
owh@ieee.org CO 2206 1

Logic Circuit Design

CO 2206 Computer Organization

owh@ieee.org CO 2206 2

Topics

• The Process

• Standard Forms

• Simplification techniques
– Algebraic manipulation

– Karnaugh Map (K Map)

– Quine-McCluskey method

• Implementation matters
– Circuit Implementation

• 2-level implementations

– XOR Implementation

– Hi-Z and Enable

owh@ieee.org CO 2206 3

Introduction

• Logic circuits for digital systems may be

– Combinational logic circuit/network (CLN)

– Sequential logic circuit/network (SLN)

owh@ieee.org CO 2206 4

Combinational Logic

• Combinational circuits

– Consist of logic gates whose outputs at any time are
determined directly (and solely) from the present
combination of inputs

– For n input variables, there are 2n possible binary
input combinations

– Combinational circuit can be described by m Boolean
functions, one for each output variable

owh@ieee.org CO 2206 5

Sequential Logic

• Outputs of sequential circuits depend not
only on present inputs, but also on stored values
(states), which are a function of previously
applied inputs

• Output determined by

– inputs

– present state of the storage elements

• ‘previous’ outputs

owh@ieee.org CO 2206 6

Logic Design Process

• A simple logic design process involves

1. Problem specification - discover the input and output
requirement

2. Problem formulation – e.g. derive a truth table from the
input and output requirement

3. Derivation of logical expression(s) – e.g. from the truth table,
derive the Boolean expression

4. Optimization – in simplest is to minimize the Boolean
expression(s) if necessary, however more to it (cost factors)

5. Implementation - build the circuit(s) from the simplest
Boolean expression(s)

• If there are more than one output, we treat each output
as a separate design or circuit

owh@ieee.org CO 2206 7

Design Example: the Problem

• Access to a compound that contains dangerous
high voltage equipment can be gained by a
maintenance electrician under the following
conditions:

– The high voltage is off (Logic 0).

– A keyswitch on the control panel 100 yards away is
off (Logic 0).

– A keyswitch on the gate is turned on (Logic 1).

• Under all the other conditions the gate cannot
physically be opened.

owh@ieee.org CO 2206 8

Design Example: Solution - 1

• Step 1: Discover the input and output
requirements

– The input and output requirements are given in the
question

• Step 2: Derive a truth table from the input and
output requirement

– Assignment input variables and output function.

A = High voltage

B = Control panel switch

C = Gate switch

owh@ieee.org CO 2206 9

Design Example: Solution - 2

– Conditions for entry : Q=1

• Requirements are A=0, B=0, C=1

– truth table
A B C Q

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

owh@ieee.org CO 2206 10

Design Example: Solution - 3

• Step 3: From the truth table, derive the Boolean
expression

• Step 4: Minimize the Boolean expression if
necessary
– There is only one possible output condition and the

expression is in its simplest form

• Step 5: Build the circuit from the simplest
Boolean expression

CBAQ =

A

B

C

Q

A

B

owh@ieee.org CO 2206 11

Standard Forms

• Standard forms facilitate the simplification

• Standard forms contain
– Product terms

• e.g. xy’z

– Sum terms

• e.g. x + y + z’

• Minterms
– Product terms in which all the variables appear exactly once,

either primed or unprimed

• Maxterms

– Sum terms in which all the variables appear exactly once

owh@ieee.org CO 2206 12

Deriving Logical Expression

• Logical expression can be expressed as:

– Sum of Minterms

– Product of Maxterms

• In sum of minterms

– we specify combination inputs for which the output is
1

• In product of maxterms

– we specify combination inputs for which the output is
0

owh@ieee.org CO 2206 13

Example - 1

• 3-input majority function

– Sum of minterms

F1 = A’BC + AB’C + ABC’ + ABC

F1 =  m(3,5,6,7)

– Product of maxterms

F’1 = (A+B+C) (A+B+C’) (A+B’+C)

(A’+B+C)

F’1 =  M(0,1,2,4)

A B C F1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

The selected minterm, A’BC, will give an output
of 1 when A=0, B=1, C=1.

