Combinational Logic (CLN)

CO 2206 Computer Organization

Topics

- Design process refined
- Design example
- Combinational Functional Blocks
 - Decoders / Encoders
 - Multiplexers / Demultiplexers
 - Arithmetic

Design Procedure - 1

1. Specification

- Write a specification for the circuit
- Text or HDL description
 - Hardware Description Language (HDL) will be covered in future lectures

2. Formulation

- Derive truth table or Boolean expressions that defines the relations between inputs and outputs
- 3. Optimization
 - Provide a netlist (connection information) for the resulting circuit

Design Procedure - 2

- Simplification or optimization based on specific criteria
 - e.g. gate cost, gate delay, fan-out limits, etc
- 4. Technology mapping
 - Transform the logic diagram or netlist to a new diagram or netlist that implementation technology supports
 - Optimization and mapping may repeat multiple times to meet specification
- 5. Verification
 - Verify the correctness of final design

- Specification
 - Excess-3 code: binary combination corresponding to the decimal digit plus 3
 - E.g. excess-3 code for 5 is 1000 (i.e. 5+3=8)
- Formulation
 - Can be obtained from BCD code word by adding 0011(3) to it
 - 1010 through 1111 are not listed since they have no meaning in BCD code

Truth Table for Code Converter Example

Decimal Digit		Inp B(out CD		Output Excess-3			
	Α	в	С	D	W	Х	Y	Z
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

undefined outputs will be marked don't care ⁶

D

 $Y = CD + \overline{CD}$

• Optimization

owh@ieee.org

D

 $Z = \overline{D}$

 Technology mapping (NAND, NOR)

- Verification
 - Determination of whether or not a given circuit implements its specified function
 - if the circuit does not meet its spec, then it is incorrect
 - It is essential that the spec is unambiguous and correct
 - Spec such as truth table, Boolean equations and HDL code are most useful

- Manual logic analysis
 - Finding the equations and then using them to find the truth table, if necessary
 - If new truth table matches the original one, the circuit is correct
 - E.g. manual verification of BCD-to-Excess-3 code converter

- Using computer simulation
 - Useful for large number of variables
 - Greatly reduces the tedious analysis effort required

Combinational Functional Blocks

n-to-m Decoder $(n \le m \le 2^n)$

- A decoder converts binary information from n input lines to a maximum of 2^n unique output
 - If there are unused or don't care input combinations, the decoder output will have fewer than 2ⁿ outputs
 - Each output represents one minterm
 - Only one output is active at any one time
 - Equivalent to binary-to-decimal
 - Decode: binary is the code, decimal is the meaning
 - Usages:
 - selecting boards or devices connecting to same bus
 - decode instructions to determine the operations to be performed in the processor

D0=1 when An...A3A2A1A0 = 0 D6=1 when An...A3A2A1A0 = 6

CO 2206

1-to-2 Decoder

A	.0	D1	D0	
(0	1	
1	L	1	0	

2-to-4 Decoder

• 2-to-4 line decoder

- Only one output can be equal to 1 at any one time

Decoder: Minterm Implementation

- Large decoders can be constructed by
 - Implementing each minterm using a AND , gate with more inputs
 - Unfortunately, this approach gives high gate-input costs
 - number of inputs

Fig. 4-18 3-to-8-Line Decoder

Decoders: Hierarchy Implementation

- Large decoders can be constructed using smaller decoders
- General procedure
 - If n is even
 - Use 2ⁿ AND gates driven by
 - 2 decoders of output size $2^{n/2}$
 - If n is odd
 - Use 2ⁿ AND gates driven by
 - 1 decoder of output size $2^{(n+1)/2}$
 - 1 decoder of output size $2^{(n-1)/2}$
 - Continue to divide n by 2 until n=1
 - For n=1, use a 1-to-2 decoder

3-to-8 Decoder - 1

- 3-to-8-line decoders, i.e. n=3
 - $-k_1 = n = 3$
 - $2^{k_1}=8$ 2-input AND gates
 - Driven by
 - 1 decoder of output size $2^{k_1-1/2}=2$ (no further reduction) and

