
owh@ieee.org CO 2206 1

VHSIC Hardware Description
Language

CO 2206 Computer Organization

owh@ieee.org CO 2206 2

Topics

• Hardware Description Language

• VHDL History

• VHDL Characteristics

• Abstract Levels in IC Design

• Abstract Levels and VHDL

• VHDL – file structure, syntax

• VHDL Models: Structural, Behavioral

• Test Bench

owh@ieee.org CO 2206 3

Hardware Description Language - 1

• HDL resembles programming language, but are
specifically oriented to describing hardware
structures and behavior
– HDL represent extensive parallel operation

• whereas most programming languages represent serial
operation

• Usages (for digital networks) - to describe and
simulate complex digital systems:
– Modelling

– Simulation

– Synthesis

owh@ieee.org CO 2206 4

Hardware Description Language - 2

• HDL models are reusable
– re-used in several designs/projects

– frequently needed function blocks are collected in model
libraries

• Reasons for HDL
– Logic simulation and synthesis are the main reason for the

growth in the use of HDL

– HDLs are portable across CAD tools, whereas schematic capture
tools are typically unique to particular vendor

• Few HDL languages
– VHDL (VHSIC HDL) – we will only learn VHDL

– Verilog

– ABEL (Advanced Boolean Equation Language)

owh@ieee.org CO 2206 5

VHDL History

• Early ‘70s: Initial discussions

• 1981: First introduced for the US Department of Defense
(DoD) under the VHSIC programe with the goal to
develop very high-speed integrated circuit; IEEE
sponsored

• 1983: IBM, Texas instruments and Intermetrics started
to develop this language

• 1985: VHDL 7.2 version was released

• 1987: IEEE standardized the language as IEEE 1076

• 1993: New standard IEEE 1076-1993

VHDL = VHSIC HDL = Very High Speed Integrated Circuit HDL

owh@ieee.org CO 2206 6

VHDL Characteristics

• Execution of assignments:
– Sequential statements are executed one after another. The order

of the assignment must be considered when sequential
statements are used.

– Concurrent statements are active continuously. So the order of
the statements is not relevant. Concurrent statements are
especially suited to model the parallelism of hardware.

• Methodologies:
– Abstraction allows for the description of different parts of a

system with different amount of detail.

– Modularity enables the designer(s) to split big functional blocks
and to write a model for each part.

– Hierarchy lets the designer build a design out of submodules
which may consist of several submodules, themselves.

owh@ieee.org CO 2206 7

Abstraction Levels in IC Design - 1

• Abstraction is hiding of details:
– Differentiation between essential and nonessential information

• Creation of abstraction levels:
– On every abstraction level only the essential information is considered,

nonessential information is left out

• Equability of the abstraction:
– All information of a model on one abstraction level contains the same

degree of abstraction

owh@ieee.org CO 2206 8

Abstraction Levels in IC Design - 2

• Behavioral - the function
– no system clock and signal transitions are asynchronous with

respect to the switching time

– usually simulatable but not synthesizable.

• Register Transfer Level (RTL) - the design is divided
into combinational logic and storage elements
– controlled by a system clock

– called synthesizable description

• Logic level - netlist (interconnections) with logic gates
(AND, OR, NOT, ...) and storage elements

• Layout - at the bottom of the hierarchy
– different cells of the target technology are placed on the chip and

the connections are routed

owh@ieee.org CO 2206 9

Abstraction levels and VHDL

• VHDL is applicable to the upper three
abstraction levels

– not suitable to describe a layout

owh@ieee.org CO 2206 10

ASIC Development Process
An Example VHDL Application

owh@ieee.org CO 2206 11

VHDL File Structure

• Two major parts:
– Entity describes the interface
– Architecture contains the description of the function

-- comment

library ieee;

use ieee.std_logic_1164.all;

-- declaration of the entity

entity entity_name is

 -- declarations

end entity_name;

