
owh@ieee.org CO 2103 1

Laboratory 01
MS Debug

CO 2103 Assembly Language

owh@ieee.org CO 2103 2

Objective

Using MS DEBUG to write simple AL program

- the tutorial

- data movement, writing text (char/string) to screen,
reading character from keyboard (INT 21)

owh@ieee.org CO 2103 3

Microsoft® DEBUG

• Microsoft® DEBUG is the most native software
debugging tool readily available free in Microsoft OS

• DEBUG is a program testing and editing tool, working at
low-level:

– checking registers’ content

– checking memory content

– writing and testing assembly language program

– simple IO accesses, e.g. read/write disk files, IO ports

• In short, you can write and test executable program using
DEBUG, in Machine or Assembly Language

owh@ieee.org CO 2103 4

DEBUG Basics - 1

• It runs from DOS (Command) prompt

• It is command-based, with user prompt being
the hyphen (-)

• All the displays and keyboard entries are in
Hexadecimal

• Designed to work with .COM programs

• It can examine .EXE programs but cannot save

owh@ieee.org CO 2103 5

DEBUG Basics - 2

• When DEBUG start without filename:

– initialize CS=DS=SS=ES

– initialize AX, BX, CX, DX, BP, SI and DI to zero

– initialize all flag bits to zero, except Interrupt is set to
Enable

– initialize IP=0100, SP=FFEE

• When DEBUG start with filename:

– same as above except:

• initialize SP=FFFE

• CX and BX contain the size of file

owh@ieee.org CO 2103 6

Using DEBUG

• Open Command Prompt by either:

– click Run from Start menu and enter “cmd”

– select Command Prompt from the Accessories in All Programs of
Start menu

• In the Command Prompt enter “debug”

– the user prompt will change from “>” (DOS) to “-” (Debug)

• Enter Debug command accordingly

owh@ieee.org CO 2103 7

DEBUG Commands - 1

• Enter “?” in DEBUG will list all commands available in
DEBUG

owh@ieee.org CO 2103 8

DEBUG Command - 2

• Important commands:

– q quit: exit DEBUG

– r register: display content of registers

– d dump: display content of memory locations

– e enter: write into memory locations

– a assemble: write assembly language program

– u unassemble: decode machine codes into assembly language

– g go: run the program

– t trace: execute the program step-by-step (per instruction)

– l load: load file (program) from disk

– w write: save file (program) to disk

– n name: name the file for write/load commands

owh@ieee.org CO 2103 9

DEBUG Commands - 3

• Using DEBUG commands:

– enter only the first letter

– not case sensitive

– space as separator

– separators are not usually needed, except between
parameters, e.g. “–d 100 110” or “–d100 110” are both
acceptable

owh@ieee.org CO 2103 10

DEBUG Commands - 4

• R (Register) - shows the status of the processor
– display/change content of registers

• at start, all segment registers have the same value, which points to the
program segment (just above the memory space DEBUG itself use) and
all other registers are cleared except: SP=FFEE (near the top of the
program since stack grows downward in memory), IP=0100

• when loading program files (.COM or .EXE) into DEBUG, SP=FFFE
• e.g. -r ax shows the current value of AX and prompt “:” for new value

– press enter to terminate command without changing the content

– display/change status of flags
• NV UP DI PL NZ NA PO NC symbolize 0 values, or clear states, of the

processor flags Overflow, Direction, Disable Interrupt, Sign, Zero,
Auxiliary Carry, Parity and Carry; the opposite states, set or 1, are OV
DN EI NG ZR AC PE CY

• to change the state, execute the command –rf
– show the current states, followed by a hyphen “-”, enter any number of

the abbreviations after the hyphen, and the flags will be so set/cleared

– flags will take these values only when execution of your program starts,
like all the other information in the register display

owh@ieee.org CO 2103 11

DEBUG Commands - 5

• D (dump) - display bytes stored in memory
– e.g. -d0:400 will display 128 bytes, those in addresses 0:400 to 0:47F
– arranged in neat table with addresses on the left in segment:offset form
– 16 bytes on a line, in two groups of 8 separated by a hyphen
– interpreted as ASCII characters at the right, which are usually garbage
– subsequent execution of -d, without any parameters, get the next 128 bytes
– can see any desired number of bytes by putting L (or l) and the number of bytes

at the end, e.g. -d0:400 L10 will display only 16 bytes

• E (enter) - change the bytes stored in memory
– e.g. -e200 11 22 will store 11h into memory location ds:200 and 22h into

ds:201h
– e.g. –e200 “test” will store ASCII codes of the characters (one byte each)

in memory starting from ds:200h
– e.g. –e200 will display the byte in [ds:200h] followed by a period

