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Combinational Logic (CLN)

CO 2206 Computer Organization
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Topics

• Design process refined

• Design example

• Combinational Functional Blocks
– Decoders / Encoders

– Multiplexers / Demultiplexers

– Arithmetic
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Design Procedure - 1

1. Specification
• Write a specification for the circuit

• Text or HDL description
• Hardware Description Language (HDL) will be 

covered in future lectures

2. Formulation
• Derive truth table or Boolean expressions that 

defines the relations between inputs and outputs

3. Optimization
• Provide a netlist (connection information) for the 

resulting circuit
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Design Procedure - 2

• Simplification or optimization based on specific 
criteria 

• e.g. gate cost, gate delay, fan-out limits, etc

4. Technology mapping
• Transform the logic diagram or netlist to a new 

diagram or netlist that implementation technology 
supports

• Optimization and mapping may repeat multiple times 
to meet specification

5. Verification
• Verify the correctness of final design
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BCD-to-Excess-3 Code 
Converter

• Specification

– Excess-3 code: binary combination corresponding to 
the decimal digit plus 3

– E.g. excess-3 code for 5 is 1000 (i.e. 5+3=8)

• Formulation

– Can be obtained from BCD code word by adding 
0011(3) to it

– 1010 through 1111 are not listed since they have no 
meaning in BCD code
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BCD-to-Excess-3 Code 
Converter

undefined outputs will be marked don’t care
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BCD-to-Excess-3 Code 
Converter

• Optimization
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BCD-to-Excess-3 Code 
Converter

• Direct 
implementation
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BCD-to-Excess-3 Code 
Converter

• Technology 
mapping (NAND, 
NOR)
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Verification - 1

• Verification

– Determination of whether or not a given circuit 
implements its specified function

• if the circuit does not meet its spec, then it is incorrect

– It is essential that the spec is unambiguous and 
correct

• Spec such as truth table, Boolean equations and HDL 
code are most useful
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Verification - 2

• Manual logic analysis

– Finding the equations and then using them to find the 
truth table, if necessary

– If new truth table matches the original one, the circuit 
is correct

– E.g. manual verification of BCD-to-Excess-3 code 
converter



owh@ieee.org CO 2206 12

Verification - 3

W, Z correct
X, Y incorrect



owh@ieee.org CO 2206 13

Verification - 4

• Using computer simulation

– Useful for large number of variables

– Greatly reduces the tedious analysis effort required
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Combinational Functional 
Blocks
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n-to-m Decoder
(n≤m ≤ 2n)

• A decoder converts binary information from n
input lines to a maximum of 2n unique output
– If there are unused or don’t care input combinations, 

the decoder output will have fewer than 2n outputs

– Each output represents one minterm

– Only one output is active at any one time

– Equivalent to binary-to-decimal
• Decode: binary is the code, decimal is the meaning

– Usages:
• selecting boards or devices connecting to same bus

• decode instructions to determine the operations to be 
performed in the processor
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n:m decoder

(n≤m ≤ 2n)

n inputs

m outputs

D0
D1
D2
D3
D4
D5
D6
D7

Dm

A0
A1
A2
A3

An

D0=1 when An…A3A2A1A0 = 0 D6=1 when An…A3A2A1A0 = 6
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1-to-2 Decoder

A0

D0

D1

A0
D0

D1

1-to-2
decoder

A0 D1 D0

0 0 1

1 1 0
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2-to-4 Decoder

• 2-to-4 line decoder

– Only one output can be equal to 1 at any one time

Each minterm is implemented by an AND

A0

A1

D0

D1

D2

D3

2-to-4
decoder
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Decoder: Minterm Implementation

• Large decoders can 
be constructed by
– Implementing each 

minterm using a AND 
gate with more inputs

– Unfortunately, this 
approach gives high 
gate-input costs

• number of inputs
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Decoders: Hierarchy 
Implementation

