
owh@ieee.org CO 2103 1

Tutorial 1
Intro and Background

CO 2103 Assembly Language

owh@ieee.org CO 2103 2

The tutorial is designed to make you think from
hardware (a bit) and then moving into software (at
low level). As a low-level programmer, you need
sound knowledge of the hardware that you are
using. The tutorial intends to let you appreciate the
linkage between hardware and software, while
applying what you have learned (if any) from the
lectures. It intends to let you appreciate the
significance of Machine Codes and hence Assembly
Language programming.

owh@ieee.org CO 2103 3

Logic Circuit - 1

• Considering binary addition:
• 0 + 0 = 0

• 0 + 1 = 1

• 1 + 0 = 1

• 1 + 1 = 10

• Ignoring carry (only 1 bit result), consider the Augend (A) and
Addend (B) as the inputs and the Sum (S) as output, we have

• Task 1: Design a logic circuit that will provide the function of 1-bit
addition shown above. Hint: Refer to slides on Logic Gates.

Inputs Output

A B S

0 0 0

0 1 1

1 0 1

1 1 0

owh@ieee.org CO 2103 4

Logic Circuit - 2

• The 1-bit Adder designed earlier and its truth table is not complete
as it ignored the Carry

• Task 2: Draw the truth table for a 1-bit Adder with 2 inputs
(Augend A and Addend B) and 2 outputs (Sum S and Carry C).

• Task 3: For the truth table in Task 2, design the logic circuit to
provide the functions. Hint: Treat each output as an independent
circuit.

• A 1-bit Adder adds two 1-bit numbers. For two n-bit numbers, we
use n 1-bit Adders.

S

C

A

B

?

?

owh@ieee.org CO 2103 5

Logic Circuit - 3

• Task 4: Diagram on
the right shows the use
of four 1-bit Adder
(from Task 3) to
perform 4-bit
hardware addition.
Determine the Sum. Is
the Sum correct?
Explain what is
incomplete and
conclude that the 1-bit
Adder in Task 3 is a
Half-Adder.

0 1 0 0 0 1 1 0

? ? ? ?

Addend B Augend A

Sum S

B0 B1 B2 B3 A0 A1 A2 A3

S0 S1 S2 S3

owh@ieee.org CO 2103 6

Logic Circuit - 4

• Task 5: A Full-Adder will have 3 inputs – Augend A, Addend B and
Carry In Ci, and have 2 outputs – Sum S and Carry Out Co. Draw the
Truth Table for a Full-Adder and design a Full-Adder using two
Half-Adders. Hint: Use an OR gate to combine the Carries from
both Half-Adders to give you the final Carry Out.

• Task 6: Replace the Half-Adders in the diagram in Task 4 with Full-
Adders and make necessary connections. Draw the Full-Adder as a
Box with 3 inputs and 2 outputs. Determine the Sum. Is the Sum
correct?

Interconnecting Logic Gates gives Logic Circuit with simple desired
function, while complex functions can be achieved by interconnecting

Logic Circuits. A microprocessor is built from complex interconnections
of Logic Circuits; giving a versatile (various functions) but complex Logic

Circuit. More on this in CO2206 …

owh@ieee.org CO 2103 7

Hardware to Software - 1

• Where do those zeros and ones come from? In hardware, data are
stored as ON or OFF. This can be achieved through storage of
electric charge. We can analogize this concept as having hardware
switches to store our data. We can imagine that each set of switches
is a data storage or memory location.

ON

ON

ON

ON

SET #1

SET #2

SET #3

SET #4

1 SET = 4 SWITCHES (4 BITS)

• Task 7: Diagram on the right shows four
set of switches used to store our data. Let
ON=1 and OFF=0, determine the data (in
binary form) stored in each set. Note
“down” position is ON and black box
indicates position of the switch.

• Task 8: How many different objects (e.g.
character, word, statement, instruction,
etc) can be represented by a 4-bit code?

owh@ieee.org CO 2103 8

Hardware to Software - 2

• Diagram below shows an over simplified hypothetical CPU. The
light blue boxes (with zeros and ones) are set of electronic switches
making up the data storage. The black boxes are complex electronic
logic circuits designed for their specific function(s).

?

?

?

?

?

?

