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Logic Circuit Design

CO 2206 Computer Organization
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Topics

• The Process

• Standard Forms

• Simplification techniques
– Algebraic manipulation

– Karnaugh Map (K Map)

– Quine-McCluskey method

• Implementation matters
– Circuit Implementation

• 2-level implementations

– XOR Implementation

– Hi-Z and Enable
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Introduction

• Logic circuits for digital systems may be

– Combinational logic circuit/network (CLN)

– Sequential logic circuit/network (SLN)
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Combinational Logic

• Combinational circuits

– Consist of logic gates whose outputs at any time are 
determined directly (and solely) from the present 
combination of inputs

– For n input variables, there are 2n possible binary 
input combinations

– Combinational circuit can be described by m Boolean 
functions, one for each output variable
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Sequential Logic

• Outputs of sequential circuits depend not 
only on present inputs, but also on stored values
(states), which are a function of previously 
applied inputs

• Output determined by

– inputs

– present state of the storage elements

• ‘previous’ outputs
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Logic Design Process

• A simple logic design process involves

1. Problem specification - discover the input and output 
requirement

2. Problem formulation – e.g. derive a truth table from the 
input and output requirement

3. Derivation of logical expression(s) – e.g. from the truth table, 
derive the Boolean expression

4. Optimization – in simplest is to minimize the Boolean 
expression(s) if necessary, however more to it (cost factors)

5. Implementation - build the circuit(s) from the simplest 
Boolean expression(s)

• If there are more than one output, we treat each output 
as a separate design or circuit 
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Design Example: the Problem

• Access to a compound that contains dangerous 
high voltage equipment can be gained by a 
maintenance electrician under the following 
conditions:

– The high voltage is off (Logic 0).

– A keyswitch on the control panel 100 yards away is 
off (Logic 0).

– A keyswitch on the gate is turned on (Logic 1).

• Under all the other conditions the gate cannot 
physically be opened.
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Design Example: Solution - 1

• Step 1:  Discover the input and output 
requirements

– The input and output requirements are given in the 
question

• Step 2:  Derive a truth table from the input and 
output requirement

– Assignment input variables and output function. 

A = High voltage

B = Control panel switch

C = Gate switch
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Design Example: Solution - 2

– Conditions for entry :  Q=1

• Requirements are A=0, B=0, C=1

– truth table
A B C Q

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0
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Design Example: Solution - 3

• Step 3:  From the truth table, derive the Boolean 
expression

• Step 4:  Minimize the Boolean expression if 
necessary
– There is only one possible output condition and the 

expression is in its simplest form

• Step 5:  Build the circuit from the simplest 
Boolean expression

CBAQ =

A

B

C

Q

A

B
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Standard Forms

• Standard forms facilitate the simplification

• Standard forms contain
– Product terms

• e.g. xy’z

– Sum terms

• e.g. x + y + z’

• Minterms
– Product terms in which all the variables appear exactly once, 

either primed or unprimed

• Maxterms

– Sum terms in which all the variables appear exactly once
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Deriving Logical Expression

• Logical expression can be expressed as:

– Sum of Minterms

– Product of Maxterms

• In sum of minterms

– we specify combination inputs for which the output is 
1

• In product of maxterms

– we specify combination inputs for which the output is 
0



owh@ieee.org CO 2206 13

Example - 1

• 3-input majority function

– Sum of minterms

F1 = A’BC + AB’C + ABC’ + ABC

F1 =  m(3,5,6,7)

– Product of maxterms

F’1 = (A+B+C) (A+B+C’) (A+B’+C) 

(A’+B+C)

F’1 =  M(0,1,2,4)

A B C F1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

The selected minterm, A’BC, will give an output 
of 1 when A=0, B=1, C=1.