The selected maxterm, A’+B+C, will give an
output of 0 (hence F’) when A=1, B=0, C=0.

owh@ieee.org CO 2206 14

Example - 2

• 3-input even parity function

– Sum of minterms

F2 = A’B’C + A’BC’ + AB’C’ + ABC

F2 =  m(1,2,4,7)

– Product of maxterms

F’2 = (A+B+C) (A+B’+C’) (A’+B+C’)

(A’+B’+C)

F’2 =  M(0,3,5,6)

A B C F2

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Whereas minterms are expressed non-inverted,
i.e. 000 = A’B’C’ and 111 = ABC

Note that the maxterms are expressed in
inverted form, i.e. 000 = ABC and 111 = A’B’C’.

owh@ieee.org CO 2206 15

Straight Implementation

• Implementing 3-
input even parity
function

– from sum of
minterms

owh@ieee.org CO 2206 16

Simplifying Logical Expression

• Sum of minterms and product of maxterms can
be obtained directly from the truth table,

– but the expression contains maximum number of
literals (or variables) in each term and usually has
more terms than necessary

• It may require simplification

owh@ieee.org CO 2206 17

Simplifying Techniques

• 3 techniques

– Algebraic manipulation

• Do not know if expression is in final simplified form

– Karnaugh map (K map)

• Graphical method suitable for expression with 4 or less
number of variables

– Quine-McCluskey methods

• Tabular method for simplifying expression with large
no. of variables

• Can be automated (programmed)

owh@ieee.org CO 2206 18

Algebraic Manipulation

• Using Theorems of Boolean Algebra

– no fixed steps to follow

– requires good intuition and experience

– inherent problem of which rule to apply

• Example:

F1 = A’BC + AB’C + ABC’ + ABC

= A’BC + AB’C + ABC’ + ABC + ABC + ABC

= A’BC + ABC + AB’C + ABC + ABC’ + ABC

= BC(A’+A) + AC(B’+B) + AB(C’+C)

= BC + AC + AB

owh@ieee.org CO 2206 19

Karnaugh Map - 1

• Karnaugh Map (pronounced car-no), like a truth
table, is a mean for showing the relationship between
logic inputs and the desired output

• Karnaugh map is usually abbreviated K-map. K-map
can be used for problems involving two-, three-, four-,
five- or six- different input variables

– K-map for more than six-variable is practically impossible

– Solving five- and six- variable K-map is extremely cumbersome;
they can be more practically solved using advanced computer
techniques

• In this course, we will only deal with two-, three- and
four-variable K-map

owh@ieee.org CO 2206 20

K-Map Format - 1

• Size depends on number of input variables, 2, 3, 4

e.g.
0 = 000 = X’Y’Z’
5 = 101 = XY’Z

e.g.
0 = W’X’Y’Z’
13 = WXY’Z

F F
F

F

F is output function

m0

m1

m2

m3

owh@ieee.org CO 2206 21

K-Map Format - 2

• K-map is a map describing all possible combinations of
variables present in the logic function of interest
– A K-map consists of 2N cells, where N is the number of logic

variables
– each square represents one minterm

• Minterms are arranged
in sequence similar to
Gray code

• Any 2 adjacent cells
differ by only one variable,
which is primed in one cell
and unprimed in another

• Possible to derive a number of
algebraic expressions for the
same function

F

m0

m1

m2

:

m15

owh@ieee.org CO 2206 22

K-Map Examples

Inputs Output
A B Q

0 0 1  BA

0 1 0 BA

1 0 0 
BA

1 1 1 AB

 BA BA

 Q

 B B

 A
1 0

 A 0 1

 BA AB

Inputs Output
A B C Q

0 0 0 0  CBA

0 0 1 1  CBA

0 1 0 1  CBA

0 1 1 1 
BCA

1 0 0 0 
CBA

1 0 1 1 
CBA

1 1 0 0 
CAB

1 1 1 0 
ABC

 CBA

 Q

 C C CBA

CBA BA
0 1

 BA
1 1 BCA

 AB 0 0

CAB BA
0 1 ABC

 CBA CBA

2-variable K-Map can be 2x4 or 4x2

owh@ieee.org CO 2206 23

From TT to K-Map

• To transfer a truth table into a K-map, we
simply transfer the output level for each case of
the truth table into the corresponding cell in K-
map

Inputs Output
A B C Q

0 0 0 1  CBA

0 0 1 1  CBA

0 1 0 1  CBA

0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Q
C C

BA 1 1

BA 1 0

AB 0 0

BA 0 0

owh@ieee.org CO 2206 24

From Expression to K-Map - 1

• The following steps can be followed to transform
Boolean expression into K-map
– Express the Boolean expression into Sum-Of-Product

(SOP) expression. For example

– Fill in each of the cells which has the product terms
with a "1“. See next slide for example.

