------|-----------|
| 0 | 0 | Q(t)   | No change |
| 0 | 1 | 0      | Reset     |
| 1 | 0 | 1      | Set       |
| 1 | 1 | ?      | Undefined |

| Q(t) | Q(t+1) | S | R | Operation |
|------|--------|---|---|-----------|
| 0    | 0      | 0 | Х | No change |
| 0    | 1      | 1 | 0 | Set       |
| 1    | 0      | 0 | 1 | Reset     |
| 1    | 1      | Х | 0 | No change |

## Characteristic and Excitation Tables: JK and T

Characteristic Table

| J | К | Q(t+1)            | Operation  |
|---|---|-------------------|------------|
| 0 | 0 | Q(t)              | No change  |
| 0 | 1 | 0                 | Reset      |
| 1 | 0 | 1                 | Set        |
| 1 | 1 | $\overline{Q}(t)$ | Complement |

| Q(t) | Q(t+1) | J | К | Operation |
|------|--------|---|---|-----------|
| 0    | 0      | 0 | Х | No change |
| 0    | 1      | 1 | Х | Set       |
| 1    | 0      | Х | 1 | Reset     |
| 1    | 1      | Х | 0 | No Change |

Excitation Table

#### Characteristic Table

| Т | Q(t+1)            | Operation  |
|---|-------------------|------------|
| 0 | Q(t)              | No change  |
| 1 | $\overline{Q}(t)$ | Complement |

| Q(t+1)            | Т | Operation  |
|-------------------|---|------------|
| Q(t)              | 0 | No change  |
| $\overline{Q}(t)$ | 1 | Complement |

Excitation Table

owh@ieee.org

## Direct (or Asynchronous) Inputs

- Flip-flops often provide special inputs (set or reset) for setting and resetting them asynchronously
- Bubble in the output line indicates they are active at o



| R | С          | D | Q | Q' |
|---|------------|---|---|----|
| 0 | Х          | Х | 0 | 1  |
| 1 | $\uparrow$ | 0 | 0 | 1  |
| 1 | ſ          | 1 | 1 | 0  |

(a) Graphic symbol

(b) Function table

## Sequential Circuit Analysis

- Analysis consists of obtaining a table or diagram for the time sequence of inputs, outputs and states
- Analysis starts from a circuit diagram and culminates in a *state table* or *state diagram*
- A circuit with *n* binary state variables has 2<sup>*n*</sup> possible states
  - $-2^{n}$  is always finite, so sequential circuits are sometimes called *finite-state machines*

#### Sequential Circuit Analysis: FF Input Equations

- Flip-flop *input* equations
  - input generated by combinational circuit part
- Input equations:
  - $D_A = Ax + Bx$  $- D_B = A'x$
- Output y = (A + B)x'
- A and B are state variables



#### Sequential Circuit Analysis: State Table

- State table
  - Next state derived from input equation

| Presen | t State  | Input     | Nex     | t State    | Output             |
|--------|----------|-----------|---------|------------|--------------------|
| Α      | В        | X         | Α       | В          | Y                  |
| 0      | 0        | 0         | 0       | 0          | 0                  |
| 0      | 0        | 1         | 0       | 1          | 0                  |
| 0      | 1        | 0         | 0       | 0          | 1                  |
| 0      | 1        | 1         | 1       | 1          | 0                  |
| 1      | 0        | 0         | 0       | 0          | 1                  |
| 1      | 0        | 1         | 1       | 0          | 0                  |
| 1      | 1        | 0         | 0       | 0          | 1                  |
| 1      | 1        | 1         | 1       | 0          | 0                  |
| ee.org | all comb | vinations | CO 2206 | Next state | is $D_A$ and $D_B$ |

#### Sequential Circuit Analysis: State Diagram

- No difference between state table and state diagram
- No. of inside circles = state of flip-flops
- Directed lines are labelled
  - input during present state +
    "/" + output during present state



*Line label = input/output* 

## Mealy and Moore Model

- *Mealy model* circuit
  - Sequential circuit in which outputs depend on inputs and states
  - Arcs contain inputs and outputs
- Moore model
  - Sequential circuit in which outputs depend only on states
  - Outputs included with the states in the circles

#### Moore Model Circuit Analysis: Example



#### Analysis with JK Flip-flops: Input Equations



#### Analysis with JK Flip-flops: State Table

| Prese | ent State | Input     | Next State |      | FI             | ip-flo         | p Inp          | uts            |
|-------|-----------|-----------|------------|------|----------------|----------------|----------------|----------------|
| Α     | В         | <b>x</b>  | Α          | В    | J <sub>A</sub> | K <sub>A</sub> | J <sub>B</sub> | K <sub>B</sub> |
| 0     | 0         | 0         | 0          | 1    | 0              | 0              | 1              | 0              |
| 0     | 0         | 1         | 0          | 0    | 0              | 0              | 0              | 1              |
| 0     | 1         | 0         | 1          | 1    | 1              | 1              | 1              | 0              |
| 0     | 1         | 1         | 1          | 0    | 1              | 0              | 0              | 1              |
| 1     | 0         | 0         | 1          | 1    | 0              | 0              | 1              | 1              |
| 1     | 0         | 1         | 1          | 0    | 0              | 0              | 0              | 0              |
| 1     | 1         | 0         | 0          | 0    | 1              | 1              | 1              | 1              |
| 1     | 1         | 1         | 1          | 1    | 1              | 0              | 0              | 0              |
|       | all comb  | vinations |            | Novt | ototo in do    | tormino        | dfrom          |                |