• enter new byte to change it
• press space bar to go to the next byte
• press enter to leave the command
• a hyphen ("-") goes back one address

owh@ieee.org CO 2103 12

DEBUG Commands - 6

• U (Un/Disassemble) - takes the given bytes and interpret
them as instructions
– with a program, the result will be meaningful
– for random data, it will display garbage that is meaningless
– e.g. u100 200 disassembles bytes from memory locations

starting from [cs:100h] to [cs:200h]
– entering u without address will start from memory location

[cs:0100h] or continue from where previous u command left

• A (Assemble) – assembles instructions into machine
codes
– e.g. -a100 will display the starting address [100h] for the

program and wait for user to enter instructions
– enter without typing any instruction will terminate the command
– entering a without address will start from memory location

[cs:0100h] or continue from where previous a command left

owh@ieee.org CO 2103 13

DEBUG Tutorial

• A good online resource is “A Guide to DEBUG”
by Daniel B. Sedory at:
http://mirror.href.com/thestarman/asm/debug/debug.htm

• Task 1: Go through the above guide, including
the tutorial in its Page 2

– check out the initial values of registers, flags and
memory

– know how to write, test and save a simple print screen
program

http://mirror.href.com/thestarman/asm/debug/debug.htm

owh@ieee.org CO 2103 14

Flags in DEBUG
Textbook abbrev. for Flag Name => of df if sf zf af pf cf

If the FLAGS were all SET (1), -- -- -- -- -- -- -- --

they would look like this... => OV DN EI NG ZR AC PE CY

If the FLAGS were all CLEARed (0),

they would look like this... => NV UP DI PL NZ NA PO NC

 FLAGS SET (a 1-bit) CLEARed (a 0-bit)

 --------------- --------------- -------------------

 Overflow of = OV NV [No Overflow]

 Direction df = DN (decrement) UP (increment)

 Interrupt if = EI (enabled) DI (disabled)

 Sign sf = NG (negative) PL (positive)

 Zero zf = ZR [zero] NZ [Not zero]

Auxiliary Carry af = AC NA [No AC]

 Parity pf = PE (even) PO (odd)

 Carry cf = CY [Carry] NC [No Carry]

owh@ieee.org CO 2103 15

The first program in the tutorial –
an explanation

 -a 100

 xxxx:0100 jmp 126 ; Jump over data that follows:

 xxxx:0102 db 0d,0a,"This is my first DEBUG program!"

 xxxx:0123 db 0d,0a,"$"

 xxxx:0126 mov ah,9 ; Function 09 of Int 21h:

 xxxx:0128 mov dx,102 ; DS:DX -> $-terminated string.

 xxxx:012B int 21 ; Write String to STD Output.

 xxxx:012D mov ah,0 ; Function 00 of Int 21h:

 xxxx:012F int 21 ; Terminate Program.

 xxxx:0131

 -g =100

 This is my first DEBUG program!

 Program terminated normally

 -

start assemble program at

memory location CS:0100

CPU will start execute

from here [CS:0100] BUT

the actual program only

start from here [CS:0126]

BECAUSE

these few locations [from CS:0102 to 0125]

have been used to store some data, using

“db”

for that reason, we want the CPU to skip

the data [from CS:0102 to 0125] and

continue to execute from CS:0126

these 3 instructions set up and call the DOS

subroutine (software interrupt routine) to

print the message starting at location 0102

(and end with ‘$’) to the screen

these 2 instructions set up and call the DOS

subroutine (software interrupt routine) to

terminate the program

running the program from

location CS:0100

note that same output will

be obtained by “g =126”

output from the program

1

2

3

4

5

6

7 8

9

owh@ieee.org CO 2103 16

Exercise

• Task 2: Referring to the tutorial on DEBUG,
write and save a hello.COM program to display
the following message on your console screen:

Hello World !

• Task 3: Debug the hello.com, check the relevant
memory content and modify the massage to:

Hurray, I cracked the code !!!
and save the file as hello2.COM

	Slide 1: Laboratory 01 MS Debug
	Slide 2: Objective
	Slide 3: Microsoft® DEBUG
	Slide 4: DEBUG Basics - 1
	Slide 5: DEBUG Basics - 2
	Slide 6: Using DEBUG
	Slide 7: DEBUG Commands - 1
	Slide 8: DEBUG Command - 2
	Slide 9: DEBUG Commands - 3
	Slide 10: DEBUG Commands - 4
	Slide 11: DEBUG Commands - 5
	Slide 12: DEBUG Commands - 6
	Slide 13: DEBUG Tutorial
	Slide 14: Flags in DEBUG
	Slide 15: The first program in the tutorial – an explanation
	Slide 16: Exercise