-- body (architecture)

architecture arch_name of entity_name is

 -- declarative

begin

 -- definitions

end arch_name;

owh@ieee.org CO 2206 12

VHDL Syntax Rules

• Case insensitive

• Comments: '--' until end of line

• Statements are terminated by ';'

– (may span multiple lines)

• List delimiter: ','

• Signal assignment: '<='

• User defined names:

– letters, numbers, underscores

– start with a letter

owh@ieee.org CO 2206 13

Entity Declaration

– Interface description

– No behavioral definition

entity NAME_OF_ENTITY is [generic generic_declarations);]

 port (signal_names: mode type;

 signal_names: mode type;

 :

 signal_names: mode type;

end [NAME_OF_ENTITY];

entity HALFADDER is

port(

A,B: in bit;

SUM,CARRY: out bit);

end HALFADDER;

ports

owh@ieee.org CO 2206 14

Port Modes and Data Types

• in:

– signal values are read-
only

• out:

– signal values are write-
only

– multiple drivers

• buffer:
– comparable to out

– signal values may be
read, as well

– only 1 driver

• inout:
– bidirectional port

‘0’ ‘1’
Std_logic

owh@ieee.org CO 2206 15

Definition of Array

• Collection of signals of the
same type

• Predefined arrays

– bit_vector (array of bit)

– string (array of character)

alternative: bit_vector(0 to 3)

owh@ieee.org CO 2206 16

Types of Assignment for 'bit' Data
Types

• Single bit values are
enclosed in '.'

• Vector values are
enclosed in "..."

– optional base
specification (default:
binary)

– values may be separated
by underscores to
improve readability

architecture EXAMPLE of ASSIGNMENT is

signal Z_BUS : bit_vector (3 downto 0);

signal BIG_BUS : bit_vector (15 downto 0);

begin

-- legal assignments:

Z_BUS(3) <= ’1’;

Z_BUS <= ”1100”;

Z_BUS <= b”1100”;

BIG_BUS <= B”0000_0001_0010_0011”;

end EXAMPLE;

owh@ieee.org CO 2206 17

Architecture - 1

• Implementation of the design

– always connected with a specific entity

– one entity can have several architectures

– entity ports are available as signals within the architecture

– contains concurrent statements

architecture ARCHITECTURE_NAME of ENTITY_NAME is

 -- declarative statements

begin

-- definitive concurrent statements

end ARCHITECTURE_NAME;

architecture RTL of HALFADDER is

begin

SUM <= A xor B;

CARRY <= A and B;

end RTL;

owh@ieee.org CO 2206 18

Architecture - 2

• Each architecture is split into an optional
declarative part and the definition part

• Declarative part (between the keywords ‘is’
and ‘begin’):
– new objects that are needed only within the

architecture
• constants, data types, signals (actual), subprograms, etc.

can be declared here
• components are declared here

• Definition part (after 'begin'):
– holds concurrent statements (order not important)
– can be simple signal assignments, process statements,

which group together sequential statements, and
component instantiations

owh@ieee.org CO 2206 19

Architecture Models - 1

• Architecture descriptions can be in the following models:
– Structural modeling - ports
– Behavioral:

• Algorithmic modeling – process with sequential statements
• Dataflow modeling – signals in concurrent statements

– Mixed

• Both structural and dataflow describes the entity based
on its implementation, i.e. connections (of signals or
ports)

• Behavioral (algorithmic) approach to modeling hardware
components is different from the other two methods in
that it does not necessarily in any way reflect how the
design is implemented
– basically the black box approach to modeling

owh@ieee.org CO 2206 20

Structural Model

• Describes a circuit in terms of the interconnection of
components, consisting of:

– Components declaration

– Signal assignments

– Components instantiation

– Concurrent statements

• “Connections” are made through:

– Named association (port mapping using port=>local):

• left side: “formals” (port names from component declaration)

• right side: “actuals” (architecture signals)

