
owh@ieee.org CO 2206 1

Combinational Logic (CLN)

CO 2206 Computer Organization

owh@ieee.org CO 2206 2

Topics

• Design process refined

• Design example

• Combinational Functional Blocks
– Decoders / Encoders

– Multiplexers / Demultiplexers

– Arithmetic

owh@ieee.org CO 2206 3

Design Procedure - 1

1. Specification
• Write a specification for the circuit

• Text or HDL description
• Hardware Description Language (HDL) will be

covered in future lectures

2. Formulation
• Derive truth table or Boolean expressions that

defines the relations between inputs and outputs

3. Optimization
• Provide a netlist (connection information) for the

resulting circuit

owh@ieee.org CO 2206 4

Design Procedure - 2

• Simplification or optimization based on specific
criteria

• e.g. gate cost, gate delay, fan-out limits, etc

4. Technology mapping
• Transform the logic diagram or netlist to a new

diagram or netlist that implementation technology
supports

• Optimization and mapping may repeat multiple times
to meet specification

5. Verification
• Verify the correctness of final design

owh@ieee.org CO 2206 5

BCD-to-Excess-3 Code
Converter

• Specification

– Excess-3 code: binary combination corresponding to
the decimal digit plus 3

– E.g. excess-3 code for 5 is 1000 (i.e. 5+3=8)

• Formulation

– Can be obtained from BCD code word by adding
0011(3) to it

– 1010 through 1111 are not listed since they have no
meaning in BCD code

owh@ieee.org CO 2206 6

BCD-to-Excess-3 Code
Converter

undefined outputs will be marked don’t care

owh@ieee.org CO 2206 7

BCD-to-Excess-3 Code
Converter

• Optimization

owh@ieee.org CO 2206 8

BCD-to-Excess-3 Code
Converter

• Direct
implementation

owh@ieee.org CO 2206 9

BCD-to-Excess-3 Code
Converter

• Technology
mapping (NAND,
NOR)

owh@ieee.org CO 2206 10

Verification - 1

• Verification

– Determination of whether or not a given circuit
implements its specified function

• if the circuit does not meet its spec, then it is incorrect

– It is essential that the spec is unambiguous and
correct

• Spec such as truth table, Boolean equations and HDL
code are most useful

owh@ieee.org CO 2206 11

Verification - 2

• Manual logic analysis

– Finding the equations and then using them to find the
truth table, if necessary

– If new truth table matches the original one, the circuit
is correct

– E.g. manual verification of BCD-to-Excess-3 code
converter

owh@ieee.org CO 2206 12

Verification - 3

W, Z correct
X, Y incorrect

owh@ieee.org CO 2206 13

Verification - 4

• Using computer simulation

– Useful for large number of variables

– Greatly reduces the tedious analysis effort required

owh@ieee.org CO 2206 14

Combinational Functional
Blocks

owh@ieee.org CO 2206 15

n-to-m Decoder
(n≤m ≤ 2n)

• A decoder converts binary information from n
input lines to a maximum of 2n unique output
– If there are unused or don’t care input combinations,

the decoder output will have fewer than 2n outputs

– Each output represents one minterm

– Only one output is active at any one time

– Equivalent to binary-to-decimal
• Decode: binary is the code, decimal is the meaning

– Usages:
• selecting boards or devices connecting to same bus

• decode instructions to determine the operations to be
performed in the processor

owh@ieee.org CO 2206 16

n:m decoder

(n≤m ≤ 2n)