• Large decoders can be constructed using smaller 
decoders

• General procedure
– If n is even

• Use 2n AND gates driven by
– 2 decoders of output size 2n/2

– If n is odd
• Use 2n AND gates driven by

– 1 decoder of output size 2(n+1)/2

– 1 decoder of output size 2(n-1)/2

– Continue to divide n by 2 until n=1
• For n=1, use a 1-to-2 decoder
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3-to-8 Decoder - 1

• 3-to-8-line decoders, i.e. n=3

– k1=n=3

• 2k1=8 2-input AND gates

• Driven by

– 1 decoder of output size 2k1-1/2=2 (no further reduction) 
and 

– 1 decoder of output size 2k1+1/2=4 (k2=k1+1/2=2)

– k2=2

• 2k2=4 2-input AND gates

• Driven by 2 decoders of output size 2k2/2=2
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3-to-8 Decoder - 2

0

1

0

1

1

0

x00

x01

x10

x11

A0

A1

D0

D1

D2

D3

3-to-8
decoder

A2

D4

D5

D6

D7
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6-to-64 Decoder - 1

• 6-to-64-line decoders, i.e. n=6

– k1=n=6

• 2k1=64 2-input AND gates

• Driven by 2 decoders of output size 2k1/2=8 (k2=k1/2=3)

– k2=3

• 2k2=8 2-input AND gates

• Driven by

– 1 decoder of output size 2k2-1/2=2 (no further reduction) and 

– 1 decoder of output size 2k2+1/2=4 (k3=k2+1/2=2)

– k3=2

• 2k3=4 2-input AND gates

• Driven by 2 decoders of output size 2
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A0

A1

D0

D1

D2

D3

6-to-64
decoder

A2

D4

D5

D6

D7

D63

D8

D9

A3

A4

A5
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6-to-64 Decoder - 2

Connections?
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Decoders – the Cost

• Gate input costs - the number of inputs to the 
gates in the implementation corresponding 
exactly to the given equation or equations
– G - inverters not counted, GN - inverters counted

• For 6-to-64 decoder, if a single AND gate for 
each minterm were used
– Gate-input cost

• GN = 3 + (6x64) = 387

• Smaller decoders used
– Gate-input cost

• GN = 6 + 2(2x4) + 2(2x8) + 2x64 = 185
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Decoder with Enable

• Large decoders can be constructed using smaller 
(one level, i.e. m/2) decoders with enabling

– For example, 3x8 decoders with enable inputs 
connected to form a 4x16 decoder

• When w=0 
(top decoder enabled)

– Top outputs generate 
minterms 0000 to 0111

• When w=1 
(bottom decoder enabled)

– Bottom outputs generate 
minterms 1000 to 1111
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Active-Hi vs Active-Lo

• To implement with NAND gates, it becomes 
more economical to generate the decoder 
minterms in their complemented form

• Small circles on the output lines indicate this
– decoders designed to produce active-LOW outputs, 

where only the selected output is LOW while all 
others are HIGH

• Input can also be active-lo
– EN=1, decoder disabled (all

output inactive)

– EN=0, decoder enabled

D0

Dm-1

A0

An-1

EN

n-to-m
decoder
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Implement CLN using Decoders

• Any combinational circuit with n inputs and m
outputs, expressed as sum of minterms can be 
implemented with

– an n-to-2n decoder and 

– m OR gates

• We can practically implement any CLN by 
expressing the output functions in sum of 
minterms



owh@ieee.org CO 2206 30

Decoder Application Example

• Binary adder (one-bit with carry-in)
• S(X,Y,Z) = m(1,2,4,7)

• C(X,Y,Z) = m(3,5,6,7)
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Encoders

• Performs inverse operation of a decoder

• Has 2n (or fewer) input and n output lines

• Only one input has 1 at any time
– simplify output expressions

• Usages:
– converting “anything” to binary

– encoding inputs, e.g. keyboards

A0

A1

D0

D1

D2

D3

m-to-n
encoder

A2

Dm

m=2n

An

When D0=1, An…A2A1A0 =0
When D3=1, An…A2A1A0 =3
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Encoder Example: Octal-to-binary