• independent of order in component declaration

– If using unnamed port mapping then order is important

owh@ieee.org CO 2206 21

Structural Model: An Example
Entity Declaration

-- Simple Logic Circuit

library ieee, lcdf_vhdl;

use ieee.std_logic_1164.all, lcdf_vhdl.func_prims.all;

entity s_circuit is

port(A,B,C: in std_logic;

F: out std_logic);

end s_circuit;

A

B

C
F

owh@ieee.org CO 2206 22

Structural Model: An Example
Components Declaration and Signal Assignment

architecture structural_1 of s_circuit is

component AND2

port(in1, in2: in std_logic;

out1: out std_logic);

end component;

component OR2

port(in1, in2: in std_logic;

out1: out std_logic);

end component;

signal x: std_logic;
AND2 and OR2 are described in the
“lcdf_vhdl.func_prims” library

in1
in2

out1

AND2

in1
in2

out1

OR2

g0

g1

A

B

C
F

x

owh@ieee.org CO 2206 23

Structural Model: An Example
Connections (Port Mapping)

We can use named association, where order is not important:

begin

g0: AND2 port map (in1 =>A, out1 =>x, in2 =>B);

g1: OR2 port map (in1 =>x, in2=>C, out1 =>F);

end structural_1;

Alternatively, using unnamed association:

begin

g0: AND2 port map (A, B, x);

g1: OR2 port map (x,C,F);

end structural_1;

g0

g1

A

B

C
F

x

in1

in2
in1

in2

out1

out1

Component labels (instantiation)

Order must be in (in1,in2,out2)
as per declaration

owh@ieee.org CO 2206 24

Behavioral Model: Dataflow

• Behavioral modeling can be done with sequential
statements using the process construct or with
concurrent statements

• Dataflow modeling describes a circuit, using
concurrent statements, in terms of its function
and the flow of data through the circuit
– different from the structural modeling that describes a

circuit in terms of the interconnection of components

• Consists of:
– Signal assignment statements

– Concurrent statements

owh@ieee.org CO 2206 25

Dataflow Model: The Example
Entity Declaration

-- Simple Logic Circuit

library ieee;

use ieee.std_logic_1164.all;

entity s_circuit is

port(A,B,C: in std_logic;

F: out std_logic);

end s_circuit;

A

B

C
F

Basically the same, however we are
not using any component from the
“lcdf_vhdl” library

owh@ieee.org CO 2206 26

Dataflow Model: The Example
Signal Assignment & Concurrent Statements

architecture dataflow_1 of s_circuit is

signal x: std_logic;

begin

x <= A and B;

F <= x or C;

end dataflow_1;

no components declaration

g0

g1

A

B

C
F

x

- no port mapping, use operators instead
- dataflow from left to right (in to out)
- these statements execute concurrently

note the statements in dataflow model are based on the circuit implementation,
i.e. the path of signals

owh@ieee.org CO 2206 27

Behavioral Model: Algorithmic
Functional Description a.k.a. “High Level” Behavioral

• Model the function just like writing programming
language

– black box approach – no implementation information

– to model complex components that would be tedious to model
using the other methods

– uses process construct

• Consists of:

– Process statements

• Sensitivity list (parameters)

• Sequential statements

• Signal (<=) and variable (:=) assignment statements

• Wait statements

owh@ieee.org CO 2206 28

Process

• Appear in the body of an architecture
declaration just as the signal assignment
statement does

• Include sequential statements like those found
in software programming languages

• Compute the outputs of the process from its
inputs

• No direct correspondence to a hardware
implementation

• Signal assignment within process is only
evaluated when events occur on the signals in
the process' sensitivity list

• The process are performed (or executed) in
order from first to last

PROCESS_NAME: process (SENSITIVITY_LIST)

begin

 -- SEQUESTIAL STATEMENTS

end process;

process name and sensitivity list are optional

s_process: process (A,B,C)

begin

 -- SEQUESTIAL STATEMENTS

end process;

process (A,B,C)

begin

 -- SEQUESTIAL STATEMENTS

end process;

s_process: process

begin

 -- SEQUESTIAL STATEMENTS

end process;

owh@ieee.org CO 2206 29

Algorithmic Model: The Example

-- Simple Logic Circuit

library ieee, lcdf_vhdl;

use ieee.std_logic_1164.all;

entity s_circuit is

port(A,B,C: in std_logic;

F: out std_logic);

end s_circuit;

architecture algorithmic_1 of s_circuit is

s_process: process (A,B,C)

begin

F <= (A and B) or C;

end process;

end algorithmic_1;

A

B

C
F

same as in dataflow

sensitivity list (optional)

may have signal assignments

owh@ieee.org CO 2206 30

Logic Simulator: Test Bench

• Logic Simulator interprets HDL description and uses a
defined stimulus to produce readable output, such as
timing diagram that predicts how hardware will behave
– the stimulus is called a test bench

• Test bench is used for generating stimulus for the
entity under test
– allows design verification and detection of functional errors

without having to physically create circuit

• Test bench is written also in VHDL, which delivers the
verification environment for the model
– stimuli are described as input signals for the model
– expected model responses can be checked
– appears as the top hierarchy level, and therefore has neither

input- nor output ports

owh@ieee.org CO 2206 31

Test Bench: The Example - 1

-- library where s_circuit is described (or can be omitted if s_circuit is
already added in the compiler environment)

entity tb_scircuit is
end tb_scircuit;

architecture test_1 of tb_scircuit is

component s_circuit
port (A, B, C: in std_logic;
F: out std_logic);

end component;

signal A_I, B_I, C_I, F_I: std_logic;

declare test bench entity, without ports

component to test
(must be in library)

test signals

owh@ieee.org CO 2206 32

Test Bench: The Example

begin

DUT: s_circuit port map (A_I, B_I, C_I, F_I);

STIMULUS: process
begin

A_I <= ´0´; B_I <= ´0´; C_I <= ‘0’
wait for 10 ns;

A_I <= ´0´; B_I <= ´0´; C_I <= ‘1’
wait for 10 ns;

-- and so on ...
end process STIMULUS;

end test_1;

configuration cfg_tb_scircuit of tb_scircuit is
for test_1
end for;

end cfg_tb_scircuit;

- instantiate test component
- DUT is the instance name

- assign test signals,
- input combinations

configure to use test_1 architecture

owh@ieee.org 33

Structural VHDL 2-to-4
Decoder

owh@ieee.org 34

Structural VHDL 2-to-4
Decoder

-- 2-to-4 Line Decoder with Enable: Structural VHDL

-- Description

library ieee, lcdf_vhdl;

use ieee.std_logic_1164.all, lcdf_vhdl.func_prims.all;

entity decoder_2_to_4_w_enable is

port(EN, A0, A1: in std_logic;

D0, D1, D2, D3: out std_logic);

end decoder_2_to_4_w_enable;

owh@ieee.org 35

Structural VHDL 2-to-4
Decoder

architecture structural_1 of decoder_2_to_4_w_enable is

component NOT1

port(in1: in std_logic;

out1: out std_logic);

end component;

component AND2

port(in1, in2: in std_logic;

out1: out std_logic);

end component;

signal A0_n, A1_n, N0, N1, N2, N3: std_logic;

owh@ieee.org 36

Structural VHDL 2-to-4
Decoder

begin

g0: NOT1 port map (in1 => A0, out1 =>A0_n);

g1: NOT1 port map (in1 => A1, out1 => A1_n);

g2: AND2 port map (in1 => A0_n, in2 => A1_n, out1 => N0);

g3: AND2 port map (in1 => A0, in2 => A1_n, out1 => N1);

g4: AND2 port map (in1 => A0_n, in2 => A1, out1 => N2);

g5: AND2 port map (in1 => A0, in2 => A1, out1 => N3);

g6: AND2 port map (in1 => EN, in2 => N0, out1 => D0);

g7: AND2 port map (in1 => EN, in2 => N1, out1 => D1);

g8: AND2 port map (in1 => EN, in2 => N2, out1 => D2);