The selected maxterm, A’+B+C, will give an 
output of 0 (hence F’) when A=1, B=0, C=0.
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Example - 2

• 3-input even parity function

– Sum of minterms

F2 = A’B’C + A’BC’ + AB’C’ + ABC

F2 =  m(1,2,4,7)

– Product of maxterms

F’2 = (A+B+C) (A+B’+C’) (A’+B+C’)

(A’+B’+C)

F’2 =  M(0,3,5,6)

A B C F2

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Whereas minterms are expressed non-inverted, 
i.e. 000 = A’B’C’ and 111 = ABC

Note that the maxterms are expressed in 
inverted form, i.e. 000 = ABC and 111 = A’B’C’.
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Straight Implementation

• Implementing 3-
input even parity 
function

– from sum of 
minterms
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Simplifying Logical Expression

• Sum of minterms and product of maxterms can 
be obtained directly from the truth table, 

– but the expression contains maximum number of 
literals (or variables) in each term and usually has 
more terms than necessary

• It may require simplification
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Simplifying Techniques

• 3 techniques

– Algebraic manipulation

• Do not know if expression is in final simplified form

– Karnaugh map (K map)

• Graphical method suitable for expression with 4 or less 
number of variables

– Quine-McCluskey methods

• Tabular method for simplifying expression with large 
no. of variables

• Can be automated (programmed)
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Algebraic Manipulation

• Using Theorems of Boolean Algebra

– no fixed steps to follow

– requires good intuition and experience

– inherent problem of which rule to apply

• Example:

F1 = A’BC + AB’C + ABC’ + ABC

= A’BC + AB’C + ABC’ + ABC + ABC + ABC

= A’BC + ABC + AB’C + ABC + ABC’ + ABC

= BC(A’+A) + AC(B’+B) + AB(C’+C)

= BC + AC + AB
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Karnaugh Map - 1

• Karnaugh Map (pronounced car-no), like a truth 
table, is a mean for showing the relationship between 
logic inputs and the desired output

• Karnaugh map is usually abbreviated K-map.  K-map
can be used for problems involving two-, three-, four-, 
five- or six- different input variables

– K-map for more than six-variable is practically impossible

– Solving five- and six- variable K-map is extremely cumbersome; 
they can be more practically solved using advanced computer 
techniques

• In this course, we will only deal with two-, three- and
four-variable K-map
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K-Map Format - 1

• Size depends on number of input variables, 2, 3, 4

e.g.
0 = 000 = X’Y’Z’
5 = 101 = XY’Z

e.g.
0 = W’X’Y’Z’
13 = WXY’Z

F F
F

F

F is output function

m0

m1

m2

m3
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K-Map Format - 2

• K-map is a map describing all possible combinations of 
variables present in the logic function of interest 
– A K-map consists of 2N cells, where N is the number of logic 

variables
– each square represents one minterm

• Minterms are arranged
in sequence similar to 
Gray code

• Any 2 adjacent cells 
differ by only one variable, 
which is primed in one cell 
and unprimed in another

• Possible to derive a number of
algebraic expressions for the 
same function

F

m0

m1

m2

:

m15
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K-Map Examples

Inputs Output
A B Q

0 0 1  BA

0 1 0 BA

1 0 0 
BA

1 1 1 AB

      

 BA    BA   

 Q     

  B  B    

 A  
1 0   

 A  0 1   

      

 BA    AB   

      

Inputs Output
A B C Q

0 0 0 0  CBA

0 0 1 1  CBA

0 1 0 1  CBA

0 1 1 1 
BCA

1 0 0 0 
CBA

1 0 1 1 
CBA

1 1 0 0 
CAB

1 1 1 0 
ABC

 CBA     

     

 Q    

  C  C  CBA  

CBA  BA  
0 1  

 BA  
1 1 BCA  

 AB  0 0  

CAB  BA  
0 1 ABC  

     

 CBA    CBA  

2-variable K-Map can be 2x4 or 4x2
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From TT to K-Map

• To transfer a truth table into a K-map, we 
simply transfer the output level for each case of 
the truth table into the corresponding cell in K-
map

Inputs Output
A B C Q

0 0 0 1  CBA

0 0 1 1  CBA

0 1 0 1  CBA

0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Q
C C

BA 1 1

BA 1 0

AB 0 0

BA 0 0
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From Expression to K-Map - 1

• The following steps can be followed to transform 
Boolean expression into K-map
– Express the Boolean expression into Sum-Of-Product 

(SOP) expression.  For example

– Fill in each of the cells which has the product terms
with a "1“.  See next slide for example.

