
owh@ieee.org CO 2206 1

CO 2206 Introduction to
Computer Organization

Ong Wee Hong
weehong.ong@ubd.edu.bn, owh@ieee.org, G38 IPI SHOAS

Universiti Brunei Darussalam

mailto:Weehong.ong@ubd.edu.bn
mailto:owh@ieee.org

owh@ieee.org CO 2206 2

Acknowledgement

The content of the slides used in this course are
extracted from various sources including those
quoted under references in following slides,
teaching material from UBD lecturers who had
taught this course before and from the material
received from the author’s course of studying

- Jan 2009

owh@ieee.org CO 2206 3

References

• Books

– Computer Organization and Architecture: Designing for Performance,
7th edition by William Stallings

– Logic and Computer Design Fundamentals, 4th edition by Mano and
Kime

• Web pages

– William Stallings resources

• http://williamstallings.com/COA/COA7e.html

– Mano and Kime resources

• http://www.writphotec.com/mano4/index.html

– Introduction to RISC Technology

• http://www.inf.fh-
dortmund.de/personen/professoren/swik/risc/intro_to_risc/irt0_i
ndex.html

owh@ieee.org CO 2206 4

Course Content

• Introduction

• Building Blocks of Computer
– Digital Logic

– Logic Circuit Design

– Registers and Register Transfer

• Computer Design Basics

• RISC and CISC

• Memory Basics

• IO and Buses

owh@ieee.org CO 2206 5

Course Management

• Learning activities (subject to alternative
arrangements)

– Lectures

• 8:00-9:50, FSM 2.18, Monday

– Laboratories and tutorials

• 8:00-9:50, FSM 1.19, Thursday

• Assessment scheme

– Examination 70% - 180 min exam in May

– Coursework 30% - few problem solving

owh@ieee.org CO 2206 6

CO2103 + CO2206

• The two courses are tightly related and
complement each other

• Together, they cover the important linkage and
interfacing between hardware and software

• In computing world, hardware and software
must co-exist

– Software without the hardware to
execute is useless

– Software gives intelligence to the
hardware

owh@ieee.org CO 2206 7

Why take these courses? - 1
Why bother about hardware and its details?

• You want to be a plastic surgeon

• You all know how to use knife, needle, thread

• To be successful you don’t just “cut & paste”

• You have to learn about the body
– Skin

– Bones

– Muscles

• Different parts of the body require different skills
– Nose

– Hands

– Legs

• Who do you trust performing the surgery?

owh@ieee.org CO 2206 8

Why take these courses? - 2
Why bother about hardware and its details?

• You want to be a race car driver

• You all know how to drive

• To be successful you don’t just drive

• You must “be in touch with your vehicle”

• You have to learn about the vehicle
– Engine

– Suspension

– Tires

• Is it drag racing, monster trucks, NASCAR, endurance
– Different cars

– Different style of driving

• Who is going to win the race?

owh@ieee.org CO 2206 9

Why take these courses? - 3
Why bother about hardware and its details?

• You want to be a Computer Scientist

• You all know how to program

• To be successful you don’t just program

• You have to understand the machine

– Hardware: Processor, memory, disk, etc.

– SW: Operating system, Programming Languages/Compilers

• What kind of computer scientist?

– Databases, networks

– Scientific computing (motion of planetary bodies, drug evelopment,
computational biology, economics, etc.)

– Games, virtual reality

– Embedded: Cell phones, mp3 player, cars

• Who’s code do you want controlling your brakes, airbag, financial
transactions? Script kiddie or computer scientist.

owh@ieee.org CO 2206 10

Which code is “better”?

• it depends on what do you mean by “better”

main:

 ;multiply n1 by 10

 xor ax,ax

 mov cx,10

sum: add ax,[n1]

 loop sum

 ...

main:

 ;multiply n1 by 10

 xor ax,ax

 mov bx,[n1]

 mov cx,10

sum: add ax,bx

 loop sum

 ...

owh@ieee.org CO 2206 11

Which code is “better”?

• ;tranversing a 5 elements array

main:

 ;repeated codes

 xor ax,ax

 xor di,di

 add ax,[n+di]

 add di,2

 add ax,[n+di]

 add di,2

 add ax,[n+di]

 add di,2

 add ax,[n+di]

 add di,2

 add ax,[n+di]

 ...

main:

 ;using loop

 xor ax,ax

 xor di,di

 mov ax,[n]

 mov cx,4

sum: add di,2

 add ax,[n+di]

 loop sum

 ...

main:

 ;using subroutine

 xor ax,ax

 xor di,di

 mov ax,[n]

 mov cx,4

sum: call sub

 loop sum

 ...

sub: add di,2

 add ax,[n+di]

 ret

owh@ieee.org CO 2206 12

Architecture vs Organization - 1

• Synonymous in many uses and textbooks

• Architecture is those attributes visible to the
programmer
– Instruction set, number of bits used for data

representation, I/O mechanisms, addressing
techniques.

– e.g. Is there a multiply instruction?

• Organization is how features are implemented
– Control signals, interfaces, memory technology.

– e.g. Is there a hardware multiply unit or is it done by
repeated addition?

owh@ieee.org CO 2206 13

Architecture vs Organization - 2

• Computer Architecture can have a number of
organizational implementations

– control signals

– technologies

– device implementations

• Computer Organization is transparent to the
programmer, however it is the main contributing
factor in improving computer performance
(pipelining, branch prediction, latency hiding,
etc)

owh@ieee.org CO 2206 14

Architecture vs Organization - 3

A computer's architecture is its abstract model and
is the programmer's view in terms of instructions,
addressing modes and registers. A computer's
organization expresses the realization of the
architecture. Architecture describes what the
computer does and organization describes how it
does it.