owh@ieee.org

all combinations

CO 2206

Next state is determined from flip-flop inputs

#### Analysis with JK Flip-flops: State Diagram



the circuit has no separate output the state variables can be the outputs

CO 2206

### Analysis with T Flip-flops



#### Analysis with T Flip-flops: State Table

| Prese | ent State | Input | Next State |   | Output | Flip-<br>Inp   | flop<br>uts    |
|-------|-----------|-------|------------|---|--------|----------------|----------------|
| Α     | В         | X     | Α          | В | У      | T <sub>A</sub> | Τ <sub>Β</sub> |
| 0     | 0         | 0     | 0          | 0 | 0      | 0              | 0              |
| 0     | 0         | 1     | 0          | 1 | 0      | 0              | 1              |
| 0     | 1         | 0     | 0          | 1 | 0      | 0              | 0              |
| 0     | 1         | 1     | 1          | 0 | 0      | 1              | 1              |
| 1     | 0         | 0     | 1          | 0 | 0      | 0              | 0              |
| 1     | 0         | 1     | 1          | 1 | 1      | 0              | 1              |
| 1     | 1         | 0     | 1          | 1 | 1      | 0              | 0              |
| 1     | 1         | 1     | 0          | 0 | 0      | 1              | 1              |

owh@ieee.org

all combinations

CO 2206

Next state is determined from flip-flop inputs: toggle if T=1

## Sequential Circuit Design: Steps - 1

- 1. Specification
- 2. Derive state diagram
- 3. Obtain state table
- 4. State assignment
  - assign binary values to each state
  - often has major effect on excitation eqn, output eqn, and eventually circuit cost

#### Sequential Circuit Design: Steps - 2

- 5. Choose the type of flip-flop
  - JK for general applications
  - D for applications requiring transfer of data
  - T for applications involving complementation
- 6. Derive flip-flop input functions and the circuit output functions
- 7. Draw the logic diagram

#### Sequence Recognizer: Specification and State Diagram

- Specification:
  - has one input X and one output Z
  - recognize the occurrence of 1101 bit sequence on X
    - Z = 1, when sequence detected, otherwise O



#### Sequence Recognizer: State Diagram Explained - 1

• Apparently (simply follow 1101 sequence):



- Can detect: ...01101...
- Problem detecting overlaps: ...1**1101**..., ...**1101101**....

#### Sequence Recognizer: State Diagram Explained - 2

- Observations (e.g.):
  - To detect 11101, whenever there was a 1, we should count the next 1 as the "second", i.e. going to state C
  - To detect tail overlap 1101101, the last 1 may be the first 1 in next pattern, i.e. going to state B



#### Sequence Recognizer: State Table

• If excess states are present, desirable to combine states into fewest needed

| Present | Next  | State | Out   | Output Z |  |  |
|---------|-------|-------|-------|----------|--|--|
| State   | X = 0 | X = 1 | X = 0 | X = 1    |  |  |
| А       | А     | В     | 0     | 0        |  |  |
| В       | А     | C     | 0     | 0        |  |  |
| С       | D     | C     | 0     | 0        |  |  |
| D       | А     | В     | 0     | 1        |  |  |

#### Sequence Recognizer: State Assignment

- Simplest to assign in binary counting order, or
- Gray code order
- Number of State Variables n gives  $2^n$  states
  - for four (4) states, requires 2 variables (2 bits)

| Present Stat         | te Next              | State                | Output Z         |                  |  |
|----------------------|----------------------|----------------------|------------------|------------------|--|
| AB                   | X = 0                | X = 1                | X = 0            | X = 1            |  |
| 00<br>01<br>11<br>10 | 00<br>00<br>10<br>00 | 01<br>11<br>11<br>01 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>1 |  |
| ee org               |                      | CO 2206              |                  |                  |  |

#### Sequence Recognizer: State Table Expanded

| Present State |   | Input                      | Next                  | State                                                     | Output |
|---------------|---|----------------------------|-----------------------|-----------------------------------------------------------|--------|
| Α             | В | X                          | Α                     | В                                                         | Z      |
| 0             | 0 | 0                          | 0                     | 0                                                         | 0      |
| 0             | 0 | 1                          | 0                     | 1                                                         | 0      |
| 0             | 1 | 0                          | 0                     | 0                                                         | 0      |
| 0             | 1 | 1                          | 1                     | 1                                                         | 0      |
| 1             | 0 | 0                          | 0                     | 0                                                         | 0      |
| 1             | 0 | 1                          | 0                     | 1                                                         | 1      |
| 1             | 1 | 0                          | 1                     | 0                                                         | 0      |
| 1             | 1 | 1                          | 1                     | 1                                                         | 0      |
| owh@ieee.org  |   | all combinations<br>CO 220 | this ta<br>6 flip-flo | this table allows for detern<br>flip-flop input equations |        |