CBACBACBA

CBACBCBAQ

++=

++= )(

product terms

SOP ACBA

CBAQ

+=

+= )(

     product terms

SOP

Note the product terms need not be minterms
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From Expression to K-Map - 2

ACBAQ +=

  Q     

   C  C    

  BA  CBA  CBA    

  BA  CBA  BCA  Both have 
 

 Both have AB  CAB  ABC  AC   

 BA  BA  CBA  CBA    

       

Q

C C

BA 0 0

BA 0 0

AB 0 1

BA 1 1
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From Expression to K-Map - 3

• Alternatively, derive the truth table from the 
expression and then transfer the truth table to 
K-map
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Simplest Expression from K-Map

• The following steps can be followed to obtain a 
simplest Boolean expression from the K-map:

– Encircle adjacent cells filled with "1" in groups of 2, 
4, 8, etc. (i.e. power of 2)

– For each group or circle, find the product term
which is common in all cells within the group.

– The simplest expression is given by the sum of the 
product terms for all groups
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Grouping Rules

• The following grouping rules should be followed:

– the number of cells must be a power of 2 using the rule 2N

– the more adjacent cells encircled, the simpler the final 
expression will be; for the simplest expression the maximum 
number of cells must be grouped

– a cell can appear in more than one group

– cells must have a common edge, i.e. the map can be imagined as 
a sphere opened out (just like the map of the World) so that the 
top edge is adjacent to the bottom edge and the right edge is 
adjacent to the left edge

– all the "1" should be encircled
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Some Grouping Terms

• The following terms are associated with K-maps:

– Pair – group of 2 cells (with 1 less variable in the 
product term, i.e. for 3-variable function, a pair will 
be a product term with 2 variables)

– Quad – group of 4 cells (with 2 less variables)

– Octet – group of 8 cells (with 3 less variables)

– Redundant group – a group with all its 1’s already 
in other groups
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Example - Grouping
Q

C C

BA 1 1

BA 1 1 Group of 4 cells

Group of 4 cells AB 0 0

BA 1 1
Q

C C

BA 1 1

BA 1 1 B  is common

A  is common AB 0 0

BA 1 1

BAQ +=
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SOP Method

• In summary, the following steps, called SOP 
Method, are used to simplify Boolean 
Equations:
– Enter a 1 on the K-map for each fundamental product 

that produces a 1 output in truth table.  Enter 0
elsewhere.

– Encircle the octets, quads and pairs.  Remember to 
roll or overlap to get the largest groups possible

– If any isolated 1 remains, encircle each

– Eliminate any redundant group

– Write the Boolean Equation by ORing the products 
corresponding to the encircled groups
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3-variable Examples - 1

F1 = xy’ + x’y F2 = yz +xz’
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3-variable Example - 2

F3 = z’ + xy’ F4 = C + A’B

overlap

roll
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3-variable Example - Observations

• More cells in the group, fewer literals in the 
product term

– 1 cell represent 1 minterm, giving a term of 3 literals

– 2 adjacent cells represent a term of 2 literals

– 4 adjacent cells represent a term of 1 literal

– adjacent cells encompass the entire map, function 
always equal to 1
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4-variable Example - 1

F5 = y’ + w’z’ + xz’ F6 = B’D’ + B’C’ + A’CD’
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4-variable Example - 2

• Minimal expression will depend on groupings
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More Examples

F1 = AB+AC+BC
(before simplification: F = A’BC+AB’C+ABC’+ABC)

F2 = A’B’C+A’BC’+AB’C’+ABC
(not all functions can be simplified)



owh@ieee.org CO 2206 38

Essential Prime Implicants - 1

• On a K map, prime implicants correspond to 
all rectangles (groups) containing 1’s

• If a minterm of a function is included in only one 
prime implicant, that prime implicant is said to 
be essential

• Optimised expression obtained from
– Sum of all essential prime implicants, plus

– Other prime implicants needed to include remaining 
minterms not included in the essential prime 
implicants
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Essential Prime Implicants - 2

redundant
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Product of Sums – the Alternative

• Cells with 1’s give F, cells with 0’s give F’

• Combining squares marked with 0’s

– F’ = AB + CD + BD’

• Taking the dual

– F = (AB + CD + BD’)’

– = (AB)’(CD)’(BD’)’

• Dual each product term

– F = (A’+B’)(C’+D’)(B’+D)

• Note 1st and 2nd step can be 
skipped by observing that 
product term XY becomes sum term X’+Y’
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Don’t Care Conditions - 1

• In some applications, some outputs are not 
specified for certain combinations of variables 
because

– The input combinations never occur

– We do not care what the outputs are in response to 
the input combinations

• These outputs are unspecified and are called 
don’t care conditions
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Don’t Care Conditions - 2

