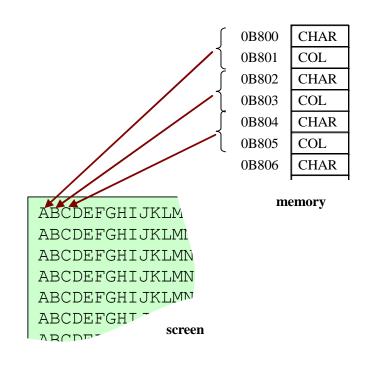
Laboratory 07 Programming the Screen

CO 2103 Assembly Language

Objective

AL programming for Screen
-programming screen in text and graphics modes
-INT 10h for setting video mode
-manipulating video memory and registers

About the screen

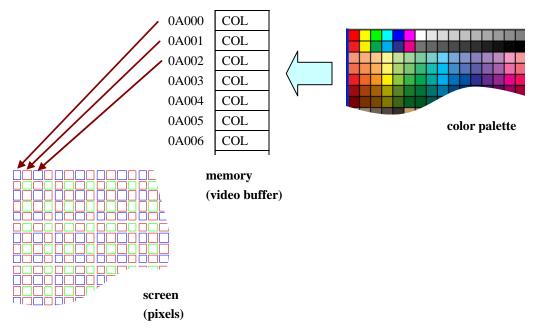

Two modes

- Depending on program requirement, the PC screen can be set to one of the two modes:
 - text color, b/w
 - graphics color, b/w, different size
- Function AH=ooh of INT 10h is used to set the video mode, commonly used modes are:
 - AL=03 80x25 16 color text
 - AL=12 640x480 16 color graphics
 - AL=13 320x200 256 color graphics
- Refer

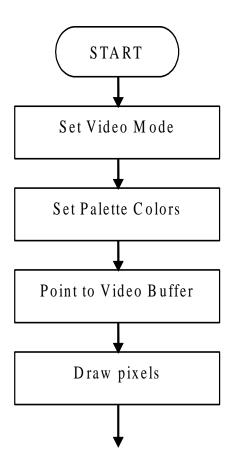
http://www.htl-steyr.ac.at/~morg/pcinfo/hardware/interrupts/inte6l9s.htm

Text mode

- Video buffer starts at oB8ooh
- For screen size of 80 columns x
 25 rows of text
 - think of the screen as a grid of 80 x
 cells, each cell contain a
 character
 - two pieces of information for each character: color and character
 - 2 bytes are needed to store each character information total of 80x25x2 = 4000 bytes in the buffer
 - 2 consecutive bytes (starts at oB8ooh) represent a character on screen



Graphic mode - 1


- Video buffer starts at oAoooh
- For screen size of 320 x 200 pixels, 256 colors (mode 13h)
 - think of the screen made up of 200 rows of 320 dots (pixels)
 - to draw on the screen, we simply change the color of relevant dots/pixels
 - the color for the pixels can be chosen from a palette containing
 256 colors each color (position 0-255) is stored with 3
 information: red, green, blue intensities (0-63 each)
 - theoretically, there are 64*64*64=262144 possible colors
 - however, only 256 colors can be stored on the palette and be used on the screen at any one time
 - programmer can set the palette colors by writing to relevant hardware port registers

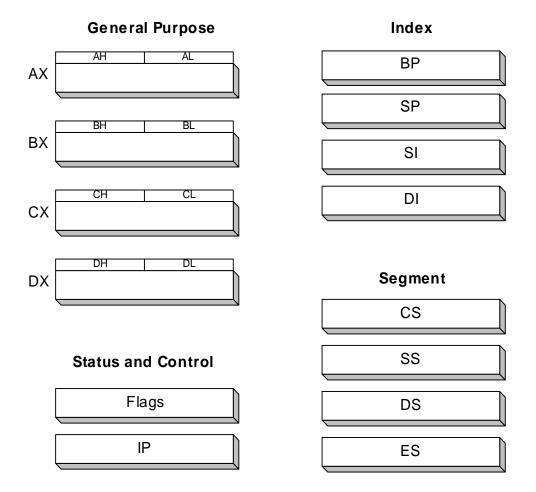
Graphic mode - 2

- the video buffer has 320 x 200=64000 bytes, starting from 0A000h
 - each byte corresponding to 1 dot/pixel on the screen
 - the byte store the color (0-255 from the palette) for the particular dot/pixel on screen

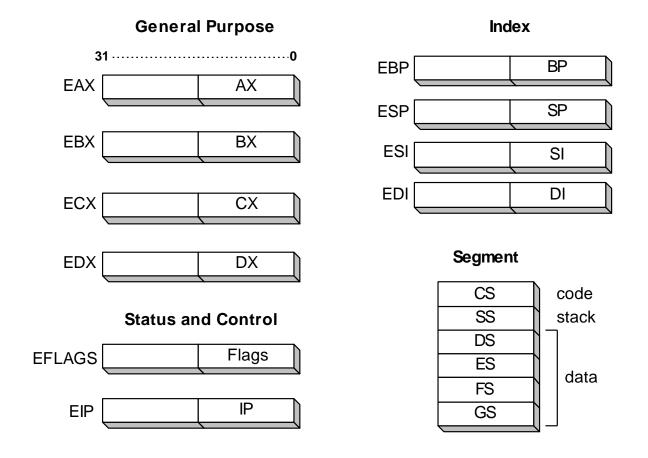
Steps – programming the screen (graphic mode)

Task 5 will elaborates on these steps

Exercises - 1

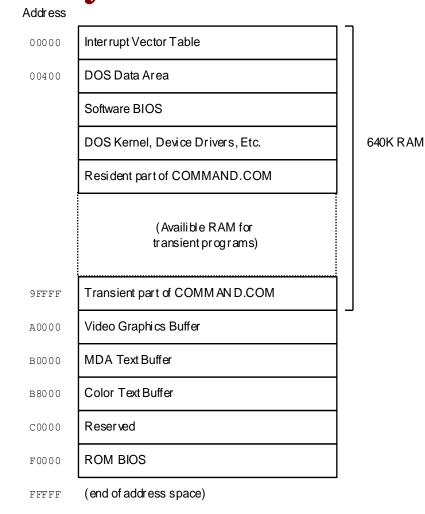

- **Task 5:** Read the article "VGA Programming" (from moodle)
- **Task 6:** Write and test the following programs (from moodle) to deal with colored text:
 - text.asm
 - looptext.asm
 - coltext.asm

Exercises - 2


- Task 7: Write and test pallete.asm (from moodle) to change color palette
- **Task 8:** Write and test the following programs (from moodle) to deal with pixels:
 - pix.asm
 - drawpix.asm
- Refer to article in Task 5, resources in moodle and lecture slides for above tasks

Useful Information

Intel 16-bit registers



32-bit registers (Intel 386+)

Map of the first Megabyte of PC memory

- Note how system data are organized in the memory
- You will be accessing the video graphics buffer and color text buffer in the exercises