g9: AND2 port map (in1 => EN, in2 => N3, out1 => D3);

end structural_1;

owh@ieee.org 37

Structural VHDL 2-to-4
Decoder

N0

N1

N2

N3

A1_n

A0_n
g1

g0
g2

g3

g4

g5
g9

g8

g7

g6

in1

in2

out1

in1 out1

owh@ieee.org 38

Structural VHDL 4-to-1
Multiplexer

owh@ieee.org 39

Structural VHDL 4-to-1
Multiplexer

-- 4-to-1 Line Multiplexer: Structural VHDL Description

library ieee, lcdf_vhdl;

use ieee.std_logic_1164.all, lcdf_vhdl.func_prims.all;

entity multiplexer_4_to_1_st is

port(S: in std_logic_vector(0 to 1);

I: in std_logic_vector(0 to 3);

Y: out std_logic);

end multiplexer_4_to_1_st;

owh@ieee.org 40

Structural VHDL 4-to-1
Multiplexer

architecture structural_2 of multiplexer_4_to_1_st is

component NOT1

port(in1: in std_logic;

out1: out std_logic);

end component;

component AND2

port(in1, in2: in std_logic;

out1: out std_logic);

end component;

owh@ieee.org 41

Structural VHDL 4-to-1
Multiplexer

component OR4

port(in1, in2, in3, in4: in std_logic;

out1: out std_logic);

end component;

signal S_n: std_logic_vector(0 to 1);

signal D, N: std_logic_vector(0 to 3);

owh@ieee.org 42

Structural VHDL 4-to-1
Multiplexer

begin

g0: NOT1 port map (S(0), S_n(0));

g1: NOT1 port map (S(1), S_n(1));

g2: AND2 port map (S_n(1), S_n(0), D(0));

g3: AND2 port map (S_n(1), S(0), D(1));

g4: AND2 port map (S(1), S_n(0), D(2));

g5: AND2 port map (S(1), S(0), D(3));

g6: AND2 port map (D(0), I(0), N(0));

g7: AND2 port map (D(1), I(1), N(1));

g8: AND2 port map (D(2), I(2), N(2));

g9: AND2 port map (D(3), I(3), N(3));

g10: OR4 port map (N(0), N(1), N(2), N(3), Y);

end structural_2;

owh@ieee.org 43

Dataflow VHDL 2-to-4 Decoder

• A dataflow description describes a circuit in
terms of function rather than structure

• Concurrent assignment statements are executed
concurrently whenever one of the values on the
right-side of the statement changes

owh@ieee.org 44

Dataflow VHDL 2-to-4 Decoder

-- 2-to-4 Line Decoder: Dataflow VHDL Description

library ieee, lcdf_vhdl;

use ieee.std_logic_1164.all;

entity decoder_2_to_4_w_enable is

port(EN, A0, A1: in std_logic;

D0, D1, D2, D3: out std_logic);

end decoder_2_to_4_w_enable;

owh@ieee.org 45

Dataflow VHDL 2-to-4 Decoder

architecture dataflow_1 of decoder_2_to_4_w_enable is

signal A0_n, A1_n: std_logic;

begin

A0_n <= not A0;

A1_n <= not A1;

D0 <= A0_n and A1_n and EN;

D1 <= A0 and A1_n and EN;

D2 <= A0_n and A1 and EN;

D3 <= A0 and A1 and EN;

end dataflow_1;

owh@ieee.org 46

Behavioral VHDL 4-to-1
Multiplexer (1) - 1

(using When-Else)
library ieee;

use ieee.std_logic_1164.all;

entity multiplexer_4_to_1_we is

port (S : in std_logic_vector(1 downto 0);

I : in std_logic_vector(3 downto 0);

Y : out std_logic);

end multiplexer_4_to_1_we;

owh@ieee.org 47

Behavioral VHDL 4-to-1
Multiplexer (1) - 2

(using When-Else)
architecture function_table of multiplexer_4_to_1_we is

begin

Y <= I(0) when S = "00" else

I(1) when S = "01" else

I(2) when S = "10" else

I(3) when S = "11" else

'X';

end function_table;

owh@ieee.org 48

Behavioral VHDL 4-to-1
Multiplexer (2) - 1

(using With-Select)
library ieee;

use ieee.std_logic_1164.all;

entity multiplexer_4_to_1_ws is

port (S : in std_logic_vector(1 downto 0);

I : in std_logic_vector(3 downto 0);

Y : out std_logic);

end multiplexer_4_to_1_ws;

owh@ieee.org 49

Behavioral VHDL 4-to-1
Multiplexer (2) - 2

(using With-Select)
architecture function_table_ws of multiplexer_4_to_1_ws is

begin

with S select

Y <= I(0) when "00",

I(1) when "01",

I(2) when "10",

I(3) when "11",

'X' when others;

end function_table_ws;

owh@ieee.org 50

Behavioral VHDL 4-to-1
Multiplexer

• When-else permits decisions on multiple distinct
signals

– Synthesis typically results in more complex logical
structure

– Needs to take into account priority order

• With-select can depend on only a single Boolean
condition

• ‘x’ is an ‘unknown’ value, which will be generated
during simulation. However, Y will always take
on a 0 or 1 value in an actual circuit.

owh@ieee.org CO 2206 51

More examples: hierarchical

-- 4-bit Adder: Hierarchical

Dataflow/Structural

-- (See Figures 4-4 and 4-5 for logic

diagrams)

library ieee;

use ieee.std_logic_1164.all;

entity half_adder is

 port (x, y : in std_logic;

 s, c : out std_logic);

end half_adder;

architecture dataflow_3 of

 half_adder is

 begin

 s <= x xor y;

 c <= x and y;

 end dataflow_3;

library ieee;

use ieee.std_logic_1164.all;

entity full_adder is

 port (x, y, z : in std_logic;

 s, c : out std_logic);

end full_adder;

architecture struc_dataflow_3 of

 full_adder is

component half_adder

 port(x, y : in std_logic;

 s, c : out std_logic);

end component;

signal hs, hc, tc: std_logic;

-- use 2 HA to make 1 FA

begin

 HA1: half_adder

 port map (x, y, hs, hc);

 HA2: half_adder

 port map (hs, z, s, tc);

 c <= tc or hc;

end struc_dataflow_3;

owh@ieee.org CO 2206 52

library ieee;

use ieee.std_logic_1164.all;

entity adder_4 is

 port(B, A : in std_logic_vector(3 downto 0);

 C0 : in std_logic;

 S : out std_logic_vector(3 downto 0);

 C4: out std_logic);

end adder_4;

architecture structural_4 of adder_4 is

component full_adder

 port(x, y, z : in std_logic;

 s, c : out std_logic);

end component;

signal C: std_logic_vector(4 downto 0);

-- use 4 FA to make 4-bit FA

begin

 Bit0: full_adder

 port map (B(0), A(0), C(0), S(0), C(1));

 Bit1: full_adder

 port map (B(1), A(1), C(1), S(1), C(2));

 Bit2: full_adder

 port map (B(2), A(2), C(2), S(2), C(3));

 Bit3: full_adder

 port map (B(3), A(3), C(3), S(3), C(4));

 C(0) <= C0;

 C4 <= C(4);

end structural_4;

previous slide

owh@ieee.org CO 2206 53

More examples: high-level
behavioral

-- 4-bit Adder: Behavioral Description

-- compare with dataflow/structural description in previous slides

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity adder_4_b is

 port(B, A : in std_logic_vector(3 downto 0);

 C0 : in std_logic;

 S : out std_logic_vector(3 downto 0);

 C4: out std_logic);

end adder_4_b;

architecture behavioral of adder_4_b is

signal sum : std_logic_vector(4 downto 0);

begin

 sum <= ('0' & A) + ('0' & B) + ("0000" & C0);

 C4 <= sum(4);