• Octal-to-binary encoder

– 8 inputs, one for each octal digits

– 3 outputs that generate the corresponding binary number

– Truth table has only 8 rows

• For the remaining 56 rows, all outputs are don’t cares

A0 = D1 + D3 + D5 + D7 
A1 = D2 + D3 + D6 + D7
A2 = D4 + D5 + D6 + D7
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Draw the circuit: Octal to binary

A0

A1

A2

D0

D1

D2

D3

D4

D5

D6

D7
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Priority encoder

• 2 inputs cannot be active simultaneously
– If D3 and D6 are 1 simultaneously, encoder output is 111 (7), not 3 

or 6

• output is incorrect

• to resolve, establish input priority

• Priority encoder ensures if 2 or more inputs are active 
simultaneously
– Highest priority input will take precedence

• Another ambiguity
– Output 000 generated when all inputs 0

• but 000 output when D0=1

• to resolve, assign another valid-output indicator to indicate 
at least one input is 1
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Priority Encoder Illustration - 1

• D3 has the highest priority
– When D3 = 1

• Output for A1A0 is 11

– When D2 = 1 
• Output is 10, provided D3 = 0

– Otherwise output is 11
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Priority Encoder Illustration - 2

– Output for D1 generated only if higher-priority inputs 
are 0

• Valid-output indicator V is set to 1

– only when one or more inputs equal 1

– if all inputs 0, V=0, and A1A0 not used

• Boolean functions

– A0= D3 + D1D2’

– A1= D2 + D3

– V = D0 + D1 + D2 + D3
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Priority Encoder Illustration - 3
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Priority Encoder Illustration - 4
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Selecting

• Selection of info is a very important function

• Circuits that perform selection typically have

– A set of inputs from which selection are made

– A single output

– A set of control lines for making the selection
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Multiplexers
2n-to-1 MUX

• Multiplexer selects binary info from one of 
many input lines and directs it to a single output 
line
– Normally, there are 2n input lines and n selection lines 

whose bit combinations determine which input is 
selected

I0

I2^n-1

S0Sn-1

Y2n inputs 1 output

n selects

2n to 1
MUX
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Example: 2-to-1 Multiplexer - 1

• 2-to-1 mux has 
– 2 inputs I0 and I1, and

– Selection line S

– When S = 0,

• Output Y = I0

– When S = 1,

• Output Y = I1

– Thus S selects which input to 
appear at Y

– Y = S’ I0 + S I1

S I0I1 00 01 11 10

0 0 0 1 1

1 0 1 1 0
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Example: 2-to-1 Multiplexer - 2

• Multiplexer can be constructed from:

– an  n-to-2n decoder

– n AND gates (enabling circuit);
one at each decoder output

– an OR gate at the output
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• 4-to-1-line multiplexer

– When s1s0=10

• AND gate associated with I2 has 2 inputs equal 1;

• The other 3 AND gates have at least one input 0

Example: 4-to-1 Multiplexer - 1

Y

I0

I1

I2

I3

S1 S0
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Example: 4-to-1 Multiplexer - 2
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Implement CLN using MUXs - 1

• MUXs consist of decoders and an OR gate, which 
makes it possible to implement CLN using 
MUXs without any other gate

• Procedure for implementing function of n
variables with a 2n-1-to-1 multiplexer
1. Express function in sum of minterms

2. Assume ordered sequence of variables is ABCD… 
where A is the leftmost variable

3. Choose one variable as input, usually the right most

4. Connect remaining n-1 variables to selection lines, 
with the rightmost variable connected to lowest-
order selection line (S0)
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Implement CLN using MUXs - 2

5. Construct truth table and divide into sections with 
identical values for the remaining n-1 variables

6. Associate function output with the chosen input 
variable

• This function will have value of either 0, 1 or the 
literal of the chosen input
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MUX Implementation Example
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Demultiplexers

