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Course Content

• Introduction

• Building Blocks of Computer
– Digital Logic

– Logic Circuit Design

– Registers and Register Transfer

• Computer Design Basics

• RISC and CISC

• Memory Basics

• IO and Buses
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Course Management

• Learning activities (subject to alternative 
arrangements)

– Lectures

• 8:00-9:50, FSM 2.18, Monday

– Laboratories and tutorials

• 8:00-9:50, FSM 1.19, Thursday

• Assessment scheme

– Examination 70% - 180 min exam in May

– Coursework 30% - few problem solving
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CO2103 + CO2206

• The two courses are tightly related and 
complement each other

• Together, they cover the important linkage and 
interfacing between hardware and software

• In computing world, hardware and software
must co-exist

– Software without the hardware to 
execute is useless

– Software gives intelligence to the 
hardware
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Why take these courses? - 1
Why bother about hardware and its details?

• You want to be a plastic surgeon

• You all know how to use knife, needle, thread

• To be successful you don’t just “cut & paste”

• You have to learn about the body
– Skin

– Bones

– Muscles

• Different parts of the body require different skills
– Nose

– Hands

– Legs

• Who do you trust performing the surgery?
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Why take these courses? - 2
Why bother about hardware and its details?

• You want to be a race car driver

• You all know how to drive

• To be successful you don’t just drive

• You must “be in touch with your vehicle”

• You have to learn about the vehicle
– Engine

– Suspension

– Tires

• Is it drag racing, monster trucks, NASCAR, endurance
– Different cars

– Different style of driving

• Who is going to win the race?
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Why take these courses? - 3
Why bother about hardware and its details?

• You want to be a Computer Scientist

• You all know how to program

• To be successful you don’t just program

• You have to understand the machine

– Hardware: Processor, memory, disk, etc.

– SW: Operating system, Programming Languages/Compilers

• What kind of computer scientist?

– Databases, networks

– Scientific computing (motion of planetary bodies, drug evelopment, 
computational biology, economics, etc.)

– Games, virtual reality

– Embedded: Cell phones, mp3 player, cars

• Who’s code do you want controlling your brakes, airbag, financial 
transactions? Script kiddie or computer scientist.
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Which code is “better”?

• it depends on what do you mean by “better”

main: 

 ;multiply n1 by 10

 xor ax,ax

 mov cx,10

sum: add ax,[n1]

 loop sum

 ...

main: 

 ;multiply n1 by 10

 xor ax,ax

 mov bx,[n1]

 mov cx,10

sum: add ax,bx

 loop sum

 ...
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Which code is “better”?

• ;tranversing a 5 elements array

main:

 ;repeated codes

 xor ax,ax

 xor di,di

 add ax,[n+di]

 add di,2

 add ax,[n+di]

 add di,2

 add ax,[n+di]

 add di,2

 add ax,[n+di]

 add di,2

 add ax,[n+di]

 ...

main:

 ;using loop

 xor ax,ax

 xor di,di

 mov ax,[n]

 mov cx,4

sum: add di,2

 add ax,[n+di]

 loop sum

 ...

main:

 ;using subroutine

 xor ax,ax

 xor di,di

 mov ax,[n]

 mov cx,4

sum: call sub

 loop sum

 ...

sub: add di,2

 add ax,[n+di]

 ret 
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Architecture vs Organization - 1

• Synonymous in many uses and textbooks

• Architecture is those attributes visible to the 
programmer
– Instruction set, number of bits used for data 

representation, I/O mechanisms, addressing 
techniques.

– e.g. Is there a multiply instruction?

• Organization is how features are implemented
– Control signals, interfaces, memory technology.

