
owh@ieee.org CO 2103 1

Intel 8086 Assembly vs
Machine Language

CO 2103 Assembly Language

owh@ieee.org CO 2103 2

Topics

• Assembly vs Machine Language

• Intel 8086 Instruction Set

– Groups

– Instruction format

– Addressing modes

• Translation between AL and ML

• Manual Coding

owh@ieee.org CO 2103 3

Assembly vs Machine Language

• Machine Language (Machine Codes) – what CPU
understands, in 0s and 1s only; not so readable to human

– ML is different for different CPUs

– ML comprises of instructions in codes only

– CPU only understand its own ML instructions

– CPU has finite and limited ML instructions

• Assembly Language (Assembly Codes) – representation
of ML in symbolic form, for improved readability to
human; not readable to CPU

– Each ML has AL one-on-one equivalence

– AL has further high-level directives/symbols to ease AL
programming job

owh@ieee.org CO 2103 4

Hypothetical CPU - 1

• Over simplified hypothetical CPU shown in next
slide:

– 4-bit Data, 4-bit Address

– 6 registers (X, Y, ACC, IR, PC, MAR)

– can access up to 16 memory locations (only)

– data are stored into the memory locations through
hardware (e.g. hardwired, switches) or from registers
(only)

– CU: Control Unit, ALU: Arithmetic and Logic Unit,
MAR: Memory Address Register

owh@ieee.org CO 2103 5

Hypothetical CPU - 2

owh@ieee.org CO 2103 6

Hypothetical CPU – Instruction Set

• Instruction Set – list of
Machine Codes or ML
(hence AL) instructions
that a particular CPU can
understand (exclusively)

• Instruction Set analogy to
Full Vocabulary of the
CPU – contains what a
CPU can understand only

• Assigning 0s and 1s to
meaningful functions,
within the CPU hardware
logic

Machine

Code

Instruction

(AL)
Function

0000 GETX0 (X)  (1100)

0001 GETX1 (X) (1101)

0010 GETX2 (X)  (1110)

0011 GETX3 (X)  (1111)

0100 GETY0 (Y)  (1100)

0101 GETY1 (Y)  (1101)

0110 GETY2 (Y)  (1110)

0111 GETY3 (Y)  (1111)

1000 PUTA0 (1100)  (ACC)

1001 PUTA1 (1101)  (ACC)

1010 PUTA2 (1110)  (ACC)

1011 PUTA3 (1111)  (ACC)

1100 CLRX (X) = 0

1101 CLRA (ACC) = 0

1110 ADD ACC  X + Y

1111 SUB ACC  X – Y

Legend:

(R) Content of Register R (R can be X, Y or ACC)

(nnnn) Content of location nnnn

owh@ieee.org CO 2103 7

Hypothetical CPU – ML vs AL

• What CPU does (to execute above instructions):
– 1 – read content in memory location 1100 to X register

– 2 – read content in memory location 1101 to Y register

– 3 – add register X and Y, i.e. the contents of above two memory
locations, with the result in ACC register

– 4 – save the result from ACC into memory location 1111

Which is more readable?

owh@ieee.org CO 2103 8

Hypothetical CPU – program
example

• Refer to memory content
shown on the right, if the CPU
will start execute from
location 0000 everytime it’s
switched ON, derive the
relevant AL program and
determine the new content of
the memory after the CPU is
switched ON? Assume the
content of all other memory
locations are 1111.

owh@ieee.org CO 2103 9

Hypothetical CPU – example
solution

(1111) = ACC =
0100

(1111)  ACCPUTA310110011

New memory content: only (1111) changed from 1111 to 0100

ACC = X – Y =
0100

ACC  X – YSUB11110010

(Y) = (1101) =
0011

(Y)  (1101)GETY101010001

(X) = (1100) =
1001

(X)  (1100)GETX000000000

RemarkFunctionAssembly
Language

Machine
Code

Address

above is an example of manual coding sheet

owh@ieee.org CO 2103 10

Instruction Set

• “An instruction set is a list of all the instructions,
and all their variations, that a processor (or in
the case of a virtual machine, an interpreter) can
execute.” – Wikipedia

– A particular processor can ONLY understand the
instructions available in its instruction set

– Analogy to the complete vocabulary of a particular
language; the dictionary

owh@ieee.org CO 2103 11

Intel 8086 Instruction Set

• 137 instructions only (on separate sheets)
• The instructions can be grouped based on their functions:

– data transfer – MOV, LEA, LDS, LES, XCHG, XLAT

– input-output – IN, OUT

– logical – NOT, AND, OR, XOR, TEST

– shift and rotate – SHL, SHR, SAL, SAR, ROL, ROH, RCL, RCH

– arithmetic – ADD, SUB, ADC, SBB, INC, DEC, NEG, CMP, MUL, DIV, IMUL,
IDIV, CBW, CWD, AAA, AAS, AAM, AAD, DAA, DAS

– program control – JMP, all other Jumps, LOOP, LOOPE, LOOPNE, LOOPZ,
LOOPNZ, JCXZ

– subroutine and interrupt – CALL, RET, INT, INTO, IRET

– string – MOVS, MOVSB, MOVSW, CMPS, SCAS, LODS, STOS, REP, REPE,
REPZ, REPNE, REPNZ

– processor control – STC, CLC, CMC, STD, CLD, STI, CLI, LAHF, SAHF, ESC,
LOCK, NOP, WAIT, HALT

– stack – PUSH, POP, PUSHF, POPF

• Grouping of instructions is not standardized

owh@ieee.org CO 2103 12

Format of AL Instructions

• Format:
– each AL instruction (symbolic representation of Machine Code)

is called Mnemonic
– each Mnemonic comprises of two parts: op-code and operands

(optional); many articles define mnemonic as the op-code
– if there can be up to 2 operands, the first is the destination, while

the last is the source operand

• Each AL instruction may be 1 to 6 bytes:
– op-code – 1 or 2 bytes
– operand(s) can be:

• 2-byte offset (for direct addressing)

• 1- or 2-byte displacement (for indexed addressing)

• 1- or 2-byte immediate operand

• 4-byte physical address (for intersegment jump or procedure call)

MOV AX, BX

mnemonic

op-code

operands

source destination

owh@ieee.org CO 2103 13

Reminder on Memory Access

• For Intel 8086, memory accesses are in Little-
Endian system. The low-byte will be transferred
to/from the lower-address memory location,
while high-byte to/from the higher-address
memory location.

– example: mov 100h, AX

xx

AX

AH – high-byte

yy

AL – low-byte

yy

xx

100h

101h

102h

memoryNote: memory is byte-addressable

owh@ieee.org CO 2103 14

Looking up Instruction - 1

• Information to check:

– function

– possible operand(s)

– effect on flags

– others: machine code, number
of byte, clock cycles

• Example:

– REG: AX, BX, CX, DX, AH, AL,
BL, BH, CH, CL, DH, DL, DI,
SI, BP or SP

– SREG: DS, ES, SS, or only as
second operand: CS

– memory: [BX], [BX+SI+7],
variable, etc

Opcode Operands Description

MOV

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

SREG, memory

memory, SREG

REG, SREG

SREG, REG

Function:

Operand1  Operand2

Function in words:

Copy Operand2 to Operand1

Algorithm:

Operand1 = Operand2

Flags:

C Z S O P A

unchanged

owh@ieee.org CO 2103 15

Looking up Instruction - 2

• Alternative Instruction Set format …

owh@ieee.org CO 2103 16

Addressing Modes - 1

• Addressing Modes – methods for specifying the
operand(s) for a Machine Code instruction

– the way the location of the data is being specified

– the way to address the operand(s)

• Five (5) modes for 8086:

– immediate

– register

– direct

– indirect

– indexed (base, index, base-index)

owh@ieee.org CO 2103 17

Addressing Modes - 2

• Immediate – the data is encoded as part of the
instruction, e.g.
– ADD AX, 2 ; add 2 to AX

• Register – the operand is inside a register, e.g.
– ADD AX, BX ; add AX to BX

• Direct – the memory address of the data is given as part
of the instruction, e.g.
– ADD AX, [2] ; add content of location 2 to AX

• Indirect – the effective address (offset) of the data is
stored using a base or index register (BX, BP, SI, DI), e.g.
– ADD AX, [BX] ; add content of location whose address is

stored in BX, to AX
– MOV [BP], DL, ADD AX, [DI], etc

owh@ieee.org CO 2103 18

Addressing Modes - 3

• Relative Indirect – the effective address (offset)
is calculated:
– indexed – indirect addressing and a constant

displacement, e.g. ADD AX, [SI+2]

– base-indexed – base and index registers, e.g. ADD AX,
[BP+SI]

– based-indexed +displacement – base and index
register and a constant displacement, e.g. ADD AX,
[BX+DI+2]

• An instruction can use more than one AM, e.g.
– ADD AX, 2 uses register and immediate addressing

modes; however, we usually call this immediate

owh@ieee.org CO 2103 19

AM – examples 1

• Direct AM

– uses data segment (DS) by default, however, can use segment
override

• Indirect AM

– Base AM: [BX] uses DS by default, [BP] uses SS by default

– Indexed AM: [SI] and [DI] use DS by default

– can use segment override, e.g. MOV AL, CS:[BX]