CBACBACBA

CBACBCBAQ

++=

++=)(

product terms

SOP ACBA

CBAQ

+=

+=)(

 product terms

SOP

Note the product terms need not be minterms

owh@ieee.org CO 2206 25

From Expression to K-Map - 2

ACBAQ +=

 Q

 C C

 BA CBA CBA

 BA CBA BCA Both have

 Both have AB CAB ABC AC

 BA BA CBA CBA

Q

C C

BA 0 0

BA 0 0

AB 0 1

BA 1 1

owh@ieee.org CO 2206 26

From Expression to K-Map - 3

• Alternatively, derive the truth table from the
expression and then transfer the truth table to
K-map

owh@ieee.org CO 2206 27

Simplest Expression from K-Map

• The following steps can be followed to obtain a
simplest Boolean expression from the K-map:

– Encircle adjacent cells filled with "1" in groups of 2,
4, 8, etc. (i.e. power of 2)

– For each group or circle, find the product term
which is common in all cells within the group.

– The simplest expression is given by the sum of the
product terms for all groups

owh@ieee.org CO 2206 28

Grouping Rules

• The following grouping rules should be followed:

– the number of cells must be a power of 2 using the rule 2N

– the more adjacent cells encircled, the simpler the final
expression will be; for the simplest expression the maximum
number of cells must be grouped

– a cell can appear in more than one group

– cells must have a common edge, i.e. the map can be imagined as
a sphere opened out (just like the map of the World) so that the
top edge is adjacent to the bottom edge and the right edge is
adjacent to the left edge

– all the "1" should be encircled

owh@ieee.org CO 2206 29

Some Grouping Terms

• The following terms are associated with K-maps:

– Pair – group of 2 cells (with 1 less variable in the
product term, i.e. for 3-variable function, a pair will
be a product term with 2 variables)

– Quad – group of 4 cells (with 2 less variables)

– Octet – group of 8 cells (with 3 less variables)

– Redundant group – a group with all its 1’s already
in other groups

owh@ieee.org CO 2206 30

Example - Grouping
Q

C C

BA 1 1

BA 1 1 Group of 4 cells

Group of 4 cells AB 0 0

BA 1 1
Q

C C

BA 1 1

BA 1 1 B is common

A is common AB 0 0

BA 1 1

BAQ +=

owh@ieee.org CO 2206 31

SOP Method

• In summary, the following steps, called SOP
Method, are used to simplify Boolean
Equations:
– Enter a 1 on the K-map for each fundamental product

that produces a 1 output in truth table. Enter 0
elsewhere.

– Encircle the octets, quads and pairs. Remember to
roll or overlap to get the largest groups possible

– If any isolated 1 remains, encircle each

– Eliminate any redundant group

– Write the Boolean Equation by ORing the products
corresponding to the encircled groups

owh@ieee.org CO 2206 32

3-variable Examples - 1

F1 = xy’ + x’y F2 = yz +xz’

owh@ieee.org CO 2206 33

3-variable Example - 2

F3 = z’ + xy’ F4 = C + A’B

overlap

roll

owh@ieee.org CO 2206 34

3-variable Example - Observations

• More cells in the group, fewer literals in the
product term

– 1 cell represent 1 minterm, giving a term of 3 literals

– 2 adjacent cells represent a term of 2 literals

– 4 adjacent cells represent a term of 1 literal

– adjacent cells encompass the entire map, function
always equal to 1

owh@ieee.org CO 2206 35

4-variable Example - 1

F5 = y’ + w’z’ + xz’ F6 = B’D’ + B’C’ + A’CD’

owh@ieee.org CO 2206 36

4-variable Example - 2

• Minimal expression will depend on groupings

owh@ieee.org CO 2206 37

More Examples

F1 = AB+AC+BC
(before simplification: F = A’BC+AB’C+ABC’+ABC)

F2 = A’B’C+A’BC’+AB’C’+ABC
(not all functions can be simplified)

owh@ieee.org CO 2206 38

Essential Prime Implicants - 1

• On a K map, prime implicants correspond to
all rectangles (groups) containing 1’s

• If a minterm of a function is included in only one
prime implicant, that prime implicant is said to
be essential

• Optimised expression obtained from
– Sum of all essential prime implicants, plus

– Other prime implicants needed to include remaining
minterms not included in the essential prime
implicants

owh@ieee.org CO 2206 39

Essential Prime Implicants - 2

redundant

owh@ieee.org CO 2206 40

Product of Sums – the Alternative

• Cells with 1’s give F, cells with 0’s give F’

• Combining squares marked with 0’s

– F’ = AB + CD + BD’

• Taking the dual

– F = (AB + CD + BD’)’

– = (AB)’(CD)’(BD’)’

• Dual each product term

– F = (A’+B’)(C’+D’)(B’+D)

