Sequential Logic

CO 2206 Computer Organization

Topics

- Basics
- Building Blocks: Latches and Flip-Flops
- Sequential Circuit Analysis
- Sequential Circuit Design

Sequential Logic

- Outputs of sequential logic circuits depend not only on present inputs, but also on stored values (states), which are a function of previously applied inputs
- Output determined by
- inputs
- present state of the storage elements
- 'previous' outputs
- Timing is a factor

Sequential Circuit

- A sequential circuit consists of a combinational circuit to which storage elements are connected to form a feedback path

- Next states and output(s) are interrelated. In some cases, the feedback consists of a simple interconnection of some outputs of the combinational circuit to its inputs.

Two Types

- Main types are:
- Synchronous sequential circuit
- whose behaviour can be defined from the knowledge of its signals at discrete instants of time
- All circuits in the system change their state at some precisely defined instant - driven by a system clock
- Asynchronous sequential circuit
- whose behaviour depends upon the order in which its input signals change and can be affected at any instant of time
- implies that all required inputs may not be valid at the same time

Synchronous - the preferred

- Synchronization is achieved by a timing device a clock generator
- Which produces a periodic train of clock pulses
- The outputs of storage elements can change their value in the presence of clock pulses

Synchronous

(a) Block diagram

(b) Timing diagram of clock pulses

Storage - using feedback

- Storage circuit can be
- a simple interconnection from outputs to input
- i.e. feedback
- Feedback can potentially introduce instability

(a) Stable circuit

(b) Unstable circuit
- Can't change information stored \rightarrow need another input \rightarrow as in latch (using NOR or NAND)

Building Blocks for Sequential Logic Circuits

- In the same way that gates are the building blocks of combinatorial circuits, latches and flip-flops are the building blocks for sequential circuits
- While gates had to be built directly from transistors, latches can be built from gates, and flip-flops can be built from latches
- Major differences among various types of latches (and flip-flops) are in
- number of inputs they possess
- manner in which inputs affect the binary state

Latches

- A bistable multivibrator electronic device which has two stable states
- Latches can store one bit of information; it is the most basic storage element
- Today the word is mainly used for simple transparent storage elements

SR Latches (NOR) - 1

- Simplest of latches are constructed from 2 crosscoupled NOR gates or NAND gates

(a) Logic diagram

(b) Function table

SR Latches (NOR) - 2

- Cross-coupled connection constitutes a feedback path
- When both S and $\mathrm{R}=0$, next output depends on current output
- Under normal conditions, both inputs of the latch remain o unless the state is to be changed
- the latch can be in either the set or reset state when both inputs $=0$

SR Latches (NOR) - 3

- When $\mathrm{S}=1, \mathrm{R}=1$, both Q and $\mathrm{Q}^{\prime}=0$
- Violates the fact that they are the complement of each other
- When input changes from 11 to 00 , the output is also indeterminate
- These can be avoided by making sure that 1's are not applied to both inputs simultaneously

SR Latches (NOR) - 4

- To write 1 into SR latch, set SR as 10
- To write o, use $\mathrm{SR}=01$
- To retain a stored bit, keep SR at oo

S'R' Latches (NAND) - 1

- This is an S'R' (active-low) latch because the NAND latch requires a o signal to change its state

(a) Logic diagram

(b) Function table

SR Latches with Control Input

- Control input (C) acts as an enable signal for the other 2 inputs
- When C returns to o, circuit remains in current state

C	S	R	Next state of Q
0	X	X	No change
1	0	0	No change
1	0	1	$\mathrm{Q}=0 ;$ Reset state
1	1	0	$\mathrm{Q}=1 ;$ Set state
1	1	1	Undefined

(a) Logic diagram
(b) Function table

D Latch - 1

- To eliminate indeterminate state, ensure S and R never equal 1 at the same time

D Latch - 2

- D latch has only 2 inputs
- D (data)
- C (control)
- When control input is enabled $(\mathrm{C}=1)$
- data input of D latch is transferred to the Q output
- When control input is disabled $(\mathrm{C}=0)$
- Last data input value is retained until enabled again

Graphic Symbols for Latches

Problems with Latch

- D latch with clock pulses in its control input is triggered every time the pulse goes to logic 1 level
- The output and state of latches may keep changing as long as the clock pulse stays in the active level
- Because of unpredictability, the output of the latch cannot be applied to the input of the same or another latch when the latches are triggered by a common clock source

Flip-flops

- A bistable multivibrator that has two stable states and thereby is capable of serving as one bit of memory
- Today, the term flip-flop has come to mostly denote nontransparent (clocked or edge-triggered) devices
- Flip-flops operate properly because it is triggered only during signal transition
- From o to 1 (positive-edge transition) (negative-edge transition)

(b) Positive-edge response

(c) Negative-edge response

Flip-flops vs. Latches

- Both latches and flip-flops are circuit elements whose output depends not only on the current inputs, but also on previous inputs and outputs
- The difference between a latch and a flip-flop are:
- Latches are level triggered device while flip-flops are edge triggered device
- Latches are asynchronous and transparent
- the output follows any transition at the input
- Flip-flops are synchronous and not transparent
- it holds the captured value at the output
- Flip-flops are often built from latches

Master-slave Flip-flops: D-1

- Master-slave D flip-flop

Master-slave Flip-flops: D-2

- Constructed from 2 separate latches: master and slave
- When Clk=1
- External input D determine the value stored in master and output Y
- Slave disabled because C at slave is o
- When Clk=o
- Master is disabled, Slave is enabled
- slave output $\mathrm{Q}=$ master output Y
- Note that the circuit changes its output value on the negative edge of the clock pulse

Master-slave Flip-flops: Connectivity - 1

- Consider many master-slave flip-flops, with outputs of some going to inputs of other
- Assume Clk inputs to all flip-flops are synchronised (occur at the same time)
- At the beginning of Clk, some masters change state, but flip-flop outputs remain at previous values

Master-slave Flip-flops: Connectivity - 2

- After Clk=o, some outputs change state, but not affecting any other masters until next Clk
- Therefore content of first can be transferred to second and second to first, and occurring during the same Clk pulse
- Flip-flop's output may change only during -ve edge transition of the clock

Edge-triggered D flip-flops

(a) Positive-edge

(a) Negative-edge

JK flip-flops

- Input J and K behave like S and R to set and clear the flip-flop
- When both $\mathrm{J}=\mathrm{K}=1$, flip-flop switches to its complement state

T flip-flops

- $\mathrm{T}=1$, present state complemented
- $\mathrm{T}=\mathrm{o}$, no change

(a) From $J K$ flip-flop

(b) From D flip-flop

(c) Graphic symbol

Characteristic and Excitation Tables

- Function of a Combinational Logic Circuit can be described using a Truth Table
- Truth Table, however does not contain time variable
- Characteristic table is useful for analysis and for defining flip-flop's operation
- it specifies the next state when inputs and present state are known
- it contains 2^{n} rows, where \mathbf{n} is the number of inputs
- Excitation table lists the required flip-flop inputs for a given change of state
- It contains $2^{2 m}$ rows, where \mathbf{m} is the number of state variables (which may be the same as the outputs in simple circuits)

Characteristic and Excitation Tables: D and SR

Characteristic Table
Excitation Table

\mathbf{D}	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	Operation
0	0	Reset
1	1	Set

$\mathbf{Q (t + 1)}$	\mathbf{D}	Operation
0	0	Reset
1	1	Set

Characteristic Table

\mathbf{S}	\mathbf{R}	$\mathbf{Q (t + 1)}$	Operation
0	0	$Q(t)$	No change
0	1	0	Reset
1	0	1	Set
1	1	$?$	Undefined

$\mathbf{Q (t)}$	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	\mathbf{S}	\mathbf{R}	Operation
0	0	0	X	No change
0	1	1	0	Set
1	0	0	1	Reset
1	1	X	0	No change

Characteristic and Excitation Tables: JK and T

Characteristic Table

\mathbf{J}	\mathbf{K}	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	Operation
0	0	$Q(t)$	No change
0	1	0	Reset
1	0	1	Set
1	1	$\bar{Q}(t)$	Complement

Characteristic Table

\mathbf{T}	$\mathbf{Q (t + 1)}$	Operation
0	$Q(t)$	No change
1	$\bar{Q}(t)$	Complement

Excitation Table

$\mathbf{Q (t)}$	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	\mathbf{J}	\mathbf{K}	Operation
0	0	0	X	No change
0	1	1	X	Set
1	0	X	1	Reset
1	1	X	0	No Change

Excitation Table

$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	\mathbf{T}	Operation
$Q(t)$	0	No change
$\bar{Q}(t)$	1	Complement

Direct (or Asynchronous) Inputs

- Flip-flops often provide special inputs (set or reset) for setting and resetting them asynchronously
- Bubble in the output line indicates they are active at o

R	C	D	Q	Q^{\prime}
0	X	X	0	1
1	\uparrow	0	0	1
1	\uparrow	1	1	0

(a) Graphic symbol
(b) Function table

Sequential Circuit Analysis

- Analysis consists of obtaining a table or diagram for the time sequence of inputs, outputs and states
- Analysis starts from a circuit diagram and culminates in a state table or state diagram
- A circuit with n binary state variables has 2^{n} possible states
-2^{n} is always finite, so sequential circuits are sometimes called finite-state machines