• “Don’t cares” are marked ‘x’ in K map and may 
be assumed to be 0 or 1

– assumptions are made in the way to produce simplest 
expression
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Quine-McCluskey Method

• The Quine-McCluskey algorithm (or the method of 
prime implicants) is a method used for minimization of 
boolean functions which was developed by W.V. Quine
and Edward J. McCluskey

• It is functionally identical to K-map, but the tabular 
form makes it more efficient for use in computer 
algorithms, and it also gives a deterministic way to check 
that the minimal form of a Boolean function has been 
reached
– it is sometimes referred to as the tabulation method

• The method involves two major steps:
– Table - finding all prime implicants of the function
– Chart - use those prime implicants in a prime implicant chart

to find the essential prime implicants of the function, as well as 
other prime implicants that are necessary to cover the function
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Quine-McCluskey: the Table
 

ABC 

B’C’D’ 

A’B’D’ 

A’B’C’ 

 

 

 

 

 

(b) 

ABCD 

ABCD’ 

AB’CD 

AB’CD’ 

AB’C’D’ 

A’B’CD’ 

A’B’C’D 

A’B’C’D’ 

Group 4 

 

Group 3 

Group 2 

 

 

Group 1 

Group 0 

(a) 

B’C’D’ 

A’B’D’ 

A’B’C’ 

 

 

 

AB’D’ 

B’CD’ 

(b) 

AB’C 

ACD’ 

B’C’D’ 

A’B’D’ 

A’B’C’ 

ACD 

AB’D’ 

B’CD’ 

(b) 

B’C’D’ 

A’B’D’ 

A’B’C’ 

ACD’ 

AB’C 

AB’D’ 

B’CD’ 

(b) 

 

B’D’ 

B’D’ 

 

 

 

 

 

(c) 

AC 

B’D’ 

B’D’ 

 

 

 

 

AC 

(c) 
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Quine-McCluskey: Step 1.1

• Specify the function in Sum of Minterms

• Group the minterms in accordance to “number of true 
conditions (1’s)” and arranged in a column (a).  Example:

– a’b’c’d’  0000 (no 1’s) is in group 0

– a’b’c’d  0001 (one 1’s) is in group 1

– ab’cd’  1010 (two 1’s) is in group 2, etc

• First iteration: remove one variable from the minterms
by looking at a pair of terms in adjacent groups that 
contain a variable and its complement e.g. a’b’c’d’ + 
a’b’c’d = a’b’c’

– equivalent to forming group of size 2 in K-map
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Quine-McCluskey: Step 1.2

• From the first iteration:
– a set of product terms (with one less variable) is generated
– these product terms are grouped in number of true conditions 

(1’s) and arranged in next column (b)
– terms not simplified in the first iteration will be left in column 

(a).

• Second iteration: remove one variable from the terms in 
(b) by looking at a pair of terms in adjacent groups that 
contain a variable and its complement e.g. a’b’c’ + a’bc’ = 
a’c’
– equivalent to forming group of size 4 (2x2) in K-map
– a set of product terms (with one less variable) is generated
– these product terms are grouped in number of true conditions 

(1’s) and arranged in next column (c)
– terms not simplified in this iteration will be left in column (b)
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Quine-McCluskey: Step 1.3

• Continue the iteration until no further reduction (in 
variable) can be done.  In each iteration:

– tick those terms that have been reduced

– cross (remove) duplicating terms generated in each iteration

– leave those terms that cannot be reduced unticked

• The outcome of the iterations is a table, where each 
column to the right has one less variable (reduction)

– those terms not ticked are the prime implicants

• The next step is to draw the Prime Implicant Chart
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Quine-McCluskey: the Chart

 

        AC 

AC 

        B’D’ 

B’D’ 

        A’B’C’ 

ABCD ABCD’ AB’CD AB’CD’ AB’C’D’ A’B’CD’ A’B’C’D A’B’C’D’  

× × 

× × × × 

× × × 

 

  

  

 

  

 ×  

prime implicants

minterms
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Quine-McCluskey: Step 2.1

• One row for each prime implicant

• One column for each minterm in original expression

• Mark × where prime implicant for row is in column 
terms

• Circle each × that is alone in a column.  These are 
essential prime implicants that must appear in any final 
simplified expression.

