
owh@ieee.org CO 2103 1

Laboratory 02
More on MS Debug

CO 2103 Assembly Language

owh@ieee.org CO 2103 2

Objective

Use MS DEBUG to write AL program

-tracing and more exercises

-familiarize with common 8086 instructions

scripting in DEBUG

owh@ieee.org CO 2103 3

Tracing Program

• One of the important functions of a debugger is the ability
to trace a program, i.e. monitor its execution

– program tracing is basically executing a program step-by-step
(instruction-by-instruction or block-by-block) and monitoring
the outcome (changes in registers, memory, etc)

– in this way, one can find the error (or bug) in the program by
noting unexpected change in status

– related command in Debug:

• Go: g [=address] [addresses]

• Proceed: p [=address] [number]

• Trace: t [=address] [number]

owh@ieee.org CO 2103 4

Go

• Go: g [=address] [addresses]

– run the program starting from address specified in
[=address]

– [addresses] allows the user to set up to 10 breakpoints
during the execution

– a breakpoint is an address where the program will
halt, before executing the instruction at this point

• press g again at a breakpoint will continue to run the
program from this point to the end or next breakpoint

– a breakpoint can only be set at an address containing
the first byte of a valid 8088/8086 op code

owh@ieee.org CO 2103 5

Trace

• Trace: t [=address] [number]
– step through CPU instructions one at a time, i.e.

instruction-by-instruction execution

– display CPU status (registers, flags) at each step

– [=address] set CS:IP=address and execute the
instruction (only one) at this address and then set
IP=address+1

– t without [=address] will execute the instruction
pointed by IP, and then set IP=IP+1

– can be asked to step through a number of instructions
specified by [number]

owh@ieee.org CO 2103 6

Proceed

• Proceed: p [=address] [number]

– same as Trace except:

• immediately execute ALL the instructions (rather than
stepping through each one) inside any Subroutine
CALL, a LOOP, a REPeated string instruction or any
software INTerrupts

• more useful than Trace

• Trace only be used to step into a Subroutine or possibly
check the logic of the first few iterations of a LOOP or
REP instruction

owh@ieee.org CO 2103 7

Simple Example - g, p, t

• mov ax, 5 ;ax=5h

• add ax, 10 ;ax=5+10=15h

• add ax, 20 ;ax=15+20=35h

• mov [0120],ax ;[0120]=ax=35h

• int 20 ;exit

• Task 1: Use DEBUG to enter the above program
and use g, p and lastly t to execute it.

owh@ieee.org CO 2103 8

Simple Example - observations

• Go: only final result is seen, i.e. you can see the
final result in memory [0120] by doing a dump

• Proceed: the status of registers and flags can be
observed after each step, and you can see the
memory content by doing a dump in each step

• Trace: similar as Proceed, however, it steps into
the INT 20 interrupt routine, which may not be
of interest for program to debug (INT are
assumed bug free)

owh@ieee.org CO 2103 9

Simple Example – screenshots 1

• Proceed …

owh@ieee.org CO 2103 10

Simple Example – screenshots 2

• … Proceed

owh@ieee.org CO 2103 11

Simple Example – screenshots 3

• Trace

owh@ieee.org CO 2103 12

Exercises – common 8086
instructions

• Programming 8086 in AL can be easy as there are
limited instructions to know – we usually use a small set
of commonly used instructions

• It is unnecessary to remember the instructions, however,
one should know how to determine the function of an
instruction by referring to an instruction set

• Refer to the Complete 8086 Instruction Set at
http://www.emu8086.com/assembly_language_tutorial
_assembler_reference/8086_instruction_set.html (link
from moodle) and do the following exercises
– first, try to predict the result by only referring to the instruction

set without using any tool

– then, verify your answer using DEBUG

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html

owh@ieee.org CO 2103 13

Exercises

For the following exercises, use DEBUG to
assemble the whole set of instructions for each
task and trace/proceed through the program

While tracing, you may need to check memory
content using dump command

owh@ieee.org CO 2103 14

Exercises – data transfer

• Task 2: Data transfer instructions –referring to instruction set,
confirm which of the following instructions (in sequence) are valid
and predict the result of each of them in turn, then check you answer
in DEBUG (recap: 8086 uses Little Endian scheme; hint: enter all in
assembler and trace the program)

– mov ax,0abc

– mov bl,0abc

– mov ch,bc

– mov bc,ch

– mov [200],ch

– mov [201],ax

– mov dl,[200]

– mov bx,[201]

– mov [203],34

– mov 3456,[206]

– xchg cl,bh

– xchg cx,ax

– xchg dl,cx

– lea di,[201]

all numbers in hex

owh@ieee.org CO 2103 15

Exercises –logic

• Task 3: Logic instructions – predict the result of the following
instructions (in sequence) and check your answer in DEBUG (check
the flags)

all numbers in hex

– not dx

– not [200]

– and dl,c3

– and dl,f0

– or bl,b3

– mov [200],dl

– or bl,[200]

– mov [201],bx

– or bx,dx

– or ax,5511

– and [200],ah

– and [201],fe

– or [201],55

– xor ax,ax

– xchg dh,dl

– xor bx,dx

– test bx,80a1

owh@ieee.org CO 2103 16

• Task 4: Arithmetic instructions – predict the result of the following
instructions (in sequence) and check your prediction in DEBUG
(check the flags)

Exercise – arithmetic

– add al,75

– add bl,89

– add al,bl

– inc cl

– add al,cl

– add bl,77

– adc al,bl

– sub [200],cl

– neg cx

– adc ax,[200]

– sub ax,5

– add dh,4

– mul dh

– add bx,20

– div dh

– imul dx

– div [200]

– dec dx

– dec [200]

– cmp ax,bx

all numbers in hex

owh@ieee.org CO 2103 17

Exercises - bit manipulation

• Task 5: Bit manipulation instructions – predict the result of the
following instructions (in sequence) and check your prediction in
DEBUG (check the flags)

– mov ax,aaaa

– mov cl,03

– shl ax,1

– shl ax,cl

– mov ax,aaaa

– sal ax,1

– sal ax,cl

– mov dx,aaaa

– shr dx,2

– shr dx,cl

– mov dx,aaaa

– sar dx,2

– sar dx,cl

– mov bl,08

– stc

– rol bl,cl

– mov bl,08

– stc

– rcl bl,cl

– stc

– ror bl,clall numbers in hex

owh@ieee.org CO 2103 18

Scripting in DEBUG

• Inconvenient to write program in DEBUG

• Alternative: use DEBUG script (.scp file)

– write DEBUG commands in text file

– load into DEBUG

• debug < file.scp

• Task 6: Try out this tutorial (DEBUG only):
http://thestarman.pcministry.com/asm/fire/Fire.html

– note the ability of AL in control the hardware, in this
case the screen

http://thestarman.pcministry.com/asm/fire/Fire.html

	Slide 1: Laboratory 02 More on MS Debug
	Slide 2: Objective
	Slide 3: Tracing Program
	Slide 4: Go
	Slide 5: Trace
	Slide 6: Proceed
	Slide 7: Simple Example - g, p, t
	Slide 8: Simple Example - observations
	Slide 9: Simple Example – screenshots 1
	Slide 10: Simple Example – screenshots 2
	Slide 11: Simple Example – screenshots 3
	Slide 12: Exercises – common 8086 instructions
	Slide 13: Exercises
	Slide 14: Exercises – data transfer
	Slide 15: Exercises –logic
	Slide 16: Exercise – arithmetic
	Slide 17: Exercises - bit manipulation
	Slide 18: Scripting in DEBUG