• A decoder with an enable input can function as a 

demultiplexer

– the Enable (EN) line is taken as data input line while 

the Binary (A1A0) inputs as selection lines

• A demultiplexer receives info on a single line 

and transmits this info to one of 2n possible 

output

– EN has a path to all 4 outputs
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Demultiplexers

A0

A1

D0

D1

D2

D3

2-to-4
decoder

EN

D0

D1

D2

D3

Dm

Input

n
A0 - An

m = 2n 

Outputs

if A0-n = Y, DY = Input, else DY = 0

1:4 Demux using 2-4 Decoder
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Arithmetic Circuits
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Adders

• Digital computers perform a variety of information-
processing of information-processing tasks
– The most basic arithmetic operation is the addition of two binary 

digits

• Addition consists of 4 possible elementary operations:
– 0 + 0 = 0

– 0 + 1 = 1

– 1 + 0 = 1

– 1 + 1 = 10

• When augend and addend bits are 1, the binary sum 
consists of 2 digits, carry and sum
– carry is the higher significant bit
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Adders

• Half adder

– addition of 2 bits (two 1-bit numbers)

• Full adder

– addition of 3 bits 

– i.e. two 1-bit numbers and 1 carry

• 2 half adders can be employed to implement a 
full-adder
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Half Adder: 1-bit

• Half-adder adds 2 bits (1 bit to 1 bit) and 
produces a sum and carry output

• S = x’y + xy’

= x  y

• C = xy

X

+ Y

C S
X and Y are 1-bit
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More than 1-bit

• Each half adder add each bit (position)

C1 C0

X2 X1 X0

+ Y2 Y1 Y0

C2 S2 S1 S0

X=X2X1X0 and Y=Y2Y1Y0 are 3-bit

1 1

1 0 1

+ 0 1 1

1 0 0 0

e.g. X=101 and Y=11

Each bit position can 
be added by one (half) 
adder circuit

S0

C0

X0 Y0

S1

C1

X1 Y1

S2

C2

X2 Y2

Will the circuit 
below give 
correct sum?
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Full Adder

• Problem with half adder is 
that we cannot use it to 
build adders that can add 
more than two 1-bit no.

• A full adder takes 3 inputs 
and generates 2 outputs

• z represents the carry 
from the previous lower 
significant position
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Full Adder: K-Map
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Full Adder: Circuit

• Using 2 half adders and an OR gate

– S = z  (x  y)

– C = z(x  y) + xy
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Binary Adder - 1

• Adding 2 binary numbers of n bits each

• Bits added with full adders, starting from least 
significant position (i.e. subscript 0)

• The input carry C (Z is the input carry) in the 
least significant position (i.e. C0) must be 0

• The value of input carry Ci+1 is the output carry 
C

i
of the full-adder to the right
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Binary Adder - 2

• Sum bits generated as soon as the previous carry 
bit is generated

• Sum can be generated in serial or parallel 
fashion
– Serial method uses only one full adder and a storage 

device to hold the generated carry

– Parallel method uses n full adder, and all bits of 
augend and addend are applied simultaneously
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Binary Parallel Adder

• Consists of full adders connected in chain, with the 
output carry from each full-adder connected to the 
input carry of the next full-adder

• n-bit parallel adder requires n FA
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Binary Parallel Adder: Cons - 1

• Parallel adder has a long delay due to many gates 
in the carry path from the least significant bit to 
the most significant bit

– Each bit of output sum depends on input carry

• Outputs not correct unless signals given enough 
time to propagate

• Total propagation time = typical gate delay x 
number of gate levels
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Binary Parallel Adder: Cons - 2

• Signal from input carry Ci to output carry Ci+1

propagates through an AND and OR gate (i.e. 2 
gate-levels)

• n-bit parallel adder  2n gate level carry 
propagation
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Carry Look-ahead Adder - 1