n inputs

m outputs

D0
D1
D2
D3
D4
D5
D6
D7

Dm

A0
A1
A2
A3

An

D0=1 when An…A3A2A1A0 = 0 D6=1 when An…A3A2A1A0 = 6

owh@ieee.org CO 2206 17

1-to-2 Decoder

A0

D0

D1

A0
D0

D1

1-to-2
decoder

A0 D1 D0

0 0 1

1 1 0

owh@ieee.org CO 2206 18

2-to-4 Decoder

• 2-to-4 line decoder

– Only one output can be equal to 1 at any one time

Each minterm is implemented by an AND

A0

A1

D0

D1

D2

D3

2-to-4
decoder

owh@ieee.org CO 2206 19

Decoder: Minterm Implementation

• Large decoders can
be constructed by
– Implementing each

minterm using a AND
gate with more inputs

– Unfortunately, this
approach gives high
gate-input costs

• number of inputs

owh@ieee.org CO 2206 20

Decoders: Hierarchy
Implementation

• Large decoders can be constructed using smaller
decoders

• General procedure
– If n is even

• Use 2n AND gates driven by
– 2 decoders of output size 2n/2

– If n is odd
• Use 2n AND gates driven by

– 1 decoder of output size 2(n+1)/2

– 1 decoder of output size 2(n-1)/2

– Continue to divide n by 2 until n=1
• For n=1, use a 1-to-2 decoder

owh@ieee.org CO 2206 21

3-to-8 Decoder - 1

• 3-to-8-line decoders, i.e. n=3

– k1=n=3

• 2k1=8 2-input AND gates

• Driven by

– 1 decoder of output size 2k1-1/2=2 (no further reduction)
and

– 1 decoder of output size 2k1+1/2=4 (k2=k1+1/2=2)

– k2=2

• 2k2=4 2-input AND gates

• Driven by 2 decoders of output size 2k2/2=2

owh@ieee.org CO 2206 22

3-to-8 Decoder - 2

0

1

0

1

1

0

x00

x01

x10

x11

A0

A1

D0

D1

D2

D3

3-to-8
decoder

A2

D4

D5

D6

D7

owh@ieee.org CO 2206 23

6-to-64 Decoder - 1

• 6-to-64-line decoders, i.e. n=6

– k1=n=6

• 2k1=64 2-input AND gates

• Driven by 2 decoders of output size 2k1/2=8 (k2=k1/2=3)

– k2=3

• 2k2=8 2-input AND gates

• Driven by

– 1 decoder of output size 2k2-1/2=2 (no further reduction) and

– 1 decoder of output size 2k2+1/2=4 (k3=k2+1/2=2)

– k3=2

• 2k3=4 2-input AND gates

• Driven by 2 decoders of output size 2

owh@ieee.org CO 2206 24

A0

A1

D0

D1

D2

D3

6-to-64
decoder

A2

D4

D5

D6

D7

D63

D8

D9

A3

A4

A5

owh@ieee.org CO 2206 25

6-to-64 Decoder - 2

Connections?

owh@ieee.org CO 2206 26

Decoders – the Cost

• Gate input costs - the number of inputs to the
gates in the implementation corresponding
exactly to the given equation or equations
– G - inverters not counted, GN - inverters counted

• For 6-to-64 decoder, if a single AND gate for
each minterm were used
– Gate-input cost

• GN = 3 + (6x64) = 387

• Smaller decoders used
– Gate-input cost

• GN = 6 + 2(2x4) + 2(2x8) + 2x64 = 185

owh@ieee.org CO 2206 27

Decoder with Enable

• Large decoders can be constructed using smaller
(one level, i.e. m/2) decoders with enabling

– For example, 3x8 decoders with enable inputs
connected to form a 4x16 decoder

• When w=0
(top decoder enabled)

– Top outputs generate
minterms 0000 to 0111

• When w=1
(bottom decoder enabled)

– Bottom outputs generate
minterms 1000 to 1111

owh@ieee.org CO 2206 28

Active-Hi vs Active-Lo

• To implement with NAND gates, it becomes
more economical to generate the decoder
minterms in their complemented form

• Small circles on the output lines indicate this
– decoders designed to produce active-LOW outputs,

where only the selected output is LOW while all
others are HIGH

• Input can also be active-lo
– EN=1, decoder disabled (all

output inactive)

– EN=0, decoder enabled

D0

Dm-1

A0

An-1

EN

n-to-m
decoder

owh@ieee.org CO 2206 29

Implement CLN using Decoders

• Any combinational circuit with n inputs and m
outputs, expressed as sum of minterms can be
implemented with

– an n-to-2n decoder and

– m OR gates

• We can practically implement any CLN by
expressing the output functions in sum of
minterms

owh@ieee.org CO 2206 30

Decoder Application Example

• Binary adder (one-bit with carry-in)
• S(X,Y,Z) = m(1,2,4,7)

• C(X,Y,Z) = m(3,5,6,7)

owh@ieee.org CO 2206 31

Encoders

• Performs inverse operation of a decoder

• Has 2n (or fewer) input and n output lines

• Only one input has 1 at any time
– simplify output expressions

• Usages:
– converting “anything” to binary

– encoding inputs, e.g. keyboards

A0

A1

D0

D1

D2

D3

m-to-n
encoder

A2

Dm

m=2n

An

When D0=1, An…A2A1A0 =0
When D3=1, An…A2A1A0 =3

owh@ieee.org CO 2206 32

Encoder Example: Octal-to-binary

• Octal-to-binary encoder

– 8 inputs, one for each octal digits

– 3 outputs that generate the corresponding binary number

– Truth table has only 8 rows

• For the remaining 56 rows, all outputs are don’t cares

A0 = D1 + D3 + D5 + D7
A1 = D2 + D3 + D6 + D7
A2 = D4 + D5 + D6 + D7

owh@ieee.org CO 2206 33

Draw the circuit: Octal to binary

A0

A1

A2

D0

D1

D2

D3

D4

D5

D6

D7

owh@ieee.org CO 2206 34

Priority encoder

• 2 inputs cannot be active simultaneously
– If D3 and D6 are 1 simultaneously, encoder output is 111 (7), not 3

or 6

• output is incorrect

• to resolve, establish input priority

• Priority encoder ensures if 2 or more inputs are active
simultaneously
– Highest priority input will take precedence

• Another ambiguity
– Output 000 generated when all inputs 0

• but 000 output when D0=1

• to resolve, assign another valid-output indicator to indicate
at least one input is 1

owh@ieee.org CO 2206 35

Priority Encoder Illustration - 1

• D3 has the highest priority
– When D3 = 1

• Output for A1A0 is 11

– When D2 = 1
• Output is 10, provided D3 = 0

– Otherwise output is 11

owh@ieee.org CO 2206 36

Priority Encoder Illustration - 2

– Output for D1 generated only if higher-priority inputs
are 0

• Valid-output indicator V is set to 1

– only when one or more inputs equal 1

– if all inputs 0, V=0, and A1A0 not used

• Boolean functions

– A0= D3 + D1D2’

– A1= D2 + D3

– V = D0 + D1 + D2 + D3

owh@ieee.org CO 2206 37

Priority Encoder Illustration - 3

owh@ieee.org CO 2206 38

Priority Encoder Illustration - 4

owh@ieee.org CO 2206 39

Selecting

• Selection of info is a very important function

• Circuits that perform selection typically have

– A set of inputs from which selection are made

– A single output

– A set of control lines for making the selection

owh@ieee.org CO 2206 40

Multiplexers
2n-to-1 MUX

• Multiplexer selects binary info from one of
many input lines and directs it to a single output
line
– Normally, there are 2n input lines and n selection lines

whose bit combinations determine which input is
selected

I0

I2^n-1

S0Sn-1

Y2n inputs 1 output

n selects

2n to 1
MUX

owh@ieee.org CO 2206 41

Example: 2-to-1 Multiplexer - 1

• 2-to-1 mux has
– 2 inputs I0 and I1, and

– Selection line S

– When S = 0,

• Output Y = I0

– When S = 1,

• Output Y = I1

– Thus S selects which input to
appear at Y

– Y = S’ I0 + S I1

S I0I1 00 01 11 10

0 0 0 1 1

1 0 1 1 0

owh@ieee.org CO 2206 42

Example: 2-to-1 Multiplexer - 2

• Multiplexer can be constructed from:

– an n-to-2n decoder

– n AND gates (enabling circuit);
one at each decoder output

– an OR gate at the output

owh@ieee.org CO 2206 43

• 4-to-1-line multiplexer

– When s1s0=10

• AND gate associated with I2 has 2 inputs equal 1;

• The other 3 AND gates have at least one input 0

Example: 4-to-1 Multiplexer - 1

Y

I0

I1

I2

I3

S1 S0

owh@ieee.org CO 2206 44

Example: 4-to-1 Multiplexer - 2

owh@ieee.org CO 2206 45

Implement CLN using MUXs - 1

• MUXs consist of decoders and an OR gate, which
makes it possible to implement CLN using
MUXs without any other gate

• Procedure for implementing function of n
variables with a 2n-1-to-1 multiplexer
1. Express function in sum of minterms