– e.g. Is there a hardware multiply unit or is it done by 
repeated addition?
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Architecture vs Organization - 2

• Computer Architecture can have a number of 
organizational implementations

– control signals

– technologies

– device implementations

• Computer Organization is transparent to the 
programmer, however it is the main contributing 
factor in improving computer performance 
(pipelining, branch prediction, latency hiding, 
etc)
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Architecture vs Organization - 3

A computer's architecture is its abstract model and 
is the programmer's view in terms of instructions, 
addressing modes and registers.  A computer's 
organization expresses the realization of the 
architecture.  Architecture describes what the 
computer does and organization describes how it 
does it.

Architecture and organization are independent; 
you can change the organization of a computer 
without changing its architecture.  For example, a 
64-bit architecture can be internally organized as a 
true 64-bit machine or as a 16-bit machine that 
uses four cycles to handle 64-bit values.
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Architecture vs Organization - 4

• All Intel x86 family share the same basic 
architecture

• The IBM System/370 family share the same 
basic architecture

• This gives code compatibility

– At least backwards

• Organization differs between different versions
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Architecture vs Organization - 5

• It may not be important to distinguish between 
the attributes of architecture and organization

• They are interrelated and  sometimes difficult to 
distinguish

• Let’s learn them together
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Levels of Abstraction - 1

• Generalize a computer 
into different levels

• From the programmer's 
point of view:

– High-Level Programming 
Languages

– Assembly Language

– Machine Code

– Microcode (CISC)

– Logic Gates 
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Levels of Abstraction - 2

• From the User's Point-of-View:

– Applications Software

• Word Processor, Spreadsheet, etc.

– Operating System Software

• UNIX, MS-DOS, OS/2, VMS, etc.

– Hardware

• Mainframe, Workstation, Personal Computer

• Applications are written for a specific Operating System

– Operating System shields the Application from the Hardware

– Different combinations of Hardware Platform, Operating System 
and Applications are possible
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Not forgetting the big picture
General microcomputer organization
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Microprocessor (uP) Organization
Just one of the models
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Computer or uP Organization

• Majority of the topics will be on the organization 
of the microprocessor

• What makes up the different components in the 
microcomputer and microprocessor?

• What different (hardware) implementations or 
technologies are used to improve the 
performance?
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Design Strategies/Approach
for digital circuits

• Two general approach
– Bottom-up (old style)
– Top-down (mainstream)

• Bottom-up
– connect up gates, circuits to build up bigger systems, e.g. 

computer system
– “we have these, so we can do these”

• Top-down
– mainstream design approach
– focus on function, i.e. “we want to do these, so we need/make 

these”
– repeatedly breaking down into compositional subsystems or 

blocks until base elements
• bottom-up to build up the system
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Top-down Design

• Made possible with sufficient bottom-up knowledge and functional 
blocks, i.e. “we have enough knowledge and experience to build the 
necessary building blocks”

• Circuit is specified by text or hardware description languages (HDL)

– plus constraints on cost, performance and reliability

• In automated synthesis, HDL description is converted to logic 
automatically

• The logic is optimized and then mapped to available primitive 
elements

– primitive elements are devices at lowest level of the design, e.g. logic 
gates for logic design at gate level

– may be at functional block level

• In order to maximise reusability and satisfy constraints, it is often 
necessary to perform parts of the design bottom-up
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Top-down: Hierarchical Design

• Divide and conquer approach
– Circuit is broken up into blocks
– Blocks are interconnected to form the circuit
– Blocks can be broken down into smaller, more manageable 

blocks

• A hierarchical design
– Reduces the complexity of the schematic (logic diagram) and 

gives a simplified representation of a complex circuit
– The function of a block can be defined by a program or 

description, instead of logic schematic
– Blocks are reusable in the same circuit and possible in other 

design as well, thus reduces the design effort
• Reusable blocks are functional blocks
• CAD tool libraries may contain these predefined functional 

blocks
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Summary

• Important for computer scientists to know 
hardware

• Computer organization and architecture cover 
the hardware aspect and its interfacing to 
software

– for performance improvement

• Architecture describes what the computer does
and organization describes how it does it 
(implementation)

• Topics learned in CO2103 will be required
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