• To reduce carry propagation delay in parallel adder

– Employ faster gates

– Several reduction techniques, but carry look-ahead most widely 
used

• Two conditions for a carry:

– Gi carry generate

• produces an output carry when Ai and Bi are available, 
regardless of input carry

– Pi carry propagate

• associated with propagation of carry from Ci to Ci+1
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Carry Look-ahead Adder - 2

• Define Pi = Ai  Bi (equally valid using Pi = A
i

+ B
i
for carry look-ahead)

Gi = Ai Bi

• Hence Si = Pi  Ci

Ci+1 = Gi + PiCi

Pi

Gi
Ci

to replace with carry-look ahead
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Carry Look-ahead Generator

For 2-bit adder,

C1 = G0 + P0C0

C2 = G1 + P1C1

= G1 + P1G0 + P1P0C0

C3 = G2 + P2C2

= G2 + P2G1 + P2P1G0 + 

P2P1P0C0

Note that all Carries are generated 
directly from C0 and the augend 
and addend bits, i.e. no carry 
propagation
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Carry Look-ahead Adder - 3

• After P and G signals 
settle into their steady-
state values, all outputs 
generated after a delay of 
2 levels of gates.

• S1, S2, and S3 have equal 
propagation delay
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Signed Binary - 1

• If the binary number is signed, then the leftmost 
bit represents the sign and the rest represent the 
number

– In convention, sign bit 0 for +ve and 1 for –ve

– E.g. 11001 can be considered as

• 25 (unsigned)

• -9 (signed)
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Signed Binary - 2

• In a signed-
complement 
system, a –ve 
number is 
represent by its 
complement
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Signed Binary - 3

• Signed-magnitude system is awkward when 
employed in computer arithmetic
– Separate handling of the sign

– Correction step required for subtraction

• 1’s complement imposes difficulty
– +0 and -0 seldom used for arithmetic operations

• Signed-2’s complement most prevalent in 
modern system
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Signed Binary - 4

• 1’s complement of a binary number is formed by 
complementing each of the bits
– E.g. 1’s complement of 0001111 is 1110000

• 2’s complement can be formed by
– Adding 1 to the 1’s complement value, or

– Leaving all least significant 0’s and the first 1 unchanged and 
then complementing all higher significant bits

– E.g. 2’s complement of 1101100 is 0010100

• Note that the complement of the complement restores 
the number to its original value
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Binary Subtraction - 1

• Subtraction can be done by negate then add:

– A – B can be done by finding the negative of B and 
then add to A

– A – B = A + (–B)

• Using either 1’s or 2’s complement, subtraction 
can be performed using

– Complementer and

– Adder

(complement then add)
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Binary Subtraction - 2

• Signed addition using 2’s complement
– Any carry out of the sign bit position is discarded, and negative 

results are automatically in 2’s complement form

• Signed subtraction using 2’s complement
– 2’s complement the subtrahend and add

• One common hardware can be used to handle both 
signed and unsigned binary addition and subtraction

– But the results must be interpreted differently depending on 
whether the numbers are signed or unsigned

– The same circuit in next slide can be used with no correction step 
required for signed-2’s complement
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Signed Binary Subtraction

• 2’s complement

x = 0101100 (44), y = 0111101 (61)

x – y = x + (-y)

x = 0101100

-y = 1000011 (2’s complement of y)

sum = 1101111 (-17)

x - y =   0010001 (-2’s complement of sum)
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Adder-subtractor - 1
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Adder-subtractor - 2

• A – B = A + 2’s complement of B

= A + 1’s complement of B + 1

• 1 can be added to sum through input carry 

– therefore C0 must be equal to 1 when subtract

• When M = 0, adder

– B  0 = B, and C0 = 0

• When M = 1, subtractor

– B  1 = B’, and C0 = 1
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Overflow

• If we start with two n-bit numbers, but the result 
occupies n+1 bits , an overflow occurs

– For unsigned numbers, an overflow is detected from 
the end carry out of the most significant position