- 1 decoder of output size $2^{k_{1}+1/2}=4$ (k2=k1+1/2=2)

- $-k_2=2$
 - $2^{k_2}=4$ 2-input AND gates
 - Driven by 2 decoders of output size $2^{k2/2}=2$

3-to-8 Decoder - 2

6-to-64 Decoder - 1

- 6-to-64-line decoders, i.e. n=6
 - $k_1 = n = 6$
 - $2^{k_1}=64$ 2-input AND gates
 - Driven by 2 decoders of output size $2^{k_1/2}=8$ ($k_2=k_1/2=3$)
 - $k_2 = 3$
 - $2^{k_2}=8$ 2-input AND gates
 - Driven by
 - 1 decoder of output size $2^{k_2-1/2}=2$ (no further reduction) and
 - 1 decoder of output size $2^{k_{2}+1/2}=4$ (k3=k2+1/2=2)
 - $k_3 = 2$
 - $2^{k_3}=4$ 2-input AND gates
 - Driven by 2 decoders of output size 2

Decoders – the Cost

- Gate input costs the number of inputs to the gates in the implementation corresponding exactly to the given equation or equations

 G inverters not counted, GN inverters counted
- For 6-to-64 decoder, if a single AND gate for each *minterm* were used

– Gate-input cost

• GN = 3 + (6x64) = 387

- Smaller decoders used
 - Gate-input cost
 - GN = 6 + 2(2x4) + 2(2x8) + 2x64 = 185

Decoder with Enable

- Large decoders can be constructed using smaller (one level, i.e. m/2) decoders with enabling
 - For example, 3x8 decoders with enable inputs connected to form a 4x16 decoder
 - When w=0 (top decoder enabled)
 - Top outputs generate *minterms* 0000 to 0111
 - When w=1 (bottom decoder enabled)
 - Bottom outputs generate *minterms* 1000 to 1111

Active-Hi vs Active-Lo

- To implement with NAND gates, it becomes more economical to generate the decoder minterms in their complemented form
- Small circles on the output lines indicate this
 - decoders designed to produce active-LOW outputs, where only the selected output is LOW while all others are HIGH
- Input can also be active-lo

 EN=1, decoder disabled (all output inactive)
 - EN=0, decoder enabled

Implement CLN using Decoders

- Any combinational circuit with *n* inputs and *m* outputs, expressed as sum of minterms can be implemented with
 - an *n*-to-2ⁿ decoder and
 - -m OR gates
- We can practically implement any *CLN* by expressing the output functions in sum of *minterms*

Decoder Application Example

- Binary adder (one-bit with carry-in)
 - $S(X,Y,Z) = \Sigma m(1,2,4,7)$
 - $C(X,Y,Z) = \Sigma m(3,5,6,7)$

Encoders

- Performs inverse operation of a decoder
- Has 2^n (or fewer) input and *n* output lines
- Only one input has 1 at any time

 simplify output expressions
- Usages:
 - converting "anything" to binary
 - encoding inputs, e.g. keyboards

When D0=1, An...A2A1A0 =0 When D3=1, An...A2A1A0 =3

Encoder Example: Octal-to-binary

Inputs								Outputs			
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	A ₂	A ₁	A ₀	
0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	1	0	0	0	1	
0	0	0	0	0	1	0	0	0	1	0	
0	0	0	0	1	0	0	0	0	1	1	
0	0	0	1	0	0	0	0	1	0	0	
0	0	1	0	0	0	0	0	1	0	1	
0	1	0	0	0	0	0	0	1	1	0	
1	0	0	0	0	0	0	0	1	1	1	

- Octal-to-binary encoder
 - 8 inputs, one for each octal digits
 - 3 outputs that generate the corresponding binary number
 - Truth table has only 8 rows
 - For the remaining 56 rows, all outputs are don't cares