SI

SI

owh@ieee.org CO 2103 20

AM – examples 2

• Relative Indirect AM

– similarly for [SI] and [DI]

• Base-indexed AM

– similarly for [DI]

owh@ieee.org CO 2103 21

Determining the EA, PA - 1

• Effective Address – offset address into the target
segment

• System for examples in next slide
(numbers are in Hex):

owh@ieee.org CO 2103 22

Determining the EA, PA - 2

• Examples (refer to diagram in previous slide)

– MOV AX, [SI]

• EA = DS:1234, PA = 11200+1234 = 12434

• (AL)  (12434), (AH)  (12435), i.e. (AX) = FF 7D

– MOV [DI+2], BL

• EA = DS:[0010+2] = DS:0012,

PA = 11200+0012 = 11212

• (11212)  (BL), i.e. (11212) = AB

– MOV AL, [BP][DI]3

• EA = DS:[1220+0010+3] = DS:1233,

PA = 11200+1233 = 12433

• (AL)  (12433), i.e. (AL) = 11

owh@ieee.org CO 2103 23

Syntax for AM

• Assembler dependent

– disp[bx], [bx][disp], [bx+disp], [disp][bx], and [disp+bx]

– [bx][si], [bx+si], [si][bx], and [si+bx]

– disp[bx][si], disp[bx+si], [disp+bx+si], [disp+bx][si],
disp[si][bx], [disp+si][bx], [disp+si+bx], [si+disp+bx],
[bx+disp+si], etc.

• 17 legal memory AM: disp, [bx], [bp], [si], [di], disp[bx],
disp[bp], disp[si], disp[di], [bx][si], [bx][di], [bp][si],
[bp][di], disp[bx][si], disp [bx][di], disp[bp][si], and
disp[bp][di]

– to remember: pick one or none
from each column

displacement base index

owh@ieee.org CO 2103 24

AM Summary

DS

SS

[BX][DI or SI]+disp,

[BP][DI or SI]+disp

Based Indexed

DS[DI]+disp,

[SI]+disp

Indexed Relative

DS

SS

[BX]+disp,

[BP]+disp

Based Relative

DS[BX], [SI], [DI]Indirect

DS[Offset]Direct

NoneRegisterRegister

NoneDataImmediate

Default SegmentOperandAddressing Mode

owh@ieee.org CO 2103 25

Registers Assignment for
Addressing

DINoneESString Destination

SI, DI, addressCS, ES, SSDSString Source

BX, addressCS, ES, SSDSGeneral Data

SP, BPNoneSSStack Operation

IPNoneCSInstruction Fetch

OffsetAlternate
Segment

Default
Segment

Type of Memory
Reference

owh@ieee.org CO 2103 26

ML / AL Translation - 1

• An instruction can be encoded into 1 to 6 bytes

• First two bytes are for the op-code, while remaining bytes are for the
operands

• Byte 1 contains 3 kinds of information:

– Opcode field (6-bit) specifies the instruction class, i.e. MOV, ADD, SUB,
etc

– Register Direction bit (D bit) tells whether the register operand in REG
field is source or destination operand

• D=0: data flows from REG to R/M

• D=1: data flows to REG from R/M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcode d s mod reg reg/mem

owh@ieee.org CO 2103 27

ML / AL Translation - 2

– Data Size bit (S bit) specifies whether the operation will be
performed on 8-bit or 16-bit data

• S=0: 8-bit

• S=1: 16-bit

– Bit 8 and 9 will take different meaning when dealing with
immediate addressing mode (see Example 4)

• Byte 2 has 3 fields:

– Mode field (MOD) – 2 bits

– Register field (REG) – 3 bits

– Register/Memory field (R/M) – 3 bits

• REG field specifies the first operand

R E G s= 0 s= 1

0 0 0 A L A X

0 0 1 C L C X

0 1 0 D L D X

0 11 B L B X

1 0 0 A H S P

1 0 1 C H B P

11 0 D H S I

111 B H D I

owh@ieee.org CO 2103 28

ML / AL Translation - 3

• 2-bit MOD field and 3-bit R/M
field together specify the
second operand

MOD=11 Effective Address Calculation

R/M S=0 S=1 R/M MOD=00 MOD=01 MOD=10

000 AL AX 000 (BX)+(SI) (BX)+(SI)+D8 (BX)+(SI)+D16

001 CL CX 001 (BX)+(DI) (BX)+(DI)+D8 (BX)+(DI)+D16

010 DL DX 010 (BP)+(SI) (BP)+(SI)+D8 (BP)+(SI)+D16

011 BL BX 011 (BP)+(DI) (BP)+(DI)+D8 (BP)+(DI)+D16

100 AH SP 100 (SI) (SI)+D8 (SI)+D16

101 CH BP 101 (DI) (DI)+D8 (DI)+D16

110 DH SI 110 Direct Address (BP)+D8 (BP)+D16

111 BH DI 111 (BX) (BX)+D8 (BX)+D16

MOD Explanation

00
Memory mode, no displacement follows

Except when R/M=110, then 16-bit displacement follows

01 Memory mode, 8-bit displacement follows

10 Memory mode, 16-bit displacement follows

11 Register mode, no displacement

owh@ieee.org CO 2103 29

ML / AL Translation – example 1

owh@ieee.org CO 2103 30

ML / AL Translation – example 2

owh@ieee.org CO 2103 31

ML / AL Translation – example 3

owh@ieee.org CO 2103 32

ML / AL Translation – example 4

owh@ieee.org CO 2103 33

Manual Coding - 1

• Manual Coding is the process of writing AL program, and manually
encode the AL into ML (Machine Codes) and assigning memory
locations for the storage of the codes

– uses Manual Coding sheet, which usually comprises of Memory
Address (where the code is stored – may be more than 1 byte for an
instruction), Machine Codes, AL Instructions and Functions

– function can be described in symbolic, e.g. (BL)  (AL) means content
of AL copied into BL

¦

88Fo2D

(BL) = nn(BL)  (AL)MOV BL, ALC3F02C

RemarkFunctionInstructionsMachine
Code

(Hex)

Address

(Hex)

owh@ieee.org CO 2103 34

Manual Coding - 2

• Manual coding is tedious exercise

• There are tools to perform the translation of AL
to ML and then assigning the ML into
appropriate memory locations

• We will look into these tools in next Chapter …

owh@ieee.org CO 2103 35

Sample 8086 AL Program

• Note some high-level structure/notations

; This program displays "Hello, world!"

.model small

.data

message db "Hello, world!",0dh,0ah,'$' ;newline + eoc

.code

main: mov ax,@data ; data segment

mov ds,ax

mov ah,9

mov dx,offset message ; display msg starting at 0

int 21h

mov ax,4c00h ; halt the program and return

int 21h

end main

owh@ieee.org CO 2103 36

Equivalent ML Program

• ML Program of AL program in previous slide:

• It is not easy to read/understand

• The above in Hex. Imagine them in binary – unreadable.

0B40:0000 48 65 6C 6C 6F 2C

 20 77 6F 72 6C 64

 21 0D 0A 24

0B50:0000 B8 40 0B

0B50:0003 8E D8

0B50:0005 B4 09

0B50:0007 BA 00 00

0B50:000A CD 21

0B50:000C B8 00 4C

0B50:000F CD 21

owh@ieee.org CO 2103 37

Summary

• ML instructions are in zeros and ones that can be directly feed to
logic circuits to perform the operations

• AL improves readability of ML: symbolic representation

• Essence of AL programming:

– know the CPU – registers

– know the memory

– know the Instruction Set

• Format of AL instruction:

– Mnemonic = Opcode + Operands

• Intel 8086 Instruction Set: 137 instructions, 10 groups

• Addressing Modes: Immediate, Register, Direct, Indirect, Relative
Indirect

• Encoding AL to ML: making sense out of the os and 1s

	Slide 1: Intel 8086 Assembly vs Machine Language
	Slide 2: Topics
	Slide 3: Assembly vs Machine Language
	Slide 4: Hypothetical CPU - 1
	Slide 5: Hypothetical CPU - 2
	Slide 6: Hypothetical CPU – Instruction Set
	Slide 7: Hypothetical CPU – ML vs AL
	Slide 8: Hypothetical CPU – program example
	Slide 9: Hypothetical CPU – example solution
	Slide 10: Instruction Set
	Slide 11: Intel 8086 Instruction Set
	Slide 12: Format of AL Instructions
	Slide 13: Reminder on Memory Access
	Slide 14: Looking up Instruction - 1
	Slide 15: Looking up Instruction - 2
	Slide 16: Addressing Modes - 1
	Slide 17: Addressing Modes - 2
	Slide 18: Addressing Modes - 3
	Slide 19: AM – examples 1
	Slide 20: AM – examples 2
	Slide 21: Determining the EA, PA - 1
	Slide 22: Determining the EA, PA - 2
	Slide 23: Syntax for AM
	Slide 24: AM Summary
	Slide 25: