Combinational Logic (CLN)

CO 2206 Computer Organization

Topics

- Design process refined
- Design example
- Combinational Functional Blocks
- Decoders / Encoders
- Multiplexers / Demultiplexers
- Arithmetic

Design Procedure - 1

1. Specification

- Write a specification for the circuit
- Text or HDL description
- Hardware Description Language (HDL) will be covered in future lectures

2. Formulation

- Derive truth table or Boolean expressions that defines the relations between inputs and outputs

3. Optimization

- Provide a netlist (connection information) for the resulting circuit

Design Procedure - 2

- Simplification or optimization based on specific criteria
- e.g. gate cost, gate delay, fan-out limits, etc

4. Technology mapping

- Transform the logic diagram or netlist to a new diagram or netlist that implementation technology supports
- Optimization and mapping may repeat multiple times to meet specification

5. Verification

- Verify the correctness of final design

BCD-to-Excess-3 Code Converter

- Specification
- Excess-3 code: binary combination corresponding to the decimal digit plus 3
- E.g. excess-3 code for 5 is 1000 (i.e. $5+3=8$)
- Formulation
- Can be obtained from BCD code word by adding oo11(3) to it
- 1010 through 1111 are not listed since they have no meaning in BCD code

BCD-to-Excess-3 Code Converter

Truth Table for Code Converter Example

Decimal Digit	Input$B C D$				Output Excess-3			
	A	B	C	D	W	X	Y	Z
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

BCD-to-Excess-3 Code Converter

- Optimization

owh@ieee.org

BCD-to-Excess-3 Code Converter

- Direct implementation

BCD-to-Excess-3 Code Converter

- Technology mapping (NAND, NOR)

Verification - 1

- Verification
- Determination of whether or not a given circuit implements its specified function
- if the circuit does not meet its spec, then it is incorrect
- It is essential that the spec is unambiguous and correct
- Spec such as truth table, Boolean equations and HDL code are most useful

Verification-2

- Manual logic analysis
- Finding the equations and then using them to find the truth table, if necessary
- If new truth table matches the original one, the circuit is correct
- E.g. manual verification of BCD-to-Excess-3 code converter

Verification - 3

Verification-4

- Using computer simulation
- Useful for large number of variables
- Greatly reduces the tedious analysis effort required

Combinational Functional Blocks

$$
\begin{aligned}
& \text { n-to-m Decoder } \\
& \left(n \leq m \leq 2^{n}\right)
\end{aligned}
$$

- A decoder converts binary information from n input lines to a maximum of 2^{n} unique output
- If there are unused or don't care input combinations, the decoder output will have fewer than 2^{n} outputs
- Each output represents one minterm
- Only one output is active at any one time
- Equivalent to binary-to-decimal
- Decode: binary is the code, decimal is the meaning
- Usages:
- selecting boards or devices connecting to same bus
- decode instructions to determine the operations to be performed in the processor

$D 0=1$ when $A n \ldots A 3 A 2 A 1 A 0=0 \quad D 6=1$ when An...A3A2A1A0 $=6$

1-to-2 Decoder

A0	D1	D0
0	0	1
1	1	0

2-to-4 Decoder

- 2-to-4 line decoder

- Only one output can be equal to 1 at any one time

\mathbf{A}_{1}	\mathbf{A}_{0}	\mathbf{D}_{0}	\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_{3}
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

(a)

Each minterm is implemented by an AND
(b)

Decoder: Minterm Implementation

- Large decoders can be constructed by
- Implementing each minterm using a AND gate with more inputs
- Unfortunately, this approach gives high gate-input costs
- number of inputs

Decoders: Hierarchy Implementation

- Large decoders can be constructed using smaller decoders
- General procedure
- If n is even
- Use 2^{n} AND gates driven by
-2 decoders of output size $2^{\mathrm{n} / 2}$
- If n is odd
- Use 2^{n} AND gates driven by
-1 decoder of output size $2^{(n+1) / 2}$
-1 decoder of output size $2^{(n-1) / 2}$
- Continue to divide n by 2 until $n=1$
- For $\mathrm{n}=1$, use a 1-to-2 decoder

3-to-8 Decoder-1

- 3-to-8-line decoders, i.e. $\mathrm{n}=3$
$-\mathrm{k}_{1}=\mathrm{n}=3$
- $2^{\mathrm{k} 1}=8$ 2-input AND gates
- Driven by
-1 decoder of output size $2^{\mathrm{k} 1-1 / 2}=2$ (no further reduction) and
-1 decoder of output size $2^{\mathrm{k} 1+1 / 2}=4(\mathrm{k} 2=\mathrm{k} 1+1 / 2=2)$
$-\mathrm{k}_{2}=2$
- $2^{\mathrm{k} 2}=4$ 2-input AND gates
- Driven by 2 decoders of output size $2^{\mathrm{k} 2 / 2}=2$

3-to-8 Decoder - 2

6-to-64 Decoder - 1

- 6-to-64-line decoders, i.e. n=6
- $\mathrm{k}_{1}=\mathrm{n}=6$
- $2^{\mathrm{kj}}=64$ 2-input AND gates
- Driven by 2 decoders of output size $2^{\mathrm{k} 1 / 2}=8\left(\mathrm{k}_{2}=\mathrm{k}_{1} / 2=3\right)$
$-\mathrm{k}_{2}=3$
- $2^{\mathrm{k} 2}=8$ 2-input AND gates
- Driven by
-1 decoder of output size $2^{\mathrm{k} 2-1 / 2}=2$ (no further reduction) and
-1 decoder of output size $2^{\mathrm{k} 2+1 / 2}=4(\mathrm{k} 3=\mathrm{k} 2+1 / 2=2)$
$-k_{3}=2$
- $2^{\mathrm{k} 3}=4$ 2-input AND gates
- Driven by 2 decoders of output size 2

6-to-64 Decoder - 2

Decoders - the Cost

- Gate input costs - the number of inputs to the gates in the implementation corresponding exactly to the given equation or equations
- G - inverters not counted, GN - inverters counted
- For 6-to-64 decoder, if a single AND gate for each minterm were used
- Gate-input cost
- GN $=3+(6 x 64)=387$
- Smaller decoders used
- Gate-input cost
- $\mathrm{GN}=6+2(2 \mathrm{x} 4)+2(2 \mathrm{x} 8)+2 \mathrm{x} 64=185$

Decoder with Enable

- Large decoders can be constructed using smaller (one level, i.e. $\mathrm{m} / 2$) decoders with enabling
- For example, 3x8 decoders with enable inputs connected to form a 4x16 decoder
- When w=o
(top decoder enabled)
- Top outputs generate minterms oooo to 0111
- When $w=1$
(bottom decoder enabled)
- Bottom outputs generate minterms 1000 to 1111

Active-Hi vs Active-Lo

- To implement with NAND gates, it becomes more economical to generate the decoder minterms in their complemented form
- Small circles on the output lines indicate this
- decoders designed to produce active-LOW outputs, where only the selected output is LOW while all others are HIGH
- Input can also be active-lo
- EN=1, decoder disabled (all output inactive)
- EN=o, decoder enabled

Implement CLN using Decoders

- Any combinational circuit with n inputs and m outputs, expressed as sum of minterms can be implemented with
- an n-to- $2^{\text {n }}$ decoder and
- m OR gates
- We can practically implement any CLN by expressing the output functions in sum of minterms

Decoder Application Example

- Binary adder (one-bit with carry-in)
- $\mathrm{S}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(1,2,4,7)$
- $\mathrm{C}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(3,5,6,7)$

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{c}	\mathbf{s}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Encoders

- Performs inverse operation of a decoder
- Has 2^{n} (or fewer) input and n output lines
- Only one input has 1 at any time
- simplify output expressions
- Usages:
- converting "anything" to binary
- encoding inputs, e.g. keyboards

When D0=1, An...A2A1A0 $=0$
When D3=1, An...A2A1A0 $=3$

Encoder Example: Octal-to-binary

Inputs								Outputs		
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	A_{2}	A_{1}	A_{0}
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

- Octal-to-binary encoder $\mathrm{A} 0=\mathrm{D} 1+\mathrm{D} 3+\mathrm{D} 5+\mathrm{D7}$
- 8 inputs, one for each octal digits
$\mathrm{A} 1=\mathrm{D} 2+\mathrm{D} 3+\mathrm{D} 6+\mathrm{D} 7$
$\mathrm{A} 2=\mathrm{D} 4+\mathrm{D} 5+\mathrm{D} 6+\mathrm{D} 7$
- 3 outputs that generate the corresponding binary number
- Truth table has only 8 rows
- For the remaining 56 rows, all outputs are don't cares