A0 = D1 + D3 + D5 + D7

A1 = D2 + D3 + D6 + D7

A2 = D4 + D5 + D6 + D7

Draw the circuit: Octal to binary

Priority encoder

- 2 inputs cannot be active simultaneously
 - If D_3 and D_6 are 1 simultaneously, encoder output is 111 (7), not 3 or 6
 - output is incorrect
 - to resolve, establish input priority
- Priority encoder ensures if 2 or more inputs are active simultaneously
 - Highest priority input will take precedence
- Another ambiguity
 - Output 000 generated when all inputs o
 - but 000 output when $D_0=1$
 - to resolve, assign another valid-output indicator to indicate at least one input is 1

Priority Encoder Illustration - 1

- D₃ has the highest priority
 - When $D_3 = 1$
 - Output for A_1A_0 is 11
 - When $D_2 = 1$
 - Output is 10, provided $D_3 = 0$

	Ing	outs	Outputs			
D ₃	D ₂	D ₁	D ₀	A ₁	A ₀	V
0	0	0	0	Х	х	0
0	0	0	1	0	0	1
0	0	1	Х	0	1	1
0	1	Х	Х	1	0	1
1	Х	Х	Х	1	1	1
~			CO as a f			

– Otherwise output is 11

Priority Encoder Illustration - 2

- Output for D₁ generated only if higher-priority inputs are o
- Valid-output indicator V is set to 1
 - only when one or more inputs equal 1
 - if all inputs o, V=o, and A₁A₀ not used
- Boolean functions
 - $A_0 = D_3 + D_1 D_2'$ - A_1 = D_2 + D_3 - V = D_0 + D_1 + D_2 + D_3
Priority Encoder Illustration - 3

Priority Encoder Illustration - 4

Selecting

- Selection of info is a very important function
- Circuits that perform selection typically have
 - A set of inputs from which selection are made
 - A single output
 - A set of control lines for making the selection

Multiplexers 2ⁿ-to-1 MUX

- *Multiplexer* selects binary info from one of many input lines and directs it to a single output line
 - Normally, there are 2ⁿ input lines and *n* selection lines whose bit combinations determine which input is selected

Example: 2-to-1 Multiplexer - 1

2-to-1 mux has	S
-2 inputs I ₀ and I ₁ , and	
– Selection line S	0
When $S = 0$	0
- when $5 = 0$,	0
• Output $Y = I_0$	1
- When S = 1,	1
• Output $Y = I_1$	1
– Thus S selects which input to	
appear at Y	$S I_0 I_1$
$-Y = S' I_0 + S I_1$	(
V I	-

S	I ₀	I ₁	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Example: 2-to-1 Multiplexer - 2

- *Multiplexer* can be constructed from:
 - an n-to-2ⁿ decoder
 - n AND gates (enabling circuit); one at each decoder output
 - an OR gate at the output

 I_0

 I_1

S

Y

Example: 4-to-1 Multiplexer - 1

- 4-to-1-line multiplexer
 - When $s_1s_0=10$
 - AND gate associated with I_2 has 2 inputs equal 1;
 - The other 3 AND gates have at least one input o

Example: 4-to-1 Multiplexer - 2

Implement CLN using MUXs - 1

- MUXs consist of decoders and an OR gate, which makes it possible to implement CLN using MUXs without any other gate
- Procedure for implementing function of n variables with a 2ⁿ⁻¹-to-1 multiplexer
 - 1. Express function in sum of minterms
 - 2. Assume ordered sequence of variables is ABCD... where A is the leftmost variable
 - 3. Choose one variable as input, usually the right most
 - 4. Connect remaining n-1 variables to selection lines, with the rightmost variable connected to lowest-order selection line (S_0)

Implement CLN using MUXs - 2

- 5. Construct truth table and divide into sections with identical values for the remaining n-1 variables
- 6. Associate function output with the chosen input variable
 - This function will have value of either 0, 1 or the literal of the chosen input