2. Assume ordered sequence of variables is ABCD…
where A is the leftmost variable

3. Choose one variable as input, usually the right most

4. Connect remaining n-1 variables to selection lines,
with the rightmost variable connected to lowest-
order selection line (S0)

owh@ieee.org CO 2206 46

Implement CLN using MUXs - 2

5. Construct truth table and divide into sections with
identical values for the remaining n-1 variables

6. Associate function output with the chosen input
variable

• This function will have value of either 0, 1 or the
literal of the chosen input

owh@ieee.org CO 2206 47

MUX Implementation Example

owh@ieee.org CO 2206 48

Demultiplexers

• A decoder with an enable input can function as a

demultiplexer

– the Enable (EN) line is taken as data input line while

the Binary (A1A0) inputs as selection lines

• A demultiplexer receives info on a single line

and transmits this info to one of 2n possible

output

– EN has a path to all 4 outputs

owh@ieee.org CO 2206 49

Demultiplexers

A0

A1

D0

D1

D2

D3

2-to-4
decoder

EN

D0

D1

D2

D3

Dm

Input

n
A0 - An

m = 2n

Outputs

if A0-n = Y, DY = Input, else DY = 0

1:4 Demux using 2-4 Decoder

owh@ieee.org CO 2206 50

Arithmetic Circuits

owh@ieee.org CO 2206 51

Adders

• Digital computers perform a variety of information-
processing of information-processing tasks
– The most basic arithmetic operation is the addition of two binary

digits

• Addition consists of 4 possible elementary operations:
– 0 + 0 = 0

– 0 + 1 = 1

– 1 + 0 = 1

– 1 + 1 = 10

• When augend and addend bits are 1, the binary sum
consists of 2 digits, carry and sum
– carry is the higher significant bit

owh@ieee.org CO 2206 52

Adders

• Half adder

– addition of 2 bits (two 1-bit numbers)

• Full adder

– addition of 3 bits

– i.e. two 1-bit numbers and 1 carry

• 2 half adders can be employed to implement a
full-adder

owh@ieee.org CO 2206 53

Half Adder: 1-bit

• Half-adder adds 2 bits (1 bit to 1 bit) and
produces a sum and carry output

• S = x’y + xy’

= x  y

• C = xy

X

+ Y

C S
X and Y are 1-bit

owh@ieee.org CO 2206 54

More than 1-bit

• Each half adder add each bit (position)

C1 C0

X2 X1 X0

+ Y2 Y1 Y0

C2 S2 S1 S0

X=X2X1X0 and Y=Y2Y1Y0 are 3-bit

1 1

1 0 1

+ 0 1 1

1 0 0 0

e.g. X=101 and Y=11

Each bit position can
be added by one (half)
adder circuit

S0

C0

X0 Y0

S1

C1

X1 Y1

S2

C2

X2 Y2

Will the circuit
below give
correct sum?

owh@ieee.org CO 2206 55

Full Adder

• Problem with half adder is
that we cannot use it to
build adders that can add
more than two 1-bit no.

• A full adder takes 3 inputs
and generates 2 outputs

• z represents the carry
from the previous lower
significant position

owh@ieee.org CO 2206 56

Full Adder: K-Map

owh@ieee.org CO 2206 57

Full Adder: Circuit

• Using 2 half adders and an OR gate

– S = z  (x  y)

– C = z(x  y) + xy

owh@ieee.org CO 2206 58

Binary Adder - 1

• Adding 2 binary numbers of n bits each

• Bits added with full adders, starting from least
significant position (i.e. subscript 0)

• The input carry C (Z is the input carry) in the
least significant position (i.e. C0) must be 0

• The value of input carry Ci+1 is the output carry
C

i
of the full-adder to the right

owh@ieee.org CO 2206 59

Binary Adder - 2

• Sum bits generated as soon as the previous carry
bit is generated

• Sum can be generated in serial or parallel
fashion
– Serial method uses only one full adder and a storage

device to hold the generated carry

– Parallel method uses n full adder, and all bits of
augend and addend are applied simultaneously

owh@ieee.org CO 2206 60

Binary Parallel Adder

• Consists of full adders connected in chain, with the
output carry from each full-adder connected to the
input carry of the next full-adder

• n-bit parallel adder requires n FA

owh@ieee.org CO 2206 61

Binary Parallel Adder: Cons - 1

• Parallel adder has a long delay due to many gates
in the carry path from the least significant bit to
the most significant bit

– Each bit of output sum depends on input carry

• Outputs not correct unless signals given enough
time to propagate

• Total propagation time = typical gate delay x
number of gate levels

owh@ieee.org CO 2206 62

Binary Parallel Adder: Cons - 2

• Signal from input carry Ci to output carry Ci+1

propagates through an AND and OR gate (i.e. 2
gate-levels)