• Place a square around all × in a row that has a .  This 
indicates those minterms with  under it (as in column) 
has been included together with the essential prime 
implicants (those marked ).
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Quine-McCluskey: Step 2.2

• If there are columns without a  or 

– select a minimum number of prime implicants to cover these 
columns

• To incorporate don’t care conditions

– include the don’t care terms in the 1st step (table) and then 
ignore them as we apply the 2nd step (chart)

 

        AC 

AC 

        B’D’ 

B’D’ 

        A’B’C’ 

ABCD ABCD’ AB’CD AB’CD’ AB’C’D’ A’B’CD’ A’B’C’D A’B’C’D’  

× × 

× × × × 

× × × 

 

  

  

 

  

 ×  
 

 

 

A’BCD 

x 

 

 

 

AB’CD 

x 

CD 

AC 

A’C 

B’D’ 

x x 
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Quine-McCluskey Example

• Simplify   F = m(0,1,2,8,10,11,14,15)

no. ABCD min group

0 = 0000  A’B’C’D’ 0

1 = 0001  A’B’C’D 1

2 = 0010  A’B’CD’ 1

8 = 1000  AB’C’D’ 1

10 = 1010  AB’CD’ 2

11 = 1011  AB’CD 3

14 = 1110  ABCD’ 3

15 = 1111  ABCD 4
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Quine-McCluskey Example: Table

(b)

A’B’C’

A’B’D’

B’C’D’

(a)

Group 0 A’B’C’D’

Group 1 A’B’C’D

A’B’CD’

AB’C’D’

Group 2 AB’CD’

Group 3 AB’CD

ABCD’

Group 4 ABCD











(b)

A’B’C’

A’B’D’

B’C’D’

B’CD’

AB’D’





(b)

A’B’C’

A’B’D’

B’C’D’

B’CD’

AB’D’

AB’C

ACD’



(b)

A’B’C’ (0,1)

A’B’D’ (0,2)

B’C’D’ (0,8)

B’CD’ (2,10)

AB’D’ (8,10)

AB’C (10,11)

ACD’ (10,14)

ACD (11,15)

ABC (14,15)









(c)

B’D’

B’D’









(c)

B’D’

B’D’

AC

AC

0
1
2
8
10
11
14
15
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Quine-McCluskey Example: Chart

A’B’C’D’ A’B’C’D A’B’CD’ AB’C’D’ AB’CD’ AB’CD ABCD’ ABCD

A’B’C’

B’D’

AC

× ×

× × × ×

× × ×









 

 ×

F = A’B’C’ + B’D’ + AC
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Quine-McCluskey Exercise

• Simplify

F(A,B,C,D,E) = m(0,1,4,5,16,17,21,25,29)
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Quine-McCluskey Exercise: Table
 

*

*

*

*

*

*

*

*

*

ABCD’E4

ABC’D’E

AB’CD’E3

AB’C’D’E

A’B’CD’E2

AB’C’D’E’

A’B’CD’E’

A’B’C’D’E1

A’B’C’D’E’0

*

*

*

*

*

*

*

*

*

ABCD’E4

ABC’D’E

AB’CD’E3

AB’C’D’E

A’B’CD’E2

AB’C’D’E’

A’B’CD’E’

A’B’C’D’E1

A’B’C’D’E’0

*

*

*

*

*

*

*

*

*

*

*

*

ABD’E

ACD’E3

AC’D’E

AB’D’E

B’CD’E2

AB’C’D’

A’B’CD’

B’C’D’E

A’B’D’E1

B’C’D’E’

A’B’D’E’

A’B’C’D’0

*

*

*

*

*

*

*

*

*

*

*

*

ABD’E

ACD’E3

AC’D’E

AB’D’E

B’CD’E2

AB’C’D’

A’B’CD’

B’C’D’E

A’B’D’E1

B’C’D’E’

A’B’D’E’

A’B’C’D’0

-

-

-

-

-

AD’E

AD’E2

B’D’E

B’D’E1

B’C’D’

A’B’D’

B’C’D’

A’B’D’

B’C’D’0

-

-

-

-

-

AD’E

AD’E2

B’D’E

B’D’E1

B’C’D’

A’B’D’

B’C’D’

A’B’D’

B’C’D’0
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Quine-McCluskey Exercise: Chart
 

xxxxAD’E

xxxxB’D’E

xxxxA’B’D’

xxxxB’C’D’

A

B

C

D’

E

A

B

C’

D’

E

A

B’

C

D’

E

A

B’

C’

D’

E

A’

B’

C

D’