Draw the circuit: Octal to binary

Priority encoder

- 2 inputs cannot be active simultaneously
- If D_{3} and D_{6} are 1 simultaneously, encoder output is 111 (7), not 3 or $6{ }^{3}$
- output is incorrect
- to resolve, establish input priority
- Priority encoder ensures if 2 or more inputs are active simultaneously
- Highest priority input will take precedence
- Another ambiguity
- Output ooo generated when all inputs o
- but ooo output when $\mathrm{D}_{\mathrm{o}}=1$
- to resolve, assign another valid-output indicator to indicate at least one input is 1

Priority Encoder Illustration-1

- D_{3} has the highest priority
- When $\mathrm{D}_{3}=1$
- Output for $\mathrm{A}_{1} \mathrm{~A}_{0}$ is 11
- When $D_{2}=1$
- Output is 10 , provided $\mathrm{D}_{3}=0$
- Otherwise output is 11

Inputs					Outputs		
	D_{3}	D_{2}	D_{1}	D_{0}		$\mathrm{~A}_{1}$	$\mathrm{~A}_{\mathbf{0}}$
0	0	0	0		V		
0	0	0	1		X	0	0
0	0	1	X	0	1	1	
0	1	X	X	1	0	1	
1	X	X	X	1	1	1	

Priority Encoder Illustration-2

- Output for D_{1} generated only if higher-priority inputs are o
- Valid-output indicator V is set to 1
- only when one or more inputs equal 1
- if all inputs $\mathrm{O}, \mathrm{V}=0$, and $\mathrm{A}_{1} \mathrm{~A}_{0}$ not used
- Boolean functions
$-\mathrm{A}_{\mathrm{o}}=\mathrm{D}_{3}+\mathrm{D}_{1} \mathrm{D}_{2}{ }^{\prime}$
$-\mathrm{A}_{1}=\mathrm{D}_{2}+\mathrm{D}_{3}$
$-\mathrm{V}=\mathrm{D}_{\mathrm{o}}+\mathrm{D}_{1}+\mathrm{D}_{2}+\mathrm{D}_{3}$

Priority Encoder Illustration - 3

$$
\mathrm{A}_{1}=\mathrm{D}_{2}+\mathrm{D}_{3}
$$

$$
\mathrm{A}_{0}=\mathrm{D}_{3}+\mathrm{D}_{1} \overline{\mathrm{D}}_{2}
$$

Priority Encoder Illustration - 4

Selecting

- Selection of info is a very important function
- Circuits that perform selection typically have
- A set of inputs from which selection are made
- A single output
- A set of control lines for making the selection

Multiplexers $2^{\text {n}}$-to-1 MUX

- Multiplexer selects binary info from one of many input lines and directs it to a single output line
- Normally, there are 2^{n} input lines and n selection lines whose bit combinations determine which input is selected

Example: 2-to-1 Multiplexer-1

- 2-to-1 mux has
-2 inputs I_{o} and I_{1}, and
- Selection line S
- When $\mathrm{S}=0$,
- Output $\mathrm{Y}=\mathrm{I}_{\mathrm{o}}$
- When $\mathrm{S}=1$,
- Output Y = I_{1}

\mathbf{s}	$\mathbf{l}_{\mathbf{0}}$	$\mathbf{l}_{\mathbf{1}}$	\mathbf{Y}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- Thus S selects which input to appear at Y
$-\mathrm{Y}=\mathrm{S}^{\prime} \mathrm{I}_{\mathrm{o}}+\mathrm{SI}_{1}$

S $\mathrm{I}_{0} \mathrm{I}_{1}$	00	01	11	10
0	0	0	1	1
1	0	1	1	0

Example: 2-to-1 Multiplexer-2

- Multiplexer can be constructed from:
- an n-to- $2^{\text {n }}$ decoder
- n AND gates (enabling circuit); one at each decoder output
- an OR gate at the output

(b) Block diagram

(a) Logic diagram

Example: 4-to-1 Multiplexer-1

- 4-to-1-line multiplexer
- When $\mathrm{s}_{1} \mathrm{~s}_{\mathrm{o}}=10$
- AND gate associated with I_{2} has 2 inputs equal 1;
- The other 3 AND gates have at least one input o