 S <= sum(3 downto 0);

end behavioral;

owh@ieee.org CO 2206 54

References

• http://www.seas.upenn.edu/~ese201/vhdl/vhdl_primer
.html

• http://www.vhdl-online.de/tutorial/englisch/t_2.htm

• http://www.gmvhdl.com/VHDL.html

• M Morris Mano, Charles R Kime, “Logic and Computer
Design Fundamentals”, 4th Edition

owh@ieee.org CO 2206 55

Summary

• HDL – high level representation of hardware

• VHDL is one of few popular HDL

• VHDL describes hardware in three models:
– Structural

– Behavioral - Dataflow

– Behavioral – Algorithmic (High Level)

• Test Bench is VHDL describing stimulus to the
inputs of a hardware device to observe its output

	Slide 1: VHSIC Hardware Description Language
	Slide 2: Topics
	Slide 3: Hardware Description Language - 1
	Slide 4: Hardware Description Language - 2
	Slide 5: VHDL History
	Slide 6: VHDL Characteristics
	Slide 7: Abstraction Levels in IC Design - 1
	Slide 8: Abstraction Levels in IC Design - 2
	Slide 9: Abstraction levels and VHDL
	Slide 10: ASIC Development Process An Example VHDL Application
	Slide 11: VHDL File Structure
	Slide 12: VHDL Syntax Rules
	Slide 13: Entity Declaration
	Slide 14: Port Modes and Data Types
	Slide 15: Definition of Array
	Slide 16: Types of Assignment for 'bit' Data Types
	Slide 17: Architecture - 1
	Slide 18: Architecture - 2
	Slide 19: Architecture Models - 1
	Slide 20: Structural Model
	Slide 21: Structural Model: An Example Entity Declaration
	Slide 22: Structural Model: An Example Components Declaration and Signal Assignment
	Slide 23: Structural Model: An Example Connections (Port Mapping)
	Slide 24: Behavioral Model: Dataflow
	Slide 25: Dataflow Model: The Example Entity Declaration
	Slide 26: Dataflow Model: The Example Signal Assignment & Concurrent Statements
	Slide 27: Behavioral Model: Algorithmic Functional Description a.k.a. “High Level” Behavioral
	Slide 28: Process
	Slide 29: Algorithmic Model: The Example
	Slide 30: Logic Simulator: Test Bench
	Slide 31: Test Bench: The Example - 1
	Slide 32: Test Bench: The Example
	Slide 33: Structural VHDL 2-to-4 Decoder
	Slide 34: Structural VHDL 2-to-4 Decoder
	Slide 35: Structural VHDL 2-to-4 Decoder
	Slide 36: Structural VHDL 2-to-4 Decoder
	Slide 37: Structural VHDL 2-to-4 Decoder
	Slide 38: Structural VHDL 4-to-1 Multiplexer
	Slide 39: Structural VHDL 4-to-1 Multiplexer
	Slide 40: Structural VHDL 4-to-1 Multiplexer
	Slide 41: Structural VHDL 4-to-1 Multiplexer
	Slide 42: Structural VHDL 4-to-1 Multiplexer
	Slide 43: Dataflow VHDL 2-to-4 Decoder
	Slide 44: Dataflow VHDL 2-to-4 Decoder
	Slide 45: Dataflow VHDL 2-to-4 Decoder
	Slide 46: Behavioral VHDL 4-to-1 Multiplexer (1) - 1 (using When-Else)
	Slide 47: Behavioral VHDL 4-to-1 Multiplexer (1) - 2 (using When-Else)
	Slide 48: Behavioral VHDL 4-to-1 Multiplexer (2) - 1 (using With-Select)
	Slide 49: Behavioral VHDL 4-to-1 Multiplexer (2) - 2 (using With-Select)
	Slide 50: Behavioral VHDL 4-to-1 Multiplexer
	Slide 51: More examples: hierarchical
	Slide 52
	Slide 53: More examples: high-level behavioral
	Slide 54: References
	Slide 55: Summary