E

A

B’

C’

D’

E’

A’

B’

C

D’

E’

A’

B’

C’

D’

E

A’

B’

C’

D’

E’

xxxxAD’E

xxxxB’D’E
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F = B’C’D’+A’B’D’+AD’E
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Implementation

• Simple circuit can be directly implemented 
(from the expression)

• Technology mapping
– Transform the logic diagram or netlist to a new 

diagram or netlist that implementation technology 
supports, e.g. NAND

– Optimization and mapping may repeat multiple times 
to meet technology specifications, e.g. e.g. gate cost, 
gate delay, fan-out limits, etc

• Verification
– Verify the correctness of final design
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2-Level Implementations - 1

• Implementation can be directly using the Sum-
of-Product (SOP) function, which is a 2-level 
AND-OR implementation: the AND gates 
generates the product terms, which the outputs 
are summed by an OR gate

• e.g.  F = xy’+x’y+z x
y'

x'
y

z

F

NOT gates are required to implement the inverted literals,
however they are not usually considered a level

products

sum

AND-OR
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2-Level Implementations - 2

• By converting SOP into other forms, including 
POS, 2-level implementations can be either:

– AND-OR from SOP

– NOR-OR

– NAND-NAND

– OR-NAND

– AND-NOR

– NOR-NOR

– NAND-AND

– OR-AND from POS
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An Example Function

F yz y’z’ y’z yz yz’

x 00 01 11 10

x’ 0 0 0 1 1 3 1 2 1

x 1 4 1 5 1 7 1 6 0

F yz y’z’ y’z yz yz’

x 00 01 11 10

x’ 0 0 0 1 1 3 1 2 1

x 1 4 1 5 1 7 1 6 0

F = xy’+x’y+z

F’ = x’y’z’+xyz’
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From F to other forms - 1

• By applying De Morgan’s Duality, F can be converted 
into three other forms for 2-level implements:

– original F

• F = xy’+x’y+z (AND-OR)

– applying duality to each product term in original F

• F = (x’+y)’+(x+y’)’+z (NOR-OR)

– applying duality to both side of original F

• F’ = ( xy’+x’y+z )’ = (xy’)’(x’y)’z’
F = ((xy’)’(x’y)’z’)’ (NAND-NAND)

– applying duality on each product term of NAND-NAND function

• F = ((x’+y)(x+y’)z’)’ (OR-NAND)
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From F to other forms - 2

x
y'

x'
y

z

F

x
y'

x'
y

z'

F

x'
y

x
y'

z

F

x'
y

x
y'

z'

F

AND-OR NAND-NAND

NOR-OR OR-NAND
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From F’ to other forms - 1

• By applying De Morgan’s Duality, F’ can be converted 
into four different forms for 2-level implements:

– original F’

• F’ = x’y’z’+xyz’

• F = ( x’y’z’+xyz’ )’ (AND-NOR)

– applying duality to each product term in AND-NOR function

• F = ( (x+y+z)’+(x’+y’+z) )’ (NOR-NOR)

– applying duality to AND-NOR function

• F = (x’y’z’)’(xyz’)’ (NAND-AND)

– applying duality to each term in NAND-AND function

• F = (x+y+z)(x’+y’+z) (OR-AND)
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From F’ to other forms - 2

x'
y'
z'

F
x
y
z'

x'
y'
z'

F
x
y
z'

x
y
z

F
x'
y'
z

x
y
z

F
x'
y'
z

AND-NOR NAND-AND

NOR-NOR OR-AND
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Duality on Logic Gate

≡

≡

≡

≡

≡

≡
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Technology Mapping

• Mapping to NAND or NOR

• Fine tuning the circuit for optimization with the 
selected technology
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Technology Mapping: NAND

• NAND technology

– Consists of a collection of cell types

• each of which includes a NAND gate with fixed number 
of inputs

• the cells have numerous properties

– e.g. propagation delay, fan-in, fan-out, etc

• E.g. Implement F = AB + (AB)’C + (AB)’D’ + E 
with NAND gates

– next slide
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NAND Example
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NOR Example

• Implement F = AB + (AB)’C + (AB)’D’ + E with 
NOR gates
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NAND vs NOR

• Comparisons

– Gate-input cost

• NAND implementation is 12

• NOR implementation is 14

– Gate delay

• NAND – max. 3 gates in series

• NOR – max. 5 gates in series

– So for the e.g. NAND circuit is superior to NOR circuit 
in both cost and delay
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Implementation using XOR

• If the true conditions (1’s) in a K-map is scattered, it may 
be difficult to obtain a simple expression.  An example is 
the even parity function earlier.