MUX Implementation Example

A	В	С	D	F	
0	0	0	0	0	
0	0	0	1	1	F = D
0	0	1	0	0	F - D
0	0	1	1	1	$\Gamma = D$
0	1	0	0	1	E = D'
0	1	0	1	0	F = D
0	1	1	0	0	
0	1	1	1	0	$F \equiv 0$
1	0	0	0	0	F = 0
1	0	0	1	0	I' = 0
1	0	1	0	0	E - D
1	0	1	1	1	$\Gamma = D$
1	1	0	0	1	E - 1
1	1	0	1	1	$\Gamma = 1$
1	1	1	0	1	E - 1
1	1	1	1	1	$\Gamma = 1$

Demultiplexers

- A decoder with an enable input can function as a *demultiplexer*
 - the *Enable* (*EN*) line is taken as data input line while the *Binary* (A_1A_0) inputs as selection lines
- A *demultiplexer* receives info on a single line and transmits this info to one of 2ⁿ possible output
 - *EN* has a path to all 4 outputs

Demultiplexers

1:4 Demux using 2-4 Decoder

Arithmetic Circuits

Adders

- Digital computers perform a variety of informationprocessing of information-processing tasks
 - The most basic arithmetic operation is the addition of two binary digits
- Addition consists of 4 possible elementary operations:
 - 0 + 0 = 0
 - 0 + 1 = 1
 - -1+0=1
 - -1+1=10
- When augend and addend bits are 1, the binary sum consists of 2 digits, *carry* and *sum*
 - carry is the higher significant bit

Adders

- Half adder
 - addition of 2 bits (two 1-bit numbers)
- Full adder
 - addition of 3 bits
 - i.e. two 1-bit numbers and 1 carry
- 2 half adders can be employed to implement a full-adder

Half Adder: 1-bit

• Half-adder adds 2 bits (1 bit to 1 bit) and produces a sum and carry output

•	S	= x'y + xy'							
		$= \mathbf{x} \oplus \mathbf{y}$			X	Inp	outs	Out	puts
•	С	= xy	+	С	Y S	x	Υ	с	S
			X ar	nd Y are	1-bit	0	0	0	0
	X -		s	5		0	1	0	1
	Y -					1	1	1	0
			(7					

More than 1-bit

• Each half adder add each bit (position)

Full Adder

- Problem with half adder is that we cannot use it to build adders that can add more than two 1-bit no.
- A full adder takes 3 inputs and generates 2 outputs
- z represents the carry from the previous lower significant position

Inputs			Out	Outputs		
Х	Υ	Z	С	S		
0	0	0	0	0		
0	0	1	0	1		
0	1	0	0	1		
0	1	1	1	0		
1	0	0	0	1		
1	0	1	1	0		
1	1	0	1	0		
1	1	1	1	1		

Full Adder: K-Map

Full Adder: Circuit

- Using 2 half adders and an OR gate
 - $-S = z \oplus (x \oplus y)$
 - $-C = z(x \oplus y) + xy$

Binary Adder - 1

- Adding 2 binary numbers of *n* bits each
- Bits added with full adders, starting from least significant position (i.e. subscript **o**)
- The input carry C (Z is the input carry) in the least significant position (i.e. C_o) must be 0
- The value of input carry C_{i+1} is the output carry C_i of the full-adder to the right

Binary Adder - 2

- Sum bits generated as soon as the previous carry bit is generated
- Sum can be generated in serial or parallel fashion
 - Serial method uses only one full adder and a storage device to hold the generated carry
 - Parallel method uses *n* full adder, and all bits of augend and addend are applied simultaneously

Binary Parallel Adder

- Consists of full adders connected in chain, with the output carry from each full-adder connected to the input carry of the next full-adder
- *n*-bit parallel adder requires *n* FA

Binary Parallel Adder: Cons - 1

- Parallel adder has a long delay due to many gates in the carry path from the least significant bit to the most significant bit
 - Each bit of output sum depends on input carry
- Outputs not correct unless signals given enough time to propagate
- Total propagation time = typical gate delay x number of gate levels

Binary Parallel Adder: Cons - 2

- Signal from input carry C_i to output carry C_{i+1} propagates through an AND and OR gate (i.e. 2 gate-levels)
- *n*-bit parallel adder $\approx 2n$ gate level carry propagation