1110

0000

0001

1101

0000

0001

0010

0011

0100

0101

1100

1101

1110

1111

Address

MEMORY

ARITHMETIC

&

LOGIC

CONTROL

1110

1101

CPU 1100

S
E

L
E

C
T

IO
N

 C
IR

C
U

IT

0110

1000

1110

Address Bus

Data Bus

Control Bus

owh@ieee.org CO 2103 9

Hardware to Software - 3

• The hypothetical CPU in previous slide handles 4-bit Data and 6
registers (data storage: X, Y, ACC, IR, PC, MAR). It can access up to
16 memory locations (only). Data are stored into the memory
locations through hardware (e.g. hardwired, switches) or from
registers (only).

?

?

?

?

?

?

1111

0000

0001

1101

0000

0001

0010

0011

0100

0101

1100

1101

1110

1111

Address

MEMORY

X

Y

ACC ALU

CU

IR

PC

MAR CPU

CU = Control Unit
ALU = Arithmetic and Logic Unit

owh@ieee.org CO 2103 10

Hardware to Software - 4

• The Instruction Set for the
system in previous slide is shown
on the right. As an example, the
low level (Assembly Language)
implementation for the high
level statement of

F = A + B
(where F is stored in location
1100, A and B are content of
location 1111 and 1110
respectively) will be as follow:

GETX3 ; X=A
GETY2 ; Y=B
ADD ; ACC=A+B
PUTA0 ; F=ACC=A+B

Machine

Code
Instruction Function

0000 GETX0 (X) (1100)

0001 GETX1 (X) (1101)

0010 GETX2 (X) (1110)

0011 GETX3 (X) (1111)

0100 GETY0 (Y) (1100)

0101 GETY1 (Y) (1101)

0110 GETY2 (Y) (1110)

0111 GETY3 (Y) (1111)

1000 PUTA0 (1100) (ACC)

1001 PUTA1 (1101) (ACC)

1010 PUTA2 (1110) (ACC)

1011 PUTA3 (1111) (ACC)

1100 CLRX (X) = 0

1101 CLRA (ACC) = 0

1110 ADD ACC X + Y

1111 SUB ACC X – Y

Legend:

(R) Content of Register R (R can be X, Y or ACC)

(nnnn) Content of location nnnn

owh@ieee.org CO 2103 11

Hardware to Software - 5

• Task 9 to 13 refer to the system in the previous two slides.

• Task 9: Implement the following high level statement in low level.
F = A – (B + C)

(where F is stored in location 1100, A, B and C are content of
location 1111, 1110 and 1101 respectively)

• Note at high level we are not concerned on where A, B, C and F are
handled in the computer. However, at low level we have to be
specific where are these variables stored in the memory (hardware).

• Task 10: Convert the AL program in Task 9 into Machine Language
(Machine Codes) program.

• Task 11: If the CPU will start executing from location 0000 every
time it is turned ON, determine where will the Machine Codes be
stored in the memory.

owh@ieee.org CO 2103 12

Hardware to Software - 6

• Task 12: Using the data in Slide 8, determine the value stored at
location 1100 after execution of the following instructions:

GETX0
GETY3
SUB
PUTA0

• The system investigated in Task 9 to 12 is not really useful as it does
not allow us to store external data into the memory. For example,
we can’t perform the following operations (through software):

– store 5 into location 1101

– perform F = 3 + 10

• Task 13: State three other operations the system cannot perform.

• To enable the above operations, the Instruction Set need to be
modified - hence hardware logic to be modified. We will leave this
challenging issue to an assessed work in near future.

owh@ieee.org CO 2103 13

Hardware to Software - 7

• In Tasks 7 to 13, you worked from hardware (including
hardware data – switches) into the computer domain
(microprocessor-based system).

• The Instruction Set (hence the complication of its design
– data size, architecture) determines the
functions/operations it can achieve (its limitations)

• CPU only handles zeros and ones – and so everything
else must be represented by zeros and ones … moving us
into the number systems and data representation.

owh@ieee.org CO 2103 14

Number Systems - 1

• Task 14:

1. Convert the following binary numbers to decimal::
(a) 0110, (b) 1011, (c) 11110000, (d) 10101010

2. Convert the following binary numbers to hexadecimal:
(a) 1110, (b) 11011, (c) 110110101, (d) 1010111101110010

3. Convert the following decimal numbers to binary and
hexadecimal:
(a) 12, (b) 15, (c) 27, (d) 96

4. Perform the following unsigned binary additions:
(a) 1 + 1, (b) 1010 + 1111, (c) 110111 + 11001

5. If a program variable is to be used to store a unique number
identifying any day in the year, how many bits will be required
to store it? How many bits to store the year?

owh@ieee.org CO 2103 15

Number Systems - 2

• Task 14:

6. Perform the following unsigned binary subtractions:

– 100101 – 1111, 11100 – 1010, 101011 – 1110, 1100 – 11

7. Perform the following hexadecimal subtractions:

– 123 – DD, 3FF – 20, AB00 – 123, A200 – 3FD

owh@ieee.org CO 2103 16

Signed Integers Representation

• Task 15:
1. For an 10-bit group, work out the representation for −371 in

(a) Sign & Magnitude, (b) 1's Complement, (c) 2's Complement,
(d) Excess-512, (e) Excess-400

2. For a 10-bit group, what range of integers can be represented
using
(a) Sign & Magnitude, (b) 1's Complement, (c) 2's Complement,
(d) Excess-512

3. Express 9876510 in BCD
4. Form the negative equivalent of the following 8-bit 2's

Complement numbers
(a) 00011001, (b) 00011110, (c) 01101000, (d) 01110100
by comparing the resulting bit patterns to the originals, can you
spot a "short cut" method for the conversion? Hint: Change Sign
Rule III

5. Perform the following 12-bit 2’s complement subtraction
1010 1010 1011 − 1011 0000 1101

owh@ieee.org CO 2103 17

ASCII

• Task 16: Referring to ASCII code table, determine the message
stored in the memory as shown below with the first character starting
at lowest memory location 1000 0000 (80h).

• Note a short hand to write the above memory contents is in HEX:
80: 42 72 61 76 6F 21 20 79 6F 75 20 68 61 76 65 20 63 6F 6E 71
94: 75 65 72 65 64 20 74 68 65 20 62 61 72 72 69 65 72 73 20 74
A8: 6F 20 74 68 65 20 64 6F 6F 72 20 6F 66 20 41 4C 20 2E 2E 2E

Address: Address: Address: Address: Address:

1000 0000 0100 0010 1000 1100 0110 0001 1001 1000 0110 0100 1010 0100 0111 0010 1011 0000 0110 1111

1000 0001 0111 0010 1000 1101 0111 0110 1001 1001 0010 0000 1010 0101 0111 0011 1011 0001 0111 0010

1000 0010 0110 0001 1000 1110 0110 0101 1001 1010 0111 0100 1010 0110 0010 0000 1011 0010 0010 0000

1000 0011 0111 0110 1000 1111 0010 0000 1001 1011 0110 1000 1010 0111 0111 0100 1011 0011 0110 1111

1000 0100 0110 1111 1001 0000 0110 0011 1001 1100 0110 0101 1010 1000 0110 0111 1011 0100 0110 0110

1000 0101 0010 0001 1001 0001 0110 1111 1001 1101 0010 0000 1010 1001 0010 0000 1011 0101 0010 0000

1000 0110 0010 0000 1001 0010 0110 1110 1001 1110 0110 0010 1010 1010 0111 0100 1011 0110 0100 0001

1000 0111 0111 1001 1001 0011 0111 0001 1001 1111 0110 0001 1010 1011 0110 1000 1011 0111 0100 1100

1000 1000 0110 1111 1001 0100 0111 0101 1010 0000 0111 0010 1010 1100 0110 0101 1011 1000 0010 0000

1000 1001 0111 0101 1001 0101 0110 0101 1010 0001 0111 0010 1010 1101 0010 0000 1011 1001 0010 1110

1000 1010 0010 0000 1001 0110 0111 0010 1010 0010 0110 1001 1010 1110 0110 0100 1011 1010 0010 1110

1000 1011 0110 1000 1001 0111 0110 0101 1010 0011 0110 0101 1010 1111 0110 1111 1011 1011 0010 1110

	Slide 1: Tutorial 1 Intro and Background
	Slide 2
	Slide 3: Logic Circuit - 1
	Slide 4: Logic Circuit - 2
	Slide 5: Logic Circuit - 3
	Slide 6: Logic Circuit - 4
	Slide 7: Hardware to Software - 1
	Slide 8: Hardware to Software - 2
	Slide 9: Hardware to Software - 3
	Slide 10: Hardware to Software - 4
	Slide 11: Hardware to Software - 5
	Slide 12: Hardware to Software - 6
	Slide 13: Hardware to Software - 7
	Slide 14: Number Systems - 1
	Slide 15: Number Systems - 2
	Slide 16: Signed Integers Representation
	Slide 17: ASCII