• However, it may be possible to obtain simplified 
expression using XOR operators
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XOR Identities

Basic theorems
T1. x  x = 0 T2. x  x' = 1 T3. x  0 = x T4. x  1 = x‘

Inversion theorems
T5. (x  y)' = x'  y = x  y‘
T6. x'  y' = x  y

T7. x  y = y  x    Commutative law
T8. (x  y)  z = x  (y  z)  Associative law
T9. x(y  z) = xy  xz   Distributive law
T9'. x(y  z) = (x'+y)  (x'+z) Distributive law with OR function
T10. If: f = g  h and gh = 0, then f = g + h  Disjunction theorem
T11. If: f = g  h, then g = f  h and h = g  f Transposition theorem

XOR: x  y = xy’ + x’y  XNOR: (x  y)’ = xy + x’y
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XOR general properties

• Multiple-variable XOR 
operation is defined as an odd 
function

– Function equal 1 if odd 
number of variables equal 1

• Even function

– Even number of variables is 
equal to 1

– Complement of odd function

A B C F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

3 variable XOR
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XOR function from K-map

• In view of XOR properties, the following rules 
enable determining of XOR function from K-
map:

– there must be overlap of the groups

– cells with true condition (1) must be encircled odd 
number of times (includes one time)

– cells with false condition (0) must be encircled even 
number of times (includes zero time)

F y’ y

x' 0 1

x 1 0

F = x  y
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XOR function examples - 1

F y’z’ y’z yz yz’

x’ 0 1 0 1

x 0 0 1 1

F y’z’ y’z yz yz’

x’ 0 0 1 0

x 0 1 1 1

F = y  x’z

F = xz  xy  yz
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XOR function examples - 2

F y’z’ y’z yz yz’

w’x’ 1 1

w’x 1 1

wx 1 1 1

wx’ 1

F = w  x’z  xy  wyz’
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XOR function illustrations

• Start by plotting (encircle) variable a as 
shown in (b)

– this covers three of the 1s in the map but 
places an additional 1 (in grey) at position 
abc

• Next plot variable c as shown in (c)

– this cancels the extra 1 at abc, covers the 1s 
at position a'bc and a'b'c but cancels the 1 at 
position ab'c

• To regain a 1 at this position we place an 
additional 1 there and map that position 
as shown in (d)
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High-Impedance Output

• Gates may produce a third output value known 
as high-impedance state, Hi-Z, Z or z

• Hi-Z behaves as an open circuit, thus output 
appears to be disconnected

– allows the output of a logic circuit to be disconnected 
from the main circuit

• Gates with Hi-Z output can have their outputs 
connected together

– Provided that no 2 gates drive the line at the same 
time to opposite 0 and 1 values
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Three-State Buffers - 1

• Tri-state buffer is distinguished from normal 
buffer by the enable input



owh@ieee.org CO 2206 80

Three-State Buffers - 2
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Three-State Buffers - 3

• If conflicting output appears at the connecting 
line

– then the current is often large enough to cause heating 
and may even destroy the circuit

– designer must ensure that EN0 and EN1 never equal 1 
at the same time

• e.g. by using a decoder to generate the EN signals
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Enabling - 1

• In general, enabling permits an input signal to 
pass through to (affect) an output

– Enable (EN) input signal is required to determine 
whether the output is enabled

• Enable the operation of the logic circuit

• In addition to replacing the input signal with the 
Hi-Z (high impedance) state

– Disabling also can replace the input signal with a fixed 
output value of 0 or 1
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Enabling - 2

• Disabled value 0
– If EN = 1

• Input X reaches output

– If EN = 0

• Output always 0

• Disabled value 1
– If EN = 1

• Input X reaches output

– If EN = 0

• Output always 1
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Summary

• Five steps in logic circuit design

• Three techniques for minimization 
(simplification) with K-map being simplest while 
Quine-McCluskey method being systematic

• Variations in implementation incluing AND-OR, 
NAND-NAND and NOR-NOR being most 
common

• XOR offers alternative to SOP and POS in 
simplifying functions with scattered ones

• Enable and Hi-Z facilitate circuit 
interconnections
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