Carry Look-ahead Adder - 1

- To reduce carry propagation delay in parallel adder
 - Employ faster gates
 - Several reduction techniques, but carry look-ahead most widely used
- Two conditions for a carry:
 - G_i carry generate
 - produces an output carry when A_i and B_i are available, regardless of input carry
 - P_i carry propagate
 - associated with propagation of carry from C_i to C_{i+1}

• Define $P_i = A_i \oplus B_i$ (equally valid using $Pi = A_i + B_i$ for carry look-ahead)

• Hence
$$G_i = A_i B_i$$

• $G_i = A_i B_i$
 $S_i = P_i \oplus C_i$
 $C_{i+1} = G_i + P_i C_i$

owh@ieee.org

CO 2206

Carry Look-ahead Generator

For 2-bit adder,

- $C_1 = G_0 + P_0 C_0$
- $C_{2} = G_{1} + P_{1}C_{1}$ = G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}

$$C_{3} = G_{2} + P_{2}C_{2}$$

= $G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0}C_{0}$

Note that all Carries are generated directly from C_o and the augend and addend bits, i.e. no carry propagation

CO 2206

Carry Look-ahead Adder - 3

- After P and G signals settle into their steadystate values, all outputs generated after a delay of 2 levels of gates.
- S₁, S₂, and S₃ have equal propagation delay

- If the binary number is signed, then the leftmost bit represents the sign and the rest represent the number
 - In convention, sign bit 0 for +ve and 1 for –ve
 - E.g. 11001 can be considered as
 - 25 (unsigned)
 - -9 (signed)

 In a signedcomplement system, a –ve number is represent by its complement

Decimal	Signed 2's Complement	Signed 1's Complement	Signed Magnitude
+ 7	0111	0111	0111
+ 6	0110	0110	0110
+ 5	0101	0101	0101
+ 4	0100	0100	0100
+ 3	0011	0011	0011
+ 2	0010	0010	0010
+ 1	0001	0001	0001
+ 0	0000	0000	0000
- 0		1111	1000
- 1	1111	1110	1001
- 2	1110	1101	1010
- 3	1101	1100	1011
- 4	1100	1011	1100
- 5	1011	1010	1101
- 6	1010	1001	1110
- 7	1001	1000	1111
- 8	1000		

- Signed-magnitude system is awkward when employed in computer arithmetic
 - Separate handling of the sign
 - Correction step required for subtraction
- 1's complement imposes difficulty
 +0 and -0 seldom used for arithmetic operations
- Signed-2's complement most prevalent in modern system

- 1's complement of a binary number is formed by complementing each of the bits
 - E.g. 1's complement of 0001111 is 1110000
- 2's complement can be formed by
 - Adding 1 to the 1's complement value, or
 - Leaving all least significant o's and the first 1 unchanged and then complementing all higher significant bits
 - E.g. 2's complement of 1101100 is 0010100
- Note that the complement of the complement restores the number to its original value

Binary Subtraction - 1

- Subtraction can be done by negate then add:
 - A B can be done by finding the negative of B and then add to A

 $-\mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B})$

- Using either 1's or 2's complement, subtraction can be performed using
 - Complementer and
 - Adder

(complement then add)

Binary Subtraction - 2

- Signed addition using 2's complement
 - Any carry out of the sign bit position is discarded, and negative results are automatically in 2's complement form
- Signed subtraction using 2's complement
 - 2's complement the subtrahend and add
- One common hardware can be used to handle both signed and unsigned binary addition and subtraction
 - But the results must be interpreted differently depending on whether the numbers are signed or unsigned
 - The same circuit in next slide can be used with no correction step required for signed-2's complement
Signed Binary Subtraction

• 2's complement

x = 0101100 (44), y = 0111101 (61)

$$\mathbf{x} - \mathbf{y} = \mathbf{x} + (-\mathbf{y})$$

- x = 0101100
- -y = 1000011 (2's complement of y)
- sum = 1101111 (-17)
- x y = 0010001 (-2's complement of sum)