• Note 1st and 2nd step can be
skipped by observing that
product term XY becomes sum term X’+Y’

owh@ieee.org CO 2206 41

Don’t Care Conditions - 1

• In some applications, some outputs are not
specified for certain combinations of variables
because

– The input combinations never occur

– We do not care what the outputs are in response to
the input combinations

• These outputs are unspecified and are called
don’t care conditions

owh@ieee.org CO 2206 42

Don’t Care Conditions - 2

• “Don’t cares” are marked ‘x’ in K map and may
be assumed to be 0 or 1

– assumptions are made in the way to produce simplest
expression

owh@ieee.org CO 2206 43

Quine-McCluskey Method

• The Quine-McCluskey algorithm (or the method of
prime implicants) is a method used for minimization of
boolean functions which was developed by W.V. Quine
and Edward J. McCluskey

• It is functionally identical to K-map, but the tabular
form makes it more efficient for use in computer
algorithms, and it also gives a deterministic way to check
that the minimal form of a Boolean function has been
reached
– it is sometimes referred to as the tabulation method

• The method involves two major steps:
– Table - finding all prime implicants of the function
– Chart - use those prime implicants in a prime implicant chart

to find the essential prime implicants of the function, as well as
other prime implicants that are necessary to cover the function

owh@ieee.org CO 2206 44

Quine-McCluskey: the Table

ABC

B’C’D’

A’B’D’

A’B’C’

(b)

ABCD

ABCD’

AB’CD

AB’CD’

AB’C’D’

A’B’CD’

A’B’C’D

A’B’C’D’

Group 4

Group 3

Group 2

Group 1

Group 0

(a)

B’C’D’

A’B’D’

A’B’C’

AB’D’

B’CD’

(b)

AB’C

ACD’

B’C’D’

A’B’D’

A’B’C’

ACD

AB’D’

B’CD’

(b)

B’C’D’

A’B’D’

A’B’C’

ACD’

AB’C

AB’D’

B’CD’

(b)

B’D’

B’D’

(c)

AC

B’D’

B’D’

AC

(c)

































owh@ieee.org CO 2206 45

Quine-McCluskey: Step 1.1

• Specify the function in Sum of Minterms

• Group the minterms in accordance to “number of true
conditions (1’s)” and arranged in a column (a). Example:

– a’b’c’d’  0000 (no 1’s) is in group 0

– a’b’c’d  0001 (one 1’s) is in group 1

– ab’cd’  1010 (two 1’s) is in group 2, etc

• First iteration: remove one variable from the minterms
by looking at a pair of terms in adjacent groups that
contain a variable and its complement e.g. a’b’c’d’ +
a’b’c’d = a’b’c’

– equivalent to forming group of size 2 in K-map

owh@ieee.org CO 2206 46

Quine-McCluskey: Step 1.2

• From the first iteration:
– a set of product terms (with one less variable) is generated
– these product terms are grouped in number of true conditions

(1’s) and arranged in next column (b)
– terms not simplified in the first iteration will be left in column

(a).

• Second iteration: remove one variable from the terms in
(b) by looking at a pair of terms in adjacent groups that
contain a variable and its complement e.g. a’b’c’ + a’bc’ =
a’c’
– equivalent to forming group of size 4 (2x2) in K-map
– a set of product terms (with one less variable) is generated
– these product terms are grouped in number of true conditions

(1’s) and arranged in next column (c)
– terms not simplified in this iteration will be left in column (b)

owh@ieee.org CO 2206 47

Quine-McCluskey: Step 1.3

• Continue the iteration until no further reduction (in
variable) can be done. In each iteration:

– tick those terms that have been reduced

– cross (remove) duplicating terms generated in each iteration

– leave those terms that cannot be reduced unticked

• The outcome of the iterations is a table, where each
column to the right has one less variable (reduction)

– those terms not ticked are the prime implicants

• The next step is to draw the Prime Implicant Chart

owh@ieee.org CO 2206 48

Quine-McCluskey: the Chart

 AC

AC

 B’D’

B’D’

 A’B’C’

ABCD ABCD’ AB’CD AB’CD’ AB’C’D’ A’B’CD’ A’B’C’D A’B’C’D’

× ×

× × × ×

× × ×



 

 



 

 × 

prime implicants

minterms

owh@ieee.org CO 2206 49

Quine-McCluskey: Step 2.1

• One row for each prime implicant

• One column for each minterm in original expression

• Mark × where prime implicant for row is in column
terms

• Circle each × that is alone in a column. These are
essential prime implicants that must appear in any final
simplified expression.

• Place a square around all × in a row that has a . This
indicates those minterms with  under it (as in column)
has been included together with the essential prime
implicants (those marked ).

owh@ieee.org CO 2206 50

Quine-McCluskey: Step 2.2

• If there are columns without a  or 

– select a minimum number of prime implicants to cover these
columns

• To incorporate don’t care conditions

– include the don’t care terms in the 1st step (table) and then
ignore them as we apply the 2nd step (chart)

 AC

AC

 B’D’

B’D’

 A’B’C’

ABCD ABCD’ AB’CD AB’CD’ AB’C’D’ A’B’CD’ A’B’C’D A’B’C’D’

× ×

× × × ×

× × ×



 

 



 

 × 

A’BCD

x

AB’CD

x

CD

AC

A’C

B’D’

x x

owh@ieee.org CO 2206 51

Quine-McCluskey Example

• Simplify F = m(0,1,2,8,10,11,14,15)

no. ABCD min group

0 = 0000  A’B’C’D’ 0

1 = 0001  A’B’C’D 1

2 = 0010  A’B’CD’ 1

8 = 1000  AB’C’D’ 1

10 = 1010  AB’CD’ 2

11 = 1011  AB’CD 3

14 = 1110  ABCD’ 3

15 = 1111  ABCD 4

owh@ieee.org CO 2206 52

Quine-McCluskey Example: Table

(b)

A’B’C’

A’B’D’

B’C’D’

(a)

Group 0 A’B’C’D’

Group 1 A’B’C’D

A’B’CD’

AB’C’D’

Group 2 AB’CD’

Group 3 AB’CD

ABCD’

Group 4 ABCD











(b)

A’B’C’

A’B’D’

B’C’D’

B’CD’

AB’D’





(b)

A’B’C’

A’B’D’

B’C’D’

B’CD’

AB’D’

AB’C

ACD’



(b)

A’B’C’ (0,1)

A’B’D’ (0,2)

B’C’D’ (0,8)

B’CD’ (2,10)

AB’D’ (8,10)

AB’C (10,11)

ACD’ (10,14)

ACD (11,15)

ABC (14,15)









(c)

B’D’

B’D’









(c)

B’D’

B’D’

AC

AC

0
1
2
8
10
11
14
15

owh@ieee.org CO 2206 53

Quine-McCluskey Example: Chart

A’B’C’D’ A’B’C’D A’B’CD’ AB’C’D’ AB’CD’ AB’CD ABCD’ ABCD

A’B’C’

B’D’

AC

× ×

× × × ×

× × ×









 

 ×

F = A’B’C’ + B’D’ + AC

owh@ieee.org CO 2206 54

Quine-McCluskey Exercise

• Simplify

F(A,B,C,D,E) = m(0,1,4,5,16,17,21,25,29)

owh@ieee.org CO 2206 55

Quine-McCluskey Exercise: Table

*

*

*

*

*

*

*

*

*

ABCD’E4

ABC’D’E

AB’CD’E3

AB’C’D’E

A’B’CD’E2

AB’C’D’E’

A’B’CD’E’

A’B’C’D’E1

A’B’C’D’E’0

*

*

*

*

*

*

*

*

*

ABCD’E4

ABC’D’E

AB’CD’E3

AB’C’D’E

A’B’CD’E2

AB’C’D’E’

A’B’CD’E’

A’B’C’D’E1

A’B’C’D’E’0

*

*

*

*

*

*

*

*

*

*

*

*

ABD’E

ACD’E3

AC’D’E

AB’D’E

B’CD’E2

AB’C’D’

A’B’CD’

B’C’D’E

A’B’D’E1

B’C’D’E’

A’B’D’E’

A’B’C’D’0

*

*

*

*

*

*

*

*

*

*

*

*

ABD’E

ACD’E3

AC’D’E

AB’D’E

B’CD’E2

AB’C’D’

A’B’CD’

B’C’D’E

A’B’D’E1

B’C’D’E’

A’B’D’E’

A’B’C’D’0

-

-

-

-

-

AD’E

AD’E2

B’D’E

B’D’E1

B’C’D’

A’B’D’

B’C’D’

A’B’D’

B’C’D’0

-

-

-

-

-

AD’E

AD’E2

B’D’E

B’D’E1

B’C’D’

A’B’D’

B’C’D’

A’B’D’

B’C’D’0

owh@ieee.org CO 2206 56

Quine-McCluskey Exercise: Chart

xxxxAD’E

xxxxB’D’E

xxxxA’B’D’

xxxxB’C’D’

A

B

C

D’

E

A

B

C’

D’

E

A

B’

C

D’

E

A

B’

C’

D’

E

A’

B’

C

D’

E

A

B’

C’

D’

E’

A’

B’

C

D’

E’

A’

B’

C’

D’

E

A’

B’

C’

D’

E’

xxxxAD’E

xxxxB’D’E

xxxxA’B’D’

xxxxB’C’D’

A

B

C

D’

E

A

B

C’

D’

E

A

B’

C

D’

E

A

B’

C’

D’

E

A’

B’

C

D’

E

A

B’

C’

D’

E’

A’

B’

C

D’

E’

A’

B’

C’

D’

E

A’

B’

C’

D’

E’

F = B’C’D’+A’B’D’+AD’E

owh@ieee.org CO 2206 57

Implementation

• Simple circuit can be directly implemented
(from the expression)

• Technology mapping
– Transform the logic diagram or netlist to a new

diagram or netlist that implementation technology
supports, e.g. NAND

– Optimization and mapping may repeat multiple times
to meet technology specifications, e.g. e.g. gate cost,
gate delay, fan-out limits, etc

• Verification
– Verify the correctness of final design

owh@ieee.org CO 2206 58

2-Level Implementations - 1

• Implementation can be directly using the Sum-
of-Product (SOP) function, which is a 2-level
AND-OR implementation: the AND gates
generates the product terms, which the outputs
are summed by an OR gate

• e.g. F = xy’+x’y+z x
y'

x'
y

z

F

NOT gates are required to implement the inverted literals,
however they are not usually considered a level

products

sum

AND-OR

owh@ieee.org CO 2206 59

2-Level Implementations - 2

• By converting SOP into other forms, including
POS, 2-level implementations can be either:

– AND-OR from SOP

– NOR-OR

– NAND-NAND

– OR-NAND

– AND-NOR

– NOR-NOR

– NAND-AND

– OR-AND from POS

owh@ieee.org CO 2206 60

An Example Function

F yz y’z’ y’z yz yz’

x 00 01 11 10

x’ 0 0 0 1 1 3 1 2 1

x 1 4 1 5 1 7 1 6 0

F yz y’z’ y’z yz yz’

x 00 01 11 10

x’ 0 0 0 1 1 3 1 2 1

x 1 4 1 5 1 7 1 6 0

F = xy’+x’y+z

F’ = x’y’z’+xyz’

owh@ieee.org CO 2206 61

From F to other forms - 1

• By applying De Morgan’s Duality, F can be converted
into three other forms for 2-level implements:

– original F

• F = xy’+x’y+z (AND-OR)

– applying duality to each product term in original F

• F = (x’+y)’+(x+y’)’+z (NOR-OR)

– applying duality to both side of original F

• F’ = (xy’+x’y+z)’ = (xy’)’(x’y)’z’
F = ((xy’)’(x’y)’z’)’ (NAND-NAND)

– applying duality on each product term of NAND-NAND function

• F = ((x’+y)(x+y’)z’)’ (OR-NAND)

owh@ieee.org CO 2206 62

From F to other forms - 2

x
y'

x'
y

z

F

x
y'

x'
y

z'

F

x'
y

x
y'

z

F

x'
y

x
y'

z'

F

AND-OR NAND-NAND

NOR-OR OR-NAND

owh@ieee.org CO 2206 63

From F’ to other forms - 1

• By applying De Morgan’s Duality, F’ can be converted
into four different forms for 2-level implements:

– original F’

• F’ = x’y’z’+xyz’

• F = (x’y’z’+xyz’)’ (AND-NOR)

– applying duality to each product term in AND-NOR function

• F = ((x+y+z)’+(x’+y’+z))’ (NOR-NOR)

– applying duality to AND-NOR function

• F = (x’y’z’)’(xyz’)’ (NAND-AND)

– applying duality to each term in NAND-AND function

• F = (x+y+z)(x’+y’+z) (OR-AND)

owh@ieee.org CO 2206 64

From F’ to other forms - 2

x'
y'
z'

F
x
y
z'

x'
y'
z'

F
x
y
z'

x
y
z

F
x'
y'
z

x
y
z

F
x'
y'
z

AND-NOR NAND-AND

NOR-NOR OR-AND

owh@ieee.org CO 2206 65

Duality on Logic Gate

≡

≡

≡

≡

≡

≡

owh@ieee.org CO 2206 66

Technology Mapping

• Mapping to NAND or NOR

• Fine tuning the circuit for optimization with the
selected technology

owh@ieee.org CO 2206 67

Technology Mapping: NAND

• NAND technology

– Consists of a collection of cell types

• each of which includes a NAND gate with fixed number
of inputs

• the cells have numerous properties

– e.g. propagation delay, fan-in, fan-out, etc

• E.g. Implement F = AB + (AB)’C + (AB)’D’ + E
with NAND gates

– next slide

owh@ieee.org CO 2206 68

NAND Example

owh@ieee.org CO 2206 69

NOR Example

• Implement F = AB + (AB)’C + (AB)’D’ + E with
NOR gates

owh@ieee.org CO 2206 70

NAND vs NOR

• Comparisons

– Gate-input cost

• NAND implementation is 12

• NOR implementation is 14

– Gate delay

• NAND – max. 3 gates in series

• NOR – max. 5 gates in series

– So for the e.g. NAND circuit is superior to NOR circuit
in both cost and delay

owh@ieee.org CO 2206 71

Implementation using XOR

• If the true conditions (1’s) in a K-map is scattered, it may
be difficult to obtain a simple expression. An example is
the even parity function earlier.

• However, it may be possible to obtain simplified
expression using XOR operators

owh@ieee.org CO 2206 72

XOR Identities

Basic theorems
T1. x  x = 0 T2. x  x' = 1 T3. x  0 = x T4. x  1 = x‘

Inversion theorems
T5. (x  y)' = x'  y = x  y‘
T6. x'  y' = x  y

T7. x  y = y  x Commutative law
T8. (x  y)  z = x  (y  z) Associative law
T9. x(y  z) = xy  xz Distributive law
T9'. x(y  z) = (x'+y)  (x'+z) Distributive law with OR function
T10. If: f = g  h and gh = 0, then f = g + h Disjunction theorem
T11. If: f = g  h, then g = f  h and h = g  f Transposition theorem

XOR: x  y = xy’ + x’y XNOR: (x  y)’ = xy + x’y

owh@ieee.org CO 2206 73

XOR general properties

• Multiple-variable XOR
operation is defined as an odd
function

– Function equal 1 if odd
number of variables equal 1

• Even function

– Even number of variables is
equal to 1

– Complement of odd function

A B C F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

3 variable XOR

owh@ieee.org CO 2206 74

XOR function from K-map

• In view of XOR properties, the following rules
enable determining of XOR function from K-
map:

– there must be overlap of the groups

– cells with true condition (1) must be encircled odd
number of times (includes one time)

– cells with false condition (0) must be encircled even
number of times (includes zero time)

F y’ y

x' 0 1

x 1 0

F = x  y

owh@ieee.org CO 2206 75

XOR function examples - 1

F y’z’ y’z yz yz’

x’ 0 1 0 1

x 0 0 1 1

F y’z’ y’z yz yz’

x’ 0 0 1 0

x 0 1 1 1

F = y  x’z

F = xz  xy  yz

owh@ieee.org CO 2206 76

XOR function examples - 2

F y’z’ y’z yz yz’

w’x’ 1 1

w’x 1 1

wx 1 1 1

wx’ 1

F = w  x’z  xy  wyz’

owh@ieee.org CO 2206 77

XOR function illustrations

• Start by plotting (encircle) variable a as
shown in (b)

– this covers three of the 1s in the map but
places an additional 1 (in grey) at position
abc

• Next plot variable c as shown in (c)

– this cancels the extra 1 at abc, covers the 1s
at position a'bc and a'b'c but cancels the 1 at
position ab'c

• To regain a 1 at this position we place an
additional 1 there and map that position
as shown in (d)

owh@ieee.org CO 2206 78

High-Impedance Output

• Gates may produce a third output value known
as high-impedance state, Hi-Z, Z or z

• Hi-Z behaves as an open circuit, thus output
appears to be disconnected

– allows the output of a logic circuit to be disconnected
from the main circuit

• Gates with Hi-Z output can have their outputs
connected together

– Provided that no 2 gates drive the line at the same
time to opposite 0 and 1 values

owh@ieee.org CO 2206 79

Three-State Buffers - 1

• Tri-state buffer is distinguished from normal
buffer by the enable input

owh@ieee.org CO 2206 80

Three-State Buffers - 2

owh@ieee.org CO 2206 81

Three-State Buffers - 3

• If conflicting output appears at the connecting
line

– then the current is often large enough to cause heating
and may even destroy the circuit

– designer must ensure that EN0 and EN1 never equal 1
at the same time

• e.g. by using a decoder to generate the EN signals

owh@ieee.org CO 2206 82

Enabling - 1

• In general, enabling permits an input signal to
pass through to (affect) an output

– Enable (EN) input signal is required to determine
whether the output is enabled

• Enable the operation of the logic circuit

• In addition to replacing the input signal with the
Hi-Z (high impedance) state

– Disabling also can replace the input signal with a fixed
output value of 0 or 1

owh@ieee.org CO 2206 83

Enabling - 2

• Disabled value 0
– If EN = 1

• Input X reaches output

– If EN = 0

• Output always 0

• Disabled value 1
– If EN = 1

• Input X reaches output

– If EN = 0

• Output always 1

owh@ieee.org CO 2206 84

Summary

• Five steps in logic circuit design

• Three techniques for minimization
(simplification) with K-map being simplest while
Quine-McCluskey method being systematic

• Variations in implementation incluing AND-OR,
NAND-NAND and NOR-NOR being most
common

• XOR offers alternative to SOP and POS in
simplifying functions with scattered ones

• Enable and Hi-Z facilitate circuit
interconnections

	Slide 1: Logic Circuit Design
	Slide 2: Topics
	Slide 3: Introduction
	Slide 4: Combinational Logic
	Slide 5: Sequential Logic
	Slide 6: Logic Design Process
	Slide 7: Design Example: the Problem
	Slide 8: Design Example: Solution - 1
	Slide 9: Design Example: Solution - 2
	Slide 10: Design Example: Solution - 3
	Slide 11: Standard Forms
	Slide 12: Deriving Logical Expression
	Slide 13: Example - 1
	Slide 14: Example - 2
	Slide 15: Straight Implementation
	Slide 16: Simplifying Logical Expression
	Slide 17: Simplifying Techniques
	Slide 18: Algebraic Manipulation
	Slide 19: Karnaugh Map - 1
	Slide 20: K-Map Format - 1
	Slide 21: K-Map Format - 2
	Slide 22: K-Map Examples
	Slide 23: From TT to K-Map
	Slide 24: From Expression to K-Map - 1
	Slide 25: From Expression to K-Map - 2
	Slide 26: From Expression to K-Map - 3
	Slide 27: Simplest Expression from K-Map
	Slide 28: Grouping Rules
	Slide 29: Some Grouping Terms
	Slide 30: Example - Grouping
	Slide 31: SOP Method
	Slide 32: 3-variable Examples - 1
	Slide 33: 3-variable Example - 2
	Slide 34: 3-variable Example - Observations
	Slide 35: 4-variable Example - 1
	Slide 36: 4-variable Example - 2
	Slide 37: More Examples
	Slide 38: Essential Prime Implicants - 1
	Slide 39: Essential Prime Implicants - 2
	Slide 40: Product of Sums – the Alternative
	Slide 41: Don’t Care Conditions - 1
	Slide 42: Don’t Care Conditions - 2
	Slide 43: Quine-McCluskey Method
	Slide 44: Quine-McCluskey: the Table
	Slide 45: Quine-McCluskey: Step 1.1
	Slide 46: Quine-McCluskey: Step 1.2
	Slide 47: Quine-McCluskey: Step 1.3
	Slide 48: Quine-McCluskey: the Chart
	Slide 49: Quine-McCluskey: Step 2.1
	Slide 50: Quine-McCluskey: Step 2.2
	Slide 51: Quine-McCluskey Example
	Slide 52: Quine-McCluskey Example: Table
	Slide 53: Quine-McCluskey Example: Chart
	Slide 54: Quine-McCluskey Exercise
	Slide 55: Quine-McCluskey Exercise: Table
	Slide 56: Quine-McCluskey Exercise: Chart
	Slide 57: Implementation
	Slide 58: 2-Level Implementations - 1
	Slide 59: 2-Level Implementations - 2
	Slide 60: An Example Function
	Slide 61: From F to other forms - 1
	Slide 62: From F to other forms - 2
	Slide 63: From F’ to other forms - 1
	Slide 64: From F’ to other forms - 2
	Slide 65: Duality on Logic Gate
	Slide 66: Technology Mapping
	Slide 67: Technology Mapping: NAND
	Slide 68: NAND Example
	Slide 69: NOR Example
	Slide 70: NAND vs NOR
	Slide 71: Implementation using XOR
	Slide 72: XOR Identities
	Slide 73: XOR general properties
	Slide 74: XOR function from K-map
	Slide 75: XOR function examples - 1
	Slide 76: XOR function examples - 2
	Slide 77: XOR function illustrations
	Slide 78: High-Impedance Output
	Slide 79: Three-State Buffers - 1
	Slide 80: Three-State Buffers - 2
	Slide 81: Three-State Buffers - 3
	Slide 82: Enabling - 1
	Slide 83: Enabling - 2
	Slide 84: Summary