Example: 4-to-1 Multiplexer-2

Implement CLN using MUXs - 1

- MUXs consist of decoders and an OR gate, which makes it possible to implement CLN using MUXs without any other gate
- Procedure for implementing function of n variables with a $2^{\mathrm{n}-1}$-to-1 multiplexer

1. Express function in sum of minterms
2. Assume ordered sequence of variables is $\mathrm{ABCD} .$. where A is the leftmost variable
3. Choose one variable as input, usually the right most
4. Connect remaining $\mathrm{n}-1$ variables to selection lines, with the rightmost variable connected to lowestorder selection line $\left(\mathrm{S}_{0}\right)$

Implement CLN using MUXs - 2

5. Construct truth table and divide into sections with identical values for the remaining $\mathrm{n}-1$ variables
6. Associate function output with the chosen input variable

- This function will have value of either 0,1 or the literal of the chosen input

x	y	z	F	
0	0	0	0	$F=z$
0	0	1	1	
0	1	0	1	$F=z^{\prime}$
0	1	1	0	
1	0	0	0	$F=0$
1	0	1	0	
1	1	0	1	$F=1$
1	1	1	1	

(a) Truth table

CO 2206

(b) Multiplexer implementation

MUX Implementation Example

A	B	C	D	F	
0	0	0	0	0	$F=D$
0	0	0	1	1	
0	0	1	0	0	$F=D$
0	0	1	1	1	
0	1	0	0	1	$F=D^{\prime}$
0	1	0	1	0	
0	1	1	0	0	$F=0$
0	1	1	1	0	
1	0	0	0	0	$F=0$
1	0	0	1	0	
1	0	1	0	0	$F=D$
1	0	1	1	1	
1	1	0	0	1	$F=1$
1	1	0	1	1	
1	1	1	0	1	$F=1$
1	1	1	1	1	

Demultiplexers

- A decoder with an enable input can function as a demultiplexer
- the Enable ($E N$) line is taken as data input line while the Binary $\left(A_{I} A_{0}\right)$ inputs as selection lines
- A demultiplexer receives info on a single line and transmits this info to one of 2^{n} possible output
- EN has a path to all 4 outputs

Demultiplexers

1:4 Demux using 2-4 Decoder

$$
\text { if } A_{0-n}=Y, D_{Y}=\text { Input, else } D_{Y}=0
$$

Arithmetic Circuits

Adders

- Digital computers perform a variety of informationprocessing of information-processing tasks
- The most basic arithmetic operation is the addition of two binary digits
- Addition consists of 4 possible elementary operations:
$-\mathrm{O}+\mathrm{O}=\mathrm{O}$
$-0+1=1$
$-1+0=1$
$-1+1=10$
- When augend and addend bits are 1 , the binary sum consists of 2 digits, carry and sum
- carry is the higher significant bit

Adders

- Half adder
- addition of 2 bits (two 1-bit numbers)
- Full adder
- addition of 3 bits
- i.e. two 1-bit numbers and 1 carry
- 2 half adders can be employed to implement a full-adder

Half Adder: 1-bit

- Half-adder adds 2 bits (1 bit to 1 bit) and produces a sum and carry output
- $S=x^{\prime} y+x y^{\prime}$

$$
=\mathrm{x} \oplus \mathrm{y}
$$

- $\mathrm{C}=x y$

More than 1-bit

- Each half adder add each bit (position)

Each bit position can be added by one (half) adder circuit

	1	1		
	1	0	1	Will the circuit
$+$	0	1	1	below give
1	0	0	0	

Full Adder

- Problem with half adder is that we cannot use it to build adders that can add more than two 1-bit no.
- A full adder takes 3 inputs and generates 2 outputs
- z represents the carry
from the previous lower significant position

Inputs			Outputs		
\mathbf{X}	\mathbf{Y}	\mathbf{Z}		\mathbf{C}	\mathbf{S}
0	0	0		0	0
0	0	1		0	1
0	1	0		0	1
0	1	1		1	0
1	0	0		0	1
1	0	1		1	0
1	1	0		1	0
1	1	1		1	1