Adder-subtractor - 1

Adder-subtractor - 2

- A B = A + 2's complement of B
 = A + 1's complement of B + 1
- 1 can be added to sum through input carry
 - therefore C_o must be equal to 1 when subtract
- When M = 0, adder

 $- B \oplus o = B$, and $C_o = o$

• When M = 1, subtractor - $B \oplus 1 = B'$, and $C_0 = 1$

Overflow

- If we start with two n-bit numbers, but the result occupies n+1 bits , an *overflow* occurs
 - For unsigned numbers, an overflow is detected from the end carry out of the most significant position
 - For signed numbers, if the carry into and carry out of the sign bit position are not equal, an overflow has occurred
 - If V = 0, no overflow
 - If V = 1, overflow

Overflow

Carries:	01	10				
+ 70	01000110	- 70	10111010			
+ 80	01010000	- 80	10110000			
+ 150	10010110	- 150	01101010			

range of 8-bit signed: -128 to +127

BCD Adder - 1

- A decimal adder (4-bit) requires a minimum of 9 inputs and 5 outputs
- Adder produce sum in binary and range from 0 to 19
- Find rule to convert invalid binary sum to correct BCD representation
 - Binary sum \leq 1001 (9), no conversion needed
 - Binary sum > 1001, invalid BCD \therefore add 0110 (6)

Binary vs BCD

Binary Sum				_	BCD Sum					
K	Z 8	Z 4	Z 2	Z 1	C	S ₈	S ₄	S ₂	S 1	Decimal
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	<u>→</u> 1	0	0	0	0	10
0	1	0	1	1	+6 1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

BCD Adder - 2

- Correction needed when:
 - $\operatorname{Carry} \mathbf{K} = \mathbf{1}$
 - Combinations that have 1 in position Z_8 and 1 either in Z_4 or Z_2 (to distinguish valid 1000 and 1001)
- BCD addition

BCD Adder - 3

BCD Adder - 3

• Condition for correction and an output carry

 $\mathbf{C} = \mathbf{K} + \mathbf{Z}_8 \mathbf{Z}_4 + \mathbf{Z}_8 \mathbf{Z}_2$

- When C = 1, add 0110 through bottom 4-bit binary adder
- When **C** = **0**, add **0000**
- Output carry generated from bottom adder ignored

Binary Multiplier - 1

• 2-bit by 2-bit binary multiplier

Binary Multiplier - 2

Magnitude Comparator - 1

- A circuit that compares two numbers and determine their relative magnitudes
- Consider A, B with 4 digits each $-A = A_3A_2A_1A_0$ $B = B_3B_2B_1B_0$
- Equality relation of each pair of bits can be expressed as $x_i = A_i B_i + A_i' B_i'$
 - $x_i = 1$ only if the pair of bits in position i are equal - $(A=B) = x_3 x_2 x_1 x_0$

Magnitude Comparator - 2

- $(A > B) = A_3 B_3' + x_3 A_2 B_2' + x_3 x_2 A_1 B_1' + x_3 x_2 x_1 A_0 B_0'$ - if $A_3 > B_3$ or $A_3 = B_3$ but $A_2 > B_2$ or $A_3 = B_3$, $A_2 = B_2$ but $A_1 > B_1$ or $A_3 = B_3$, $A_2 = B_2$, $A_1 = B_1$ but $A_0 > B_0$
- (A<B) = $A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1 + x_3x_2x_1A_0'B_0$
- Comparison starts from MSB until a pair of unequal bits is reached
 - if A_i is 1 and B_i is 0, $A_i > B_i$
 - If A_i is 0 and B_i is 1, $A_i < B_i$

Magnitude Comparator

CO 2206

Summary

- Important combinational functional blocks were introduced
- Functional blocks are build from logic gates or smaller functional blocks
- Design of functional blocks based on truth-table, i.e. knowing its function
- Some designs simplified based on confined definition of the function, i.e. not all input combinations need to be considered
- These functional blocks will be used to build up larger system, eventually the computer