#### Sequence Recognizer: Determine Flip-Flop Input Equations

- Choose D flip-flop (simplest)
  - if other flip-flop type chosen, the inputs (e.g. J and K) should be expanded into the State Table in previous slide



#### Sequence Recognizer: The Circuit



#### Sequence Recognizer: Design using JK Flip-flops

| Present State Inpu |   | Input | Next State |   | Output | Flip-flop Inputs |                |       | ts             |
|--------------------|---|-------|------------|---|--------|------------------|----------------|-------|----------------|
| А                  | В | Х     | А          | В | Z      | J <sub>A</sub>   | K <sub>A</sub> | $J_B$ | K <sub>B</sub> |
| 0                  | 0 | 0     | 0          | 0 | 0      | 0                | Х              | 0     | Х              |
| 0                  | 0 | 1     | 0          | 1 | 0      | 0                | Х              | 1     | Х              |
| 0                  | 1 | 0     | 0          | 0 | 0      | 0                | Х              | Х     | 1              |
| 0                  | 1 | 1     | 1          | 1 | 0      | 1                | Х              | Х     | 0              |
| 1                  | 0 | 0     | 0          | 0 | 0      | Х                | 1              | 0     | Х              |
| 1                  | 0 | 1     | 0          | 1 | 1      | Х                | 1              | 1     | Х              |
| 1                  | 1 | 0     | 1          | 0 | 0      | Х                | 0              | Х     | 1              |
| 1                  | 1 | 1     | 1          | 1 | 0      | х                | 0              | Х     | 0              |

#### Sequence Recognizer: Design using JK Flip-flops – Input Equations

| J <sub>A</sub> | B'x' | B'x | Bx | Bx' |
|----------------|------|-----|----|-----|
| A'             | 0    | 0   | 1  | 0   |
| А              | X    | Х   | X  | Х   |
|                |      |     |    |     |

 $J_A = Bx$ 

| K <sub>A</sub>      | B'x' | B'x | Bx | Bx' |  |  |
|---------------------|------|-----|----|-----|--|--|
| A'                  | X    | X   | Х  | Х   |  |  |
| А                   | 1    | 1   | 0  | 0   |  |  |
| K <sub>A</sub> = B' |      |     |    |     |  |  |





z is not changed

#### Sequence Recognizer: Design using JK Flip-flops – Circuit



#### Counter: State Diagram



## Counter: State Table Using T-FF

| <b>Present State</b> |                       | N              | ext Sta               | ate                   | Flip-flop Inputs |                               |                           |                 |
|----------------------|-----------------------|----------------|-----------------------|-----------------------|------------------|-------------------------------|---------------------------|-----------------|
| A <sub>2</sub>       | <b>A</b> <sub>1</sub> | A <sub>0</sub> | <b>A</b> <sub>2</sub> | <b>A</b> <sub>1</sub> | A <sub>0</sub>   | TA <sub>2</sub>               | TA <sub>1</sub>           | TA <sub>0</sub> |
| 0                    | 0                     | 0              | 0                     | 0                     | 1                | 0                             | 0                         | 1               |
| 0                    | 0                     | 1              | 0                     | 1                     | 0                | 0                             | 1                         | 1               |
| 0                    | 1                     | 0              | 0                     | 1                     | 1                | 0                             | 0                         | 1               |
| 0                    | 1                     | 1              | 1                     | 0                     | 0                | 1                             | 1                         | 1               |
| 1                    | 0                     | 0              | 1                     | 0                     | 1                | 0                             | 0                         | 1               |
| 1                    | 0                     | 1              | 1                     | 1                     | 0                | 0                             | 1                         | 1               |
| 1                    | 1                     | 0              | 1                     | 1                     | 1                | 0                             | 0                         | 1               |
| 1                    | 1                     | 1              | 0                     | 0                     | 0                | 1                             | 1                         | 1               |
| owh@iee              | e.org                 |                |                       | CO 2206               |                  | Next state is flip-flop input | determine<br>ts: toggle i | ed from         |

59

#### **Counter: Flip-Flop Input Equations**



### Counter: Circuit Diagram



## Summary

- Sequential logic circuit has output(s) determined not only by its input(s) but also by its previous state (inputs and outputs)
  - also called finite-state machines
- Building blocks are latches and flip-flops
  - flip-flops are edge-triggered while latches are level-triggered
- Two models of sequential logic circuit: Mealy and Moore
  - Mealy output(s) depend on input(s) and state
  - Moore output(s) depend on state only
- Analysis of a sequential logic circuit consists of obtaining the flip-flop input equations, state table and then state diagram
- Designing of a sequential logic circuit follows the reverse order of the analysis; it obtain the state diagram, state table, flip-flop input equations and finally the circuit
- The type of flip-flop used affects the columns in state table and the flip-flop input equations