Sequential Circuit Analysis: FF Input Equations

- Flip-flop input equations
- input generated by combinational circuit part
- Input equations:

$$
\begin{aligned}
& -D_{A}=A x+B x \\
& -D_{B}=A^{\prime} x
\end{aligned}
$$

- Output $\mathrm{y}=(\mathrm{A}+\mathrm{B}) \mathrm{x}^{\prime}$
- A and B are state variables

Sequential Circuit Analysis: State Table

- State table
- Next state derived from input equation

Present State		$\frac{\text { Input }}{x}$	Next State		$\begin{gathered} \text { Output } \\ \hline \mathrm{Y} \end{gathered}$
A	B		A	B	
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0
.org all combinations				t st	D_{A} and $D^{\text {a }}$

Sequential Circuit Analysis: State Diagram

- No difference between state table and state diagram
- No. of inside circles = state of flip-flops
- Directed lines are labelled
- input during present state + "/" + output during present state

Mealy and Moore Model

- Mealy model circuit
- Sequential circuit in which outputs depend on inputs and states
- Arcs contain inputs and outputs
- Moore model
- Sequential circuit in which outputs depend only on states
- Outputs included with the states in the circles

Moore Model Circuit Analysis: Example

	Next state is D_{A}				
Present state	Inputs	Next state	Output		
A	X	Y	A	Z	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	0	
1	0	0	1	1	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	
	State table				

Analysis with JK Flip-flops: Input Equations

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{A}}=\mathrm{B} \\
& \mathrm{~K}_{\mathrm{A}}=\mathrm{Bx}^{\prime} \\
& \\
& \mathrm{J}_{\mathrm{B}}=\mathrm{x}^{\prime} \\
& \mathrm{K}_{\mathrm{B}}=\mathrm{A} \oplus \mathrm{x}
\end{aligned}
$$

Analysis with JK Flip-flops: State Table

Present State		Input x	Next State		Flip-flop Inputs			
A	B		A	B	$J_{\text {A }}$	$\mathrm{K}_{\text {A }}$	J_{B}	K_{B}
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0
owh@	all com	tions		$\underset{\text { flin }}{\mathrm{Ne}}$	is de puts	rmine	from	4

Analysis with JK Flip-flops: State Diagram

Analysis with T Flip-flops

Analysis with T Flip-flops: State Table

Pre	State	Input		State	Output	$\begin{aligned} & \text { Flip- } \\ & \text { Inp } \end{aligned}$	flop its
A	B	\mathbf{X}	A	B	y	T_{A}	T_{B}
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	1
0	1	0	0	1	0	0	0
0	1	1	1	0	0	1	1
1	0	0	1	0	0	0	0
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	0
1	1	1	0	0	0	1	1
owh@ieee.org all combinations			CO $2206 \begin{aligned} & \text { N } \\ & \\ & \text { flip }\end{aligned}$		Next state is determined from flip-flop inputs: toggle if $T=1$		

Sequential Circuit Design: Steps - 1

1. Specification
2. Derive state diagram
3. Obtain state table
4. State assignment

- assign binary values to each state
- often has major effect on excitation eqn, output eqn, and eventually circuit cost

Sequential Circuit Design: Steps - 2

5. Choose the type of flip-flop

- JK for general applications
- D for applications requiring transfer of data
- T for applications involving complementation

6. Derive flip-flop input functions and the circuit output functions
7. Draw the logic diagram

Sequence Recognizer: Specification and State Diagram

- Specification:
- has one input X and one output Z
- recognize the occurrence of 1101 bit sequence on X
- $Z=1$, when sequence detected, otherwise 0

Sequence Recognizer: State Diagram Explained - 1

- Apparently (simply follow 1101 sequence):

- Can detect: ...01101...
- Problem detecting overlaps: ...11101..., ...1101101...

Sequence Recognizer: State Diagram Explained - 2

- Observations (e.g.):
- To detect 11101, whenever there was a 1, we should count the next $\mathbf{1}$ as the "second", i.e. going to state \mathbf{C}
- To detect tail overlap 1101101, the last 1 may be the first $\mathbf{1}$ in next pattern, i.e. going to state \mathbf{B}

Sequence Recognizer: State Table

- If excess states are present, desirable to combine states into fewest needed

Present State	Next State			Output Z	
	$\mathbf{X = \mathbf { 0 }}$	$\mathbf{X = 1}$		$\mathbf{X = 0}$	$\mathbf{X = 1}$
A	A	B		0	0
B	A	C		0	0
C	D	C		0	0
D	A	B		0	1

Sequence Recognizer: State Assignment

- Simplest to assign in binary counting order, or
- Gray code order
- Number of State Variables n gives 2^{n} states
- for four (4) states, requires 2 variables (2 bits)

Present State		Next State			Output \boldsymbol{Z}	
	$\mathbf{A B}$		$\mathbf{X = 0}$	$\mathbf{X = 1}$		$\mathbf{X}=\mathbf{0}$
$\mathbf{y y n n n}$	$\mathbf{X}=\mathbf{1}$					
00		00	01		0	0
01		00	11		0	0
11		10	11		0	0
10		00	01		0	1

Sequence Recognizer: State Table Expanded

Sequence Recognizer: Determine Flip-Flop Input Equations

- Choose D flip-flop (simplest)
- if other flip-flop type chosen, the inputs (e.g. J and K) should be expanded into the State Table in previous slide

$D_{A}=A B+B X$

$D_{B}=X$

$\mathrm{Z}=\mathrm{A} \overline{\mathrm{B}} \mathrm{X}$

Sequence Recognizer: The Circuit

Sequence Recognizer: Design using JK Flip-flops

| Present State | | Input | Next State | | Output | Flip-flop Inputs | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | x | A | B | z | J_{A} | K_{A} | J_{B} | K_{B} |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | x | 0 | x |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | x | 1 | x |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | x | x | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 | 1 | x | x | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | x | 1 | 0 | x |
| 1 | 0 | 1 | 0 | 1 | 1 | x | 1 | 1 | x |
| 1 | 1 | 0 | 1 | 0 | 0 | x | 0 | x | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 | x | 0 | x | 0 |

Sequence Recognizer: Design using JK Flip-flops - Input Equations

J_{A}	$\mathrm{B}^{\prime} x^{\prime}$	$\mathrm{B}^{\prime} x$	Bx	Bx
A^{\prime}	0	0	1	0
A	x	x	x	x
$J_{A}=\mathrm{Bx}$				

K_{A}	$\mathrm{B}^{\prime} \mathrm{x}^{\prime}$	$\mathrm{B}^{\prime} \mathrm{x}$	Bx	Bx
A^{\prime}	x	x	x	x
A	1	1	0	0
$\mathrm{~K}_{\mathrm{A}}=\mathrm{B}^{\prime}$				

J_{B}	$\mathrm{B}^{\prime} x^{\prime}$	$\mathrm{B}^{\prime} x$	Bx	Bx	
A^{\prime}	0	1	x	x	
A	0	1	x	x	
$J_{B}=x$					

K_{B}	$\mathrm{B}^{\prime} \mathrm{x}^{\prime}$	$\mathrm{B}^{\prime} \mathrm{x}$	Bx	Bx
A^{\prime}	x	x	0	1
A	x	x	0	1
$\mathrm{~K}_{\mathrm{B}}=x^{\prime}$				

z is not changed

Sequence Recognizer: Design using JK Flip-flops - Circuit

Counter: State Diagram

Counter: State Table Using T-FF

Present State

$\mathbf{A}_{\mathbf{2}}$	\mathbf{A}_{1}	$\mathbf{A}_{\mathbf{0}}$		$\mathbf{A}_{\mathbf{2}}$	\mathbf{A}_{1}	$\mathbf{A}_{\mathbf{0}}$		TA $_{\mathbf{2}}$	TA $_{1}$
0	0	0		TA $_{\mathbf{0}}$					
0	0	1		0	1	0		0	1
0	1	0		0	1	1		0	0
0	1	1	1	0	0		1	1	1
1	0	0	1	0	1		0	0	1
1	0	1	1	1	0		0	1	1
1	1	0	1	1	1		0	0	1
1	1	1	0	0	0		1	1	1

owh@ieee.org

Next State

Flip-flop Inputs

Next state is determined from flip-flop inputs: toggle if $T=1$59

Counter: Flip-Flop Input Equations

$T_{A 2}=A_{1} A_{0}$

$T_{A 1}=A_{0}$

$T_{A 0}=1$

Counter: Circuit Diagram

Summary

- Sequential logic circuit has output(s) determined not only by its input(s) but also by its previous state (inputs and outputs)
- also called finite-state machines
- Building blocks are latches and flip-flops
- flip-flops are edge-triggered while latches are level-triggered
- Two models of sequential logic circuit: Mealy and Moore
- Mealy - output(s) depend on input(s) and state
- Moore - output(s) depend on state only
- Analysis of a sequential logic circuit consists of obtaining the flip-flop input equations, state table and then state diagram
- Designing of a sequential logic circuit follows the reverse order of the analysis; it obtain the state diagram, state table, flip-flop input equations and finally the circuit
- The type of flip-flop used affects the columns in state table and the flip-flop input equations