• n-bit parallel adder  2n gate level carry
propagation

owh@ieee.org CO 2206 63

Carry Look-ahead Adder - 1

• To reduce carry propagation delay in parallel adder

– Employ faster gates

– Several reduction techniques, but carry look-ahead most widely
used

• Two conditions for a carry:

– Gi carry generate

• produces an output carry when Ai and Bi are available,
regardless of input carry

– Pi carry propagate

• associated with propagation of carry from Ci to Ci+1

owh@ieee.org CO 2206 64

Carry Look-ahead Adder - 2

• Define Pi = Ai  Bi (equally valid using Pi = A
i

+ B
i
for carry look-ahead)

Gi = Ai Bi

• Hence Si = Pi  Ci

Ci+1 = Gi + PiCi

Pi

Gi
Ci

to replace with carry-look ahead

owh@ieee.org CO 2206 65

Carry Look-ahead Generator

For 2-bit adder,

C1 = G0 + P0C0

C2 = G1 + P1C1

= G1 + P1G0 + P1P0C0

C3 = G2 + P2C2

= G2 + P2G1 + P2P1G0 +

P2P1P0C0

Note that all Carries are generated
directly from C0 and the augend
and addend bits, i.e. no carry
propagation

owh@ieee.org CO 2206 66

Carry Look-ahead Adder - 3

• After P and G signals
settle into their steady-
state values, all outputs
generated after a delay of
2 levels of gates.

• S1, S2, and S3 have equal
propagation delay

owh@ieee.org CO 2206 67

Signed Binary - 1

• If the binary number is signed, then the leftmost
bit represents the sign and the rest represent the
number

– In convention, sign bit 0 for +ve and 1 for –ve

– E.g. 11001 can be considered as

• 25 (unsigned)

• -9 (signed)

owh@ieee.org CO 2206 68

Signed Binary - 2

• In a signed-
complement
system, a –ve
number is
represent by its
complement

owh@ieee.org CO 2206 69

Signed Binary - 3

• Signed-magnitude system is awkward when
employed in computer arithmetic
– Separate handling of the sign

– Correction step required for subtraction

• 1’s complement imposes difficulty
– +0 and -0 seldom used for arithmetic operations

• Signed-2’s complement most prevalent in
modern system

owh@ieee.org CO 2206 70

Signed Binary - 4

• 1’s complement of a binary number is formed by
complementing each of the bits
– E.g. 1’s complement of 0001111 is 1110000

• 2’s complement can be formed by
– Adding 1 to the 1’s complement value, or

– Leaving all least significant 0’s and the first 1 unchanged and
then complementing all higher significant bits

– E.g. 2’s complement of 1101100 is 0010100

• Note that the complement of the complement restores
the number to its original value

owh@ieee.org CO 2206 71

Binary Subtraction - 1

• Subtraction can be done by negate then add:

– A – B can be done by finding the negative of B and
then add to A

– A – B = A + (–B)

• Using either 1’s or 2’s complement, subtraction
can be performed using

– Complementer and

– Adder

(complement then add)

owh@ieee.org CO 2206 72

Binary Subtraction - 2

• Signed addition using 2’s complement
– Any carry out of the sign bit position is discarded, and negative

results are automatically in 2’s complement form

• Signed subtraction using 2’s complement
– 2’s complement the subtrahend and add

• One common hardware can be used to handle both
signed and unsigned binary addition and subtraction

– But the results must be interpreted differently depending on
whether the numbers are signed or unsigned

– The same circuit in next slide can be used with no correction step
required for signed-2’s complement

owh@ieee.org CO 2206 73

Signed Binary Subtraction

• 2’s complement

x = 0101100 (44), y = 0111101 (61)

x – y = x + (-y)

x = 0101100

-y = 1000011 (2’s complement of y)

sum = 1101111 (-17)

x - y = 0010001 (-2’s complement of sum)

owh@ieee.org CO 2206 74

Adder-subtractor - 1

owh@ieee.org CO 2206 75

Adder-subtractor - 2

• A – B = A + 2’s complement of B

= A + 1’s complement of B + 1

• 1 can be added to sum through input carry

– therefore C0 must be equal to 1 when subtract

• When M = 0, adder

– B  0 = B, and C0 = 0

• When M = 1, subtractor

– B  1 = B’, and C0 = 1

owh@ieee.org CO 2206 76

Overflow

• If we start with two n-bit numbers, but the result
occupies n+1 bits , an overflow occurs

– For unsigned numbers, an overflow is detected from
the end carry out of the most significant position

– For signed numbers, if the carry into and carry out of
the sign bit position are not equal, an overflow has
occurred

• If V = 0, no overflow

• If V = 1, overflow

owh@ieee.org CO 2206 77

Overflow

0 1 1 0

+ 70 01000110 - 70 10111010

+ 80 01010000 - 80 10110000

+ 150 10010110 - 150 01101010

Carries:

range of 8-bit signed: -128 to +127

owh@ieee.org CO 2206 78

BCD Adder - 1

• A decimal adder (4-bit) requires a minimum of 9
inputs and 5 outputs

• Adder produce sum in binary and range from 0
to 19

• Find rule to convert invalid binary sum to correct
BCD representation

– Binary sum ≤ 1001 (9), no conversion needed

– Binary sum > 1001, invalid BCD add 0110 (6)

owh@ieee.org CO 2206 79

Binary vs BCD

191001111001

180001101001

171110110001

160110100001

151010111110

140010101110

131100110110

120100100110

111000111010

100000101010

91001010010

80001000010

71110011100

60110001100

51010010100

40010000100

31100011000

20100001000

11000010000

00000000000

DecimalS1S2S4S8CZ1Z2Z4Z8K

BCD SumBinary Sum

+6

owh@ieee.org CO 2206 80

BCD Adder - 2

• Correction needed when:
– Carry K = 1

– Combinations that have 1 in position Z8 and 1 either in Z4

or Z2 (to distinguish valid 1000 and 1001)

• BCD addition

0110 (6) 0100 0111 (47) 0101 1001 (59)

+ 0111 (7) + 0011 0101 (35) + 0011 1000 (38)

1101 invalid 0111 1100 invalid 1000 0001 invalid

+ 0110 (+6) + 1 0110 (+6) + 1 0110 (+6)

0001 0011 (13) 1000 0010 (82) 1001 0111 (97)

owh@ieee.org CO 2206 81

BCD Adder - 3

correction

owh@ieee.org CO 2206 82

BCD Adder - 3

• Condition for correction and an output carry

C = K + Z8Z4 + Z8Z2

• When C = 1, add 0110 through bottom 4-bit
binary adder

• When C = 0, add 0000

• Output carry generated from bottom adder
ignored

owh@ieee.org CO 2206 83

Binary Multiplier - 1

• 2-bit by 2-bit binary
multiplier

A0*Bi

A1*Bi

(for more bits)

(for more bits)

owh@ieee.org CO 2206 84

Binary Multiplier - 2

• 4-bit by 3-bit
binary
multiplier

A0*Bi

A1*Bi

A2*Bi

(for more A bits)

(for more A bits)

(for more B bits)

(for more B bits)

(for more B bits)

owh@ieee.org CO 2206 85

Magnitude Comparator - 1

• A circuit that compares two numbers and
determine their relative magnitudes

• Consider A, B with 4 digits each

– A = A3A2A1A0 B = B3B2B1B0

• Equality relation of each pair of bits can be
expressed as xi = AiBi + Ai’Bi’

– xi = 1 only if the pair of bits in position i are equal

– (A=B) = x3x2x1x0

owh@ieee.org CO 2206 86

Magnitude Comparator - 2

• (A>B) = A3B3’ + x3A2B2’ + x3x2A1B1’ + x3x2x1A0B0’

– if A3>B3 or A3=B3 but A2>B2 or A3=B3, A2=B2 but
A1>B1 or A3=B3, A2=B2, A1=B1 but A0>B0

• (A<B) = A3’B3 + x3A2’B2 + x3x2A1’B1 + x3x2x1A0’B0

• Comparison starts from MSB until a pair of
unequal bits is reached

– if Ai is 1 and Bi is 0, Ai>Bi

– If Ai is 0 and Bi is 1, Ai<Bi

owh@ieee.org CO 2206 87

Magnitude Comparator

owh@ieee.org CO 2206 88

Summary

• Important combinational functional blocks were
introduced

• Functional blocks are build from logic gates or
smaller functional blocks

• Design of functional blocks based on truth-table,
i.e. knowing its function

• Some designs simplified based on confined
definition of the function, i.e. not all input
combinations need to be considered