Full Adder: K-Map

$$
\begin{aligned}
\mathrm{S} & =\overline{\mathrm{X}} \mathrm{Y} \mathrm{Z}+\overline{\mathrm{X}} \mathrm{Y} \overline{\mathrm{Z}}+\mathrm{X} \overline{\mathrm{Y}} \overline{\mathrm{Z}}+\mathrm{XYZ} \\
& =\mathrm{X} \oplus \mathrm{Y} \oplus \mathrm{Z}
\end{aligned}
$$

$$
\begin{aligned}
C & =X Y+X Z+Y Z \\
& =X Y+Z(X Y+\bar{X} Y) \\
& =X Y+Z(X \oplus Y)
\end{aligned}
$$

Full Adder: Circuit

- Using 2 half adders and an OR gate
$-S=z \oplus(x \oplus y)$
$-\mathrm{C}=\mathrm{z}(\mathrm{x} \oplus \mathrm{y})+\mathrm{xy}$

Binary Adder - 1

- Adding 2 binary numbers of n bits each
- Bits added with full adders, starting from least significant position (i.e. subscript o)
- The input carry C (Z is the input carry) in the least significant position (i.e. C_{0}) must be o
- The value of input carry $\mathrm{C}_{\mathrm{i}+1}$ is the output carry C_{i} of the full-adder to the right

Binary Adder - 2

- Sum bits generated as soon as the previous carry bit is generated
- Sum can be generated in serial or parallel fashion
- Serial method uses only one full adder and a storage device to hold the generated carry
- Parallel method uses n full adder, and all bits of augend and addend are applied simultaneously

Binary Parallel Adder

- Consists of full adders connected in chain, with the output carry from each full-adder connected to the input carry of the next full-adder
- n-bit parallel adder requires $n \mathrm{FA}$

Binary Parallel Adder: Cons - 1

- Parallel adder has a long delay due to many gates in the carry path from the least significant bit to the most significant bit
- Each bit of output sum depends on input carry
- Outputs not correct unless signals given enough time to propagate
- Total propagation time $=$ typical gate delay x number of gate levels

Binary Parallel Adder: Cons - 2

- Signal from input carry C_{i} to output carry $\mathrm{C}_{\mathrm{i}+1}$ propagates through an AND and OR gate (i.e. 2 gate-levels)
- n-bit parallel adder $\approx 2 n$ gate level carry propagation

Carry Look-ahead Adder - 1

- To reduce carry propagation delay in parallel adder
- Employ faster gates
- Several reduction techniques, but carry look-ahead most widely used
- Two conditions for a carry:
- G_{i} carry generate
- produces an output carry when A_{i} and B_{i} are available, regardless of input carry
- P_{i} carry propagate
- associated with propagation of carry from C_{i} to $\mathrm{C}_{\mathrm{i}+1}$

Carry Look-ahead Adder - 2

- Define $\mathrm{P}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \oplus \mathrm{B}_{\mathrm{i}}$ (equally valid using $\mathrm{Pi}=\mathrm{A}_{\mathrm{i}}$ $+B_{i}$ for carry look-ahead)

$$
\mathrm{G}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \mathrm{~B}_{\mathrm{i}}
$$

- Hence $S_{i}=P_{i} \oplus C_{i}$

$$
\mathrm{C}_{\mathrm{i}+1}=\mathrm{G}_{\mathrm{i}}+\underset{\mathrm{CO} 2206}{\mathrm{P}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}}
$$

Carry Look-ahead Generator

For 2-bit adder,

$$
\begin{aligned}
C_{1}= & G_{0}+P_{0} C_{0} \\
C_{2}= & G_{1}+P_{1} C_{1} \\
= & G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0} \\
C_{3}= & G_{2}+P_{2} C_{2} \\
= & G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+ \\
& P_{2} P_{1} P_{0} C_{0}
\end{aligned}
$$

Note that all Carries are generated directly from C_{0} and the augend and addend bits, i.e. no carry propagation

Carry Look-ahead Adder - 3

- After P and G signals settle into their steadystate values, all outputs generated after a delay of 2 levels of gates.
- S_{1}, S_{2}, and S_{3} have equal propagation delay

Signed Binary - 1

- If the binary number is signed, then the leftmost bit represents the sign and the rest represent the number
- In convention, sign bit o for +ve and 1 for -ve
- E.g. 11001 can be considered as
- 25 (unsigned)
- -9 (signed)

Signed Binary - 2

- In a signedcomplement system, a -ve number is represent by its complement

Decimal	Signed 2's Complement	Signed 1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	-	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	-	-