– For signed numbers, if the carry into and carry out of 
the sign bit position are not equal, an overflow has 
occurred

• If V = 0, no overflow

• If V = 1, overflow
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Overflow

0 1 1 0

+   70 01000110 - 70 10111010

+   80 01010000 - 80 10110000

+ 150 10010110 - 150 01101010

Carries:

range of 8-bit signed: -128 to +127
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BCD Adder - 1

• A decimal adder (4-bit) requires a minimum of 9 
inputs and 5 outputs

• Adder produce sum in binary and range from 0 
to 19

• Find rule to convert invalid binary sum to correct 
BCD representation

– Binary sum ≤ 1001 (9), no conversion needed

– Binary sum > 1001, invalid BCD add 0110 (6)
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Binary vs BCD

191001111001

180001101001

171110110001

160110100001

151010111110

140010101110

131100110110

120100100110

111000111010

100000101010

91001010010

80001000010

71110011100

60110001100

51010010100

40010000100

31100011000

20100001000

11000010000

00000000000

DecimalS1S2S4S8CZ1Z2Z4Z8K

BCD SumBinary Sum

+6
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BCD Adder - 2

• Correction needed when:
– Carry K  = 1

– Combinations that have 1 in position Z8 and 1 either in Z4

or Z2 (to distinguish valid 1000 and 1001)

• BCD addition

0110 (6) 0100 0111 (47)            0101 1001 (59)

+ 0111 (7)         + 0011 0101 (35)        + 0011 1000 (38)

1101 invalid 0111 1100 invalid      1000 0001 invalid

+ 0110 (+6)       +            1         0110 (+6)        +       1 0110 (+6)

0001 0011 (13) 1000 0010 (82)           1001 0111 (97)
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BCD Adder - 3

correction
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BCD Adder - 3

• Condition for correction and an output carry

C = K + Z8Z4 + Z8Z2

• When C = 1, add 0110 through bottom 4-bit 
binary adder

• When C = 0, add 0000

• Output carry generated from bottom adder 
ignored
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Binary Multiplier - 1

• 2-bit by 2-bit binary 
multiplier

A0*Bi

A1*Bi

(for more bits)

(for more bits)



owh@ieee.org CO 2206 84

Binary Multiplier - 2

• 4-bit by 3-bit
binary 
multiplier

A0*Bi

A1*Bi

A2*Bi

(for more A bits)

(for more A bits)

(for more B bits)

(for more B bits)

(for more B bits)
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Magnitude Comparator - 1

• A circuit that compares two numbers and 
determine their relative magnitudes

• Consider A, B with 4 digits each

– A = A3A2A1A0 B = B3B2B1B0

• Equality relation of each pair of bits can be 
expressed as xi = AiBi + Ai’Bi’

– xi = 1 only if the pair of bits in position i are equal

– (A=B) = x3x2x1x0



owh@ieee.org CO 2206 86

Magnitude Comparator - 2

• (A>B) = A3B3’ + x3A2B2’ + x3x2A1B1’ + x3x2x1A0B0’

– if A3>B3 or A3=B3 but A2>B2 or A3=B3, A2=B2 but 
A1>B1 or A3=B3, A2=B2, A1=B1 but A0>B0

• (A<B) = A3’B3 + x3A2’B2 + x3x2A1’B1 + x3x2x1A0’B0

• Comparison starts from MSB until a pair of 
unequal bits is reached

– if Ai is 1 and Bi is 0, Ai>Bi

– If Ai is 0 and Bi is 1, Ai<Bi
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Magnitude Comparator
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Summary

• Important combinational functional blocks were 
introduced

• Functional blocks are build from logic gates or 
smaller functional blocks

• Design of functional blocks based on truth-table, 
i.e. knowing its function

• Some designs simplified based on confined 
definition of the function, i.e. not all input 
combinations need to be considered

• These functional blocks will be used to build up 
larger system, eventually the computer
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