Architecture and organization are independent;
you can change the organization of a computer
without changing its architecture. For example, a
64-bit architecture can be internally organized as a
true 64-bit machine or as a 16-bit machine that
uses four cycles to handle 64-bit values.

owh@ieee.org CO 2206 15

Architecture vs Organization - 4

• All Intel x86 family share the same basic
architecture

• The IBM System/370 family share the same
basic architecture

• This gives code compatibility

– At least backwards

• Organization differs between different versions

owh@ieee.org CO 2206 16

Architecture vs Organization - 5

• It may not be important to distinguish between
the attributes of architecture and organization

• They are interrelated and sometimes difficult to
distinguish

• Let’s learn them together

owh@ieee.org CO 2206 17

Levels of Abstraction - 1

• Generalize a computer
into different levels

• From the programmer's
point of view:

– High-Level Programming
Languages

– Assembly Language

– Machine Code

– Microcode (CISC)

– Logic Gates

Logic Gates

(ON/OFF)

Microcode

(ON/OFF)

Machine Code

(1 / 0) 1 0 1 1 0 0 0 0

Assembly

(Symbolic)
MVI AL, n

High Level Programming Language

(words)

Algorithm

(sentences)
Human Language

Machine Language

High Level

Low Level

HARDWARE

SOFTWARE

owh@ieee.org CO 2206 18

Levels of Abstraction - 2

• From the User's Point-of-View:

– Applications Software

• Word Processor, Spreadsheet, etc.

– Operating System Software

• UNIX, MS-DOS, OS/2, VMS, etc.

– Hardware

• Mainframe, Workstation, Personal Computer

• Applications are written for a specific Operating System

– Operating System shields the Application from the Hardware

– Different combinations of Hardware Platform, Operating System
and Applications are possible

owh@ieee.org CO 2206 19

Not forgetting the big picture
General microcomputer organization

owh@ieee.org CO 2206 20

Microprocessor (uP) Organization
Just one of the models

owh@ieee.org CO 2206 21

Computer or uP Organization

• Majority of the topics will be on the organization
of the microprocessor

• What makes up the different components in the
microcomputer and microprocessor?

• What different (hardware) implementations or
technologies are used to improve the
performance?

owh@ieee.org CO 2206 22

Design Strategies/Approach
for digital circuits

• Two general approach
– Bottom-up (old style)
– Top-down (mainstream)

• Bottom-up
– connect up gates, circuits to build up bigger systems, e.g.

computer system
– “we have these, so we can do these”

• Top-down
– mainstream design approach
– focus on function, i.e. “we want to do these, so we need/make

these”
– repeatedly breaking down into compositional subsystems or

blocks until base elements
• bottom-up to build up the system

owh@ieee.org CO 2206 23

Top-down Design

• Made possible with sufficient bottom-up knowledge and functional
blocks, i.e. “we have enough knowledge and experience to build the
necessary building blocks”

• Circuit is specified by text or hardware description languages (HDL)

– plus constraints on cost, performance and reliability

• In automated synthesis, HDL description is converted to logic
automatically

• The logic is optimized and then mapped to available primitive
elements

– primitive elements are devices at lowest level of the design, e.g. logic
gates for logic design at gate level

– may be at functional block level

• In order to maximise reusability and satisfy constraints, it is often
necessary to perform parts of the design bottom-up

owh@ieee.org CO 2206 24

Top-down: Hierarchical Design

• Divide and conquer approach
– Circuit is broken up into blocks
– Blocks are interconnected to form the circuit
– Blocks can be broken down into smaller, more manageable

blocks

• A hierarchical design
– Reduces the complexity of the schematic (logic diagram) and

gives a simplified representation of a complex circuit
– The function of a block can be defined by a program or

description, instead of logic schematic
– Blocks are reusable in the same circuit and possible in other

design as well, thus reduces the design effort
• Reusable blocks are functional blocks
• CAD tool libraries may contain these predefined functional

blocks

owh@ieee.org CO 2206 25

owh@ieee.org CO 2206 26

Summary

• Important for computer scientists to know
hardware

• Computer organization and architecture cover
the hardware aspect and its interfacing to
software

– for performance improvement

• Architecture describes what the computer does
and organization describes how it does it
(implementation)

• Topics learned in CO2103 will be required

	Slide 1: CO 2206 Introduction to Computer Organization
	Slide 2: Acknowledgement
	Slide 3: References
	Slide 4: Course Content
	Slide 5: Course Management
	Slide 6: CO2103 + CO2206
	Slide 7: Why take these courses? - 1 Why bother about hardware and its details?
	Slide 8: Why take these courses? - 2 Why bother about hardware and its details?
	Slide 9: Why take these courses? - 3 Why bother about hardware and its details?
	Slide 10: Which code is “better”?
	Slide 11: Which code is “better”?
	Slide 12: Architecture vs Organization - 1
	Slide 13: Architecture vs Organization - 2
	Slide 14: Architecture vs Organization - 3
	Slide 15: Architecture vs Organization - 4
	Slide 16: Architecture vs Organization - 5
	Slide 17: Levels of Abstraction - 1
	Slide 18: Levels of Abstraction - 2
	Slide 19: Not forgetting the big picture General microcomputer organization
	Slide 20: Microprocessor (uP) Organization Just one of the models
	Slide 21: Computer or uP Organization
	Slide 22: Design Strategies/Approach for digital circuits
	Slide 23: Top-down Design
	Slide 24: Top-down: Hierarchical Design
	Slide 25
	Slide 26: Summary

