
owh@ieee.org CO 2103 1

Basics of 8086 Assembly
Language Programming

CO 2103 Assembly Language

owh@ieee.org CO 2103 2

Topics

• Tools in AL Programming

• AL Programming Process

• “Hello World!” in AL

• Skeleton in brief

• Elements of AL Programs
– Statement

– Label

– Directive / Pseudo-Opcode

• Software Interrupt (Function Call)

owh@ieee.org CO 2103 3

Assembly vs Machine Language
(recap)

• Machine Language (Machine Codes) – what CPU
understands, in 0s and 1s only, BUT not readable
to human

• Assembly Language (Assembly Codes) –
representation of ML in symbolic form, for
improved readability to human, BUT not
readable to CPU
– uses some high-level (HL) notations

• Require translation from AL to ML before saving
into memory for CPU to process/execute

owh@ieee.org CO 2103 4

Tools in AL Programming - 1

• Assembler – convert AL program into Machine Code
(ML)
– functions:

• fix memory location for symbolic addresses
• change mnemonics to machine codes
• resolve symbols into actual data
• generate information for the Linker including:

– entry point (i.e. where program execution should start)

– addresses of symbols declared in this file (which may be used in
other files)

– unresolved symbols (which may be defined in other files)

– can be regarded as a low-level compiler
– output is Object file (.obj): same format as a compiler output
– can also output Listing file (.lst): lists program in AL and ML

owh@ieee.org CO 2103 5

Tools in AL Programming - 2

• Linker – combine one or more object files into
an executable file
– functions:

• merge fragments of data and codes from different
object files

• may change the offset of some of the symbols

• adjust all references to these symbols

• generate information for relocation

– may also extract object codes from a library file

– output is executable file (.exe)

• Text Editor (ASCII) – to create the AL source file

owh@ieee.org CO 2103 6

AL Programming Process

• Edit source file – AL→ .asm

• Assemble AL source file: AL into ML→ .obj and .lst

• Link ML Object file(s): address relocation → .exe

• Load (run) executable: into available memory space

owh@ieee.org CO 2103 7

AL Source File – hello.asm

owh@ieee.org CO 2103 8

Elements of AL Source File - 1

• Constants and expressions
– numeric literals

– character or string constant

• AL directives
– memory defining directives

– model directive: .model

– segment directives: .data, .stack, .code

– program organising directives - title, proc, endp, end

• Comment statement begins with semicolon “;”
• AL Statement:

– first column may be optional label – reference to address or data

– second column may be op code or assembler directive

– last column may be comment beginning with semicolon “;”
– AL Statement format:

<label> <op code or directive> <operands> ;<comments>
message db "Hello, world!",0dh,0ah,'$' ;newline + eoc
main: mov ax,@data ; data segment

owh@ieee.org CO 2103 9

Elements of AL Source File - 2

• A numeric literal is any combination of digits, plus optional decimal
point, exponent, sign

– use a radix symbol (suffix) to select binary, octal, decimal, or
hexadecimal

• Symbolic constants are defined using the EQU directive or
‘=‘ operator

– must evaluate to a 16-bit integer

– or 32-bit integer when .386 directive used

5234

5.5

-5.5

26.0E+05

+35d

6A15h ; hexadecimal

0BAF1h ; leading zero required

32q ; octal

1011b ; binary

35d ; decimal (default)

COUNT EQU 25

ROWS = 10

tablePos = ROWS * 5

owh@ieee.org CO 2103 10

Elements of AL Source File - 3

• Symbolic constants can be defined with constant
expression - combination of numeric literals, operators,
and defined symbolic constants

– must be evaluated at assembly time

SIZE = 4 * 20

NUM = -3 * 4 / 6

NROW = ROWS - 3 ;ROWS is a constant

REM = COUNT MOD 5

owh@ieee.org CO 2103 11

hello.asm explained - 1

• A comment stating the program function; you can also
start with TITLE directive to give a program title

• Assembler directive to reserve stack (size) in memory
• Assembler directive (Assembler dependent) to declare

the memory model used. Model information tells the
linker how to merge the various data and code
segments.

• Tiny data+code in one segment ≤64K (.com)
• Small data in one segment, code in one segment
• Compact data in multiple segments, code in one segment
• Medium data in one segment, code in multiple segments
• Large data and code in multiple segments
• Huge allow data segment to be larger than 64K
• Flat no segment, 32-bit addresses, protected mode only

(80386 and higher)

owh@ieee.org CO 2103 12

hello.asm explained - 2

• Assembler directive that tells the assembler to assemble
the following instructions into a data segment.

• where the data are defined: good to place this after the code

• “message” is the label for the first memory address in
data segment – “message” will be assembled and linked
to a memory address

• db is data defining directives to define bytes to be stored at
locations starting at “message”

• the statement stores 16 bytes (1 byte of ASCII code for each
character) into the data segment

• other data defining directives: dw, dd, dq, dt (more on these
later)

owh@ieee.org CO 2103 13

hello.asm explained - 3

• Assembler directive that tells the assembler the
following instructions into a code segment

• where the program is written

• Start (entry) of the program instructions:
• first two instructions initialize DS register to point to correct

Data Segment - @data is an immediate operand, which actual
value will be patched in by the OS during loading

• next three instructions set up and call the DOS function
(software interrupt routine) to display the characters starting at
location labeled with message, and ending with “$”

• last two instructions set up and call the DOS function to halt
the program and exit

• Assembler directive that marks the end of AL program

owh@ieee.org CO 2103 14

Skeleton in brief
.model small/medium/… ;specify memory model
.stack size ;specify stack size

.data ;data segment
<data declaration> ;declare data (variables, etc)

.code ;code segment
proc1 PROC (near or far) ;declare procedure proc1

<statements> ;codes here – end with return instruction
proc1 endp ;end of procedure proc1

proc2 PROC (near or far) ;declare procedure proc2

<statements> ;codes here – end with return instruction
proc2 endp ;end of procedure proc2

main PROC ;begin of main program

<statements> ;codes here
main endp ;end of main program

end ;end of AL program

owh@ieee.org CO 2103 15

Label

• Label (or Symbol or Identifier) is a name associated with
some particular value :

– memory address

– data (constant or variable)

• Analogy to variables in mathematical expressions, label
are used as variables in the program

• Provides the ability to represent some otherwise
incomprehensible value with a familiar, mnemonic,
name.

• In hello.asm:

– message, main are labels

owh@ieee.org CO 2103 16

Rules for Label

• Label consists of a sequence of letters, digits, and
special characters, with the following restrictions:
– cannot begin with a numeric digit

– usually not case sensitive

– may contain any number of characters, however only
the first 31 are used

– _, $, ?, and @ symbols may appear anywhere within a
label

– $ and ? are special symbols; you cannot create a label
made up solely of these two characters.

– cannot match any name that is a reserved symbol

owh@ieee.org CO 2103 17

Reserved
words

• Apart from all
valid 80x86
instruction
names and
register names,
words in the list
on the right are
reserved, i.e.
cannot be used
as label:

%out .186 .286 .286P

.287 .386 .386P .387

.486 .486P .8086 .8087

.ALPHA .BREAK .CODE .CONST

.CREF .DATA .DATA? .DOSSEG

.ELSE .ELSEIF .ENDIF .ENDW

.ERR .ERR1 .ERR2 .ERRB

.ERRDEF .ERRDIF .ERRDIFI .ERRE

.ERRIDN .ERRIDNI .ERRNB .ERRNDEF

.ERRNZ .EXIT .FARDATA .FARDATA?

.IF .LALL .LFCOND .LIST

.LISTALL .LISTIF .LISTMACRO .LISTMACROALL

.MODEL .MSFLOAT .NO87 .NOCREF

.NOLIST .NOLISTIF .NOLISTMACRO .RADIX

.REPEAT .UNTIL .SALL .SEQ

.SFCOND .STACK .STARTUP .TFCOND

.UNTIL .UNTILCXZ .WHILE .XALL

.XCREF .XLIST ALIGN ASSUME

BYTE CATSTR COMM COMMENT

DB DD DF DOSSEG

DQ DT DW DWORD

ECHO ELSE ELSEIF ELSEIF1

ELSEIF2 ELSEIFB ELSEIFDEF ELSEIFDEF

ELSEIFE ELSEIFIDN ELSEIFNB ELSEIFNDEF

END ENDIF ENDM ENDP

ENDS EQU EVEN EXITM

EXTERN EXTRN EXTERNDEF FOR

FORC FWORD GOTO GROUP

IF IF1 IF2 IFB

IFDEF IFDIF IFDIFI IFE

IFIDN IFIDNI IFNB IFNDEF

INCLUDE INCLUDELIB INSTR INVOKE

IRP IRPC LABEL LOCAL

MACRO NAME OPTION ORG

PAGE POPCONTEXT PROC PROTO

PUBLIC PURGE PUSHCONTEXT QWORD

REAL4 REAL8 REAL10 RECORD

REPEAT REPT SBYTE SDWORD

SEGMENT SIZESTR STRUC STRUCT

SUBSTR SUBTITLE SUBTTL SWORD

TBYTE TEXTEQU TITLE TYPEDEF

UNION WHILE WORD

owh@ieee.org CO 2103 18

Directive / Pseudo-Opcode

• Directives are special instructions that provide
information to the assembler but do not generate any
code, e.g. segment directives, equ, assume, end. They are
not valid 80x86 instructions. They are messages to the
assembler, nothing else.

• Pseudo-Opcode is a message to the assembler, just like
an assembler directive. They are sometimes used
interchangeably . However, a pseudo-opcode will emit
object code bytes, e.g db, n dup(?). These instructions
emit the bytes of data specified by their operands but
they are not true 80x86 machine instructions.

owh@ieee.org CO 2103 19

Data Defining Directives - 1

• Data types can be decimal (100), binary (100b), hexadecimal (100h)
or ASCII (‘100’ or “100”)

– no typing – up to the programmer to define type

– use radix (suffix) to select binary, octal, decimal or hexadecimal

Tenbyte10Define TenbytesDT

Quadword8Define QuadwordDQ

Far Pointer6Define Far PointerDF, DP

Doubleword4Define DoublewordDD

Word2Define WordDW

Byte1Define ByteDB

OperandBytesDescriptionMnemonic

owh@ieee.org CO 2103 20

Data Defining Directives - 2

• Use comma to define a list of values

– can mix different representations (decimal, binary, hex, ASCII)

• “?” represents an uninitialised memory location (allocated)

• Word, doubleword and quadword data are stored in reverse byte
order (in memory)

Directive Bytes in memory

db 1234567h 67 45 23 01

owh@ieee.org CO 2103 21

Data Defining Directives - 3

• DUP
– allows a sequence of storage locations to be defined (with same value) or

reserved (uninitialised)
db 40 DUP (?) ;reserve 40 bytes storage
db 30 DUP (10h) ;allocate 30 bytes storage, each initialized to 10h

• Equal sign “=“
Label = expression

– expression must be numeric

– can be redefined in program
count = 1
count = count * 2

• EQU
Label EQU expression

– expression can be string or numeric

– use < and > to specify a string

– cannot be redefined in the program
val1 EQU 7Fh
message EQU <This is a message>

owh@ieee.org CO 2103 22

DOS Function Calls – IO

• AL can make use of software interrupt (function call) to
access the IO (keyboard and screen)

– these are useful predefined subroutine

• Called using INT instruction in AL program
INT n ;software interrupt number n

– INT 10h - video BIOS

– INT 14h - serial I/O

– INT 16h - keyboard BIOS

– INT 17h - printer services

– INT 1Ah - time of day

– INT 1Ch - user timer

– INT 21h - DOS services

owh@ieee.org CO 2103 23

DOS Function Call – few e.g.
--------D-2100-------------------------------
INT 21 - DOS 1+ - TERMINATE PROGRAM

AH = 00h
CS = PSP segment

Notes: Microsoft recommends using INT 21/AH=4Ch for DOS 2+
execution continues at the address stored in INT 22 after DOS performs
whatever cleanup it needs to do

if the PSP is its own parent, the process's memory is not freed; if
INT 22 additionally points into the terminating program, the
process is effectively NOT terminated

not supported by MS Windows 3.0 DOSX.EXE DOS extender
SeeAlso: AH=26h,AH=31h,AH=4Ch,INT 20,INT 22

--------D-2101-------------------------------
INT 21 - DOS 1+ - READ CHARACTER FROM STANDARD INPUT, WITH ECHO

AH = 01h
Return: AL = character read
Notes: ^C/^Break are checked, and INT 23 executed if read

character is echoed to standard output
standard input is always the keyboard and standard output the screen
under DOS 1.x, but they may be redirected under DOS 2+

SeeAlso: AH=06h,AH=07h,AH=08h,AH=0Ah

--------D-2102-------------------------------
INT 21 - DOS 1+ - WRITE CHARACTER TO STANDARD OUTPUT

AH = 02h
DL = character to write

Return: AL = last character output (despite the official docs which state
nothing is returned) (at least DOS 3.3-5.0)

Notes: ^C/^Break are checked, and INT 23 executed if pressed
standard output is always the screen under DOS 1.x, but may be
redirected under DOS 2+

the last character output will be the character in DL unless DL=09h
on entry, in which case AL=20h as tabs are expanded to blanks

SeeAlso: AH=06h,AH=09h

--------D-2107-------------------------------
INT 21 - DOS 1+ - DIRECT CHARACTER INPUT, WITHOUT ECHO
 AH = 07h
Return: AL = character read from standard input
Notes: does not check ^C/^Break
 standard input is always the keyboard under DOS 1.x, but may be
 redirected under DOS 2+
 if the interim console flag is set (see AX=6301h), partially-formed
 double-byte characters may be returned
SeeAlso: AH=01h,AH=06h,AH=08h,AH=0Ah

--------D-2108-------------------------------
INT 21 - DOS 1+ - CHARACTER INPUT WITHOUT ECHO
 AH = 08h
Return: AL = character read from standard input
Notes: ^C/^Break are checked, and INT 23 executed if detected
 standard input is always the keyboard under DOS 1.x, but may be
 redirected under DOS 2+
 if the interim console flag is set (see AX=6301h), partially-formed
 double-byte characters may be returned
SeeAlso: AH=01h,AH=06h,AH=07h,AH=0Ah,AH=64h

--------D-2109-------------------------------
INT 21 - DOS 1+ - WRITE STRING TO STANDARD OUTPUT
 AH = 09h
 DS:DX -> '$'-terminated string
Return: AL = 24h (the '$' terminating the string, despite official docs which
 state that nothing is returned) (at least DOS 3.3-5.0)
Notes: ^C/^Break are checked, and INT 23 is called if either pressed
 standard output is always the screen under DOS 1.x, but may be
 redirected under DOS 2+
 under the FlashTek X-32 DOS extender, the pointer is in DS:EDX
SeeAlso: AH=02h,AH=06h"OUTPUT"

…. and more

owh@ieee.org CO 2103 24

Must Know INT

• Note the two-line instructions to exit to DOS

– They will probably appear at the end of most, if not all,
programs you will write

; Minimal program: do nothing and exit to DOS

.model small

.stack 100

.data

.code

main: mov ax,4c00h ; halt the program and return

int 21h

end main

owh@ieee.org CO 2103 25

AL programming exercises …
(next)

owh@ieee.org CO 2103 26

Summary

• CPU understands ML, human understands AL

– requires translation between AL and ML

• AL Programming Process:

– Edit → Assemble → Link → Load (Run)

• Tools for AL Programming:

– Editor, Assembler, Linker

• Elements of AL Source File:

– Statement: label, op code, operand, directive, comment

– Directive: program organization, memory, data defining

• INT function calls – useful for IO

	Slide 1: Basics of 8086 Assembly Language Programming
	Slide 2: Topics
	Slide 3: Assembly vs Machine Language (recap)
	Slide 4: Tools in AL Programming - 1
	Slide 5: Tools in AL Programming - 2
	Slide 6: AL Programming Process
	Slide 7: AL Source File – hello.asm
	Slide 8: Elements of AL Source File - 1
	Slide 9: Elements of AL Source File - 2
	Slide 10: Elements of AL Source File - 3
	Slide 11: hello.asm explained - 1
	Slide 12: hello.asm explained - 2
	Slide 13: hello.asm explained - 3
	Slide 14: Skeleton in brief
	Slide 15: Label
	Slide 16: Rules for Label
	Slide 17: Reserved words
	Slide 18: Directive / Pseudo-Opcode
	Slide 19: Data Defining Directives - 1
	Slide 20: Data Defining Directives - 2
	Slide 21: Data Defining Directives - 3
	Slide 22: DOS Function Calls – IO
	Slide 23: DOS Function Call – few e.g.
	Slide 24: Must Know INT
	Slide 25: AL programming exercises … (next)
	Slide 26: Summary