• These functional blocks will be used to build up
larger system, eventually the computer

	Slide 1: Combinational Logic (CLN)
	Slide 2: Topics
	Slide 3: Design Procedure - 1
	Slide 4: Design Procedure - 2
	Slide 5: BCD-to-Excess-3 Code Converter
	Slide 6: BCD-to-Excess-3 Code Converter
	Slide 7: BCD-to-Excess-3 Code Converter
	Slide 8: BCD-to-Excess-3 Code Converter
	Slide 9: BCD-to-Excess-3 Code Converter
	Slide 10: Verification - 1
	Slide 11: Verification - 2
	Slide 12: Verification - 3
	Slide 13: Verification - 4
	Slide 14: Combinational Functional Blocks
	Slide 15: n-to-m Decoder (n≤m ≤ 2n)
	Slide 16
	Slide 17: 1-to-2 Decoder
	Slide 18: 2-to-4 Decoder
	Slide 19: Decoder: Minterm Implementation
	Slide 20: Decoders: Hierarchy Implementation
	Slide 21: 3-to-8 Decoder - 1
	Slide 22: 3-to-8 Decoder - 2
	Slide 23: 6-to-64 Decoder - 1
	Slide 24
	Slide 25: 6-to-64 Decoder - 2
	Slide 26: Decoders – the Cost
	Slide 27: Decoder with Enable
	Slide 28: Active-Hi vs Active-Lo
	Slide 29: Implement CLN using Decoders
	Slide 30: Decoder Application Example
	Slide 31: Encoders
	Slide 32: Encoder Example: Octal-to-binary
	Slide 33: Draw the circuit: Octal to binary
	Slide 34: Priority encoder
	Slide 35: Priority Encoder Illustration - 1
	Slide 36: Priority Encoder Illustration - 2
	Slide 37: Priority Encoder Illustration - 3
	Slide 38: Priority Encoder Illustration - 4
	Slide 39: Selecting
	Slide 40: Multiplexers 2n-to-1 MUX
	Slide 41: Example: 2-to-1 Multiplexer - 1
	Slide 42: Example: 2-to-1 Multiplexer - 2
	Slide 43: Example: 4-to-1 Multiplexer - 1
	Slide 44: Example: 4-to-1 Multiplexer - 2
	Slide 45: Implement CLN using MUXs - 1
	Slide 46: Implement CLN using MUXs - 2
	Slide 47: MUX Implementation Example
	Slide 48: Demultiplexers
	Slide 49: Demultiplexers
	Slide 50: Arithmetic Circuits
	Slide 51: Adders
	Slide 52: Adders
	Slide 53: Half Adder: 1-bit
	Slide 54: More than 1-bit
	Slide 55: Full Adder
	Slide 56: Full Adder: K-Map
	Slide 57: Full Adder: Circuit
	Slide 58: Binary Adder - 1
	Slide 59: Binary Adder - 2
	Slide 60: Binary Parallel Adder
	Slide 61: Binary Parallel Adder: Cons - 1
	Slide 62: Binary Parallel Adder: Cons - 2
	Slide 63: Carry Look-ahead Adder - 1
	Slide 64: Carry Look-ahead Adder - 2
	Slide 65: Carry Look-ahead Generator
	Slide 66: Carry Look-ahead Adder - 3
	Slide 67: Signed Binary - 1
	Slide 68: Signed Binary - 2
	Slide 69: Signed Binary - 3
	Slide 70: Signed Binary - 4
	Slide 71: Binary Subtraction - 1
	Slide 72: Binary Subtraction - 2
	Slide 73: Signed Binary Subtraction
	Slide 74: Adder-subtractor - 1
	Slide 75: Adder-subtractor - 2
	Slide 76: Overflow
	Slide 77: Overflow
	Slide 78: BCD Adder - 1
	Slide 79: Binary vs BCD
	Slide 80: BCD Adder - 2
	Slide 81: BCD Adder - 3
	Slide 82: BCD Adder - 3
	Slide 83: Binary Multiplier - 1
	Slide 84: Binary Multiplier - 2
	Slide 85: Magnitude Comparator - 1
	Slide 86: Magnitude Comparator - 2
	Slide 87: Magnitude Comparator
	Slide 88: Summary