Signed Binary - 3

- Signed-magnitude system is awkward when employed in computer arithmetic
- Separate handling of the sign
- Correction step required for subtraction
- 1's complement imposes difficulty
- +o and -o seldom used for arithmetic operations
- Signed-2's complement most prevalent in modern system

Signed Binary - 4

- 1's complement of a binary number is formed by complementing each of the bits
- E.g. l's complement of ooo1111 is 1110000
- 2's complement can be formed by
- Adding 1 to the 1's complement value, or
- Leaving all least significant o's and the first 1 unchanged and then complementing all higher significant bits
- E.g. 2's complement of 1101100 is 0010100
- Note that the complement of the complement restores the number to its original value

Binary Subtraction - 1

- Subtraction can be done by negate then add:
$-A-B$ can be done by finding the negative of B and then add to A
$-\mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})$
- Using either 1's or 2's complement, subtraction can be performed using
- Complementer and
- Adder
(complement then add)

Binary Subtraction-2

- Signed addition using 2's complement
- Any carry out of the sign bit position is discarded, and negative results are automatically in 2's complement form
- Signed subtraction using 2's complement
- 2's complement the subtrahend and add
- One common hardware can be used to handle both signed and unsigned binary addition and subtraction
- But the results must be interpreted differently depending on whether the numbers are signed or unsigned
- The same circuit in next slide can be used with no correction step required for signed-2's complement

Signed Binary Subtraction

- 2's complement

$$
x=0101100(44), y=0111101(61)
$$

$$
x-y=x+(-y)
$$

$$
\begin{aligned}
\mathrm{x} & =0101100 \\
-\mathrm{y} & =1000011(2 \text { 's complement of } y)
\end{aligned}
$$

$$
\text { sum } \quad=1101111(-17)
$$

$$
x-y=0010001(-2 ’ \text { s complement of sum })
$$

Adder-subtractor - 1

Adder-subtractor-2

- $\mathrm{A}-\mathrm{B}=\mathrm{A}+2$'s complement of B

$$
=\mathrm{A}+1 \text { 's complement of } \mathrm{B}+1
$$

- 1 can be added to sum through input carry
- therefore C_{0} must be equal to 1 when subtract
- When $\mathrm{M}=0$, adder
$-\mathrm{B} \oplus \mathrm{o}=\mathrm{B}$, and $\mathrm{C}_{\mathrm{o}}=\mathrm{o}$
- When $\mathrm{M}=1$, subtractor
$-\mathrm{B} \oplus 1=\mathrm{B}^{\prime}$, and $\mathrm{C}_{\mathrm{o}}=1$

Overflow

- If we start with two n-bit numbers, but the result occupies $\mathrm{n}+1$ bits, an overflow occurs
- For unsigned numbers, an overflow is detected from the end carry out of the most significant position
- For signed numbers, if the carry into and carry out of the sign bit position are not equal, an overflow has occurred
- If $\mathrm{V}=\mathrm{o}$, no overflow
- If $\mathrm{V}=1$, overflow

Overflow

Carries: 01

+ 70	01000110	70	10111010
+ 80	01010000	80	10110000
+ 150	10010	-15	1101

range of 8-bit signed: -128 to +127

BCD Adder - 1

- A decimal adder (4-bit) requires a minimum of 9 inputs and 5 outputs
- Adder produce sum in binary and range from o to 19
- Find rule to convert invalid binary sum to correct BCD representation
- Binary sum ≤ 1001 (9), no conversion needed
- Binary sum > 1001, invalid BCD \therefore add 0110 (6)

Binary vs BCD

Binary Sum						BCD Sum					
K	Z_{8}	Z_{4}	Z_{2}	Z_{1}		C	S_{8}	S_{4}	S_{2}	S_{1}	Decimal
0	0	0	0	0		0	0	0	0	0	0
0	0	0	0	1		0	0	0	0	1	1
0	0	0	1	0		0	0	0	1	0	2
0	0	0	1	1		0	0	0	1	1	3
0	0	1	0	0		0	0	1	0	0	4
0	0	1	0	1		0	0	1	0	1	5
0	0	1	1	0		0	0	1	1	0	6
0	0	1	1	1		0	0	1	1	1	7
0	1	0	0	0		0	1	0	0	0	8
0	1	0	0	1		0	1	0	0	1	9
0	1	0	1	0	\longrightarrow	1	0	0	0	0	10
0	1	0	1	1	+6	1	0	0	0	1	11
0	1	1	0	0		1	0	0	1	0	12
0	1	1	0	1		1	0	0	1	1	13
0	1	1	1	0		1	0	1	0	0	14
0	1	1	1	1		1	0	1	0	1	15
1	0	0	0	0		1	0	1	1	0	16
1	0	0	0	1		1	0	1	1	1	17
1	0	0	1	0		1	1	0	0	0	18
1	0	0	1	1		1	1	0	0	1	19

BCD Adder - 2

- Correction needed when:
- Carry K = 1
- Combinations that have 1 in position Z_{8} and 1 either in Z_{4} or Z_{2} (to distinguish valid 1000 and 1001)
- BCD addition

BCD Adder - 3

BCD Adder - 3

- Condition for correction and an output carry

$$
\mathrm{C}=\mathrm{K}+\mathrm{Z}_{8} \mathrm{Z}_{4}+\mathrm{Z}_{8} \mathrm{Z}_{2}
$$

- When $\mathrm{C}=1$, add 0110 through bottom 4-bit binary adder
- When C = 0, add 0000
- Output carry generated from bottom adder ignored

Binary Multiplier - 1

- 2-bit by 2-bit binary multiplier

Binary Multiplier - 2

- 4-bit by 3-bit binary multiplier

Magnitude Comparator - 1

- A circuit that compares two numbers and determine their relative magnitudes
- Consider A, B with 4 digits each
$-\mathrm{A}=\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$
$B=B_{3} B_{2} B_{1} B_{0}$
- Equality relation of each pair of bits can be expressed as $x_{i}=A_{i} B_{i}+A_{i}{ }^{\prime} B_{i}{ }^{\prime}$
$-x_{i}=1$ only if the pair of bits in position i are equal
$-(\mathrm{A}=\mathrm{B})=\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{X}_{\mathrm{o}}$

Magnitude Comparator - 2

- $(\mathrm{A}>\mathrm{B})=\mathrm{A}_{3} \mathrm{~B}_{3}{ }^{\prime}+\mathrm{x}_{3} \mathrm{~A}_{2} \mathrm{~B}_{2}{ }^{\prime}+\mathrm{x}_{3} \mathrm{X}_{2} \mathrm{~A}_{1} \mathrm{~B}_{1}{ }^{\prime}+\mathrm{x}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{~A}_{0} \mathrm{~B}_{0}{ }^{\prime}$
- if $\mathrm{A}_{3}>\mathrm{B}_{3}$ or $\mathrm{A}_{3}=\mathrm{B}_{3}$ but $\mathrm{A}_{2}>\mathrm{B}_{2}$ or $\mathrm{A}_{3}=\mathrm{B}_{3}, \mathrm{~A}_{2}=\mathrm{B}_{2}$ but $\mathrm{A}_{1}>\mathrm{B}_{1}$ or $\mathrm{A}_{3}=\mathrm{B}_{3}, \mathrm{~A}_{2}=\mathrm{B}_{2}, \mathrm{~A}_{1}=\mathrm{B}_{1}$ but $\mathrm{A}_{0}>\mathrm{B}_{0}$
- $(\mathrm{A}<\mathrm{B})=\mathrm{A}_{3}{ }^{\prime} \mathrm{B}_{3}+\mathrm{x}_{3} \mathrm{~A}_{2}{ }^{\prime} \mathrm{B}_{2}+\mathrm{x}_{3} \mathrm{X}_{2} \mathrm{~A}_{1}{ }^{\prime} \mathrm{B}_{1}+\mathrm{x}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{~A}_{0}{ }^{\prime} \mathrm{B}_{0}$
- Comparison starts from MSB until a pair of unequal bits is reached
- if A_{i} is 1 and B_{i} is $\mathrm{o}, \mathrm{A}_{\mathrm{i}}>\mathrm{B}_{\mathrm{i}}$
- If A_{i} is o and B_{i} is $1, A_{i}<B_{i}$

Magnitude Comparator

Summary

- Important combinational functional blocks were introduced
- Functional blocks are build from logic gates or smaller functional blocks
- Design of functional blocks based on truth-table, i.e. knowing its function
- Some designs simplified based on confined definition of the function, i.e. not all input combinations need to be considered
- These functional blocks will be used to build up larger system, eventually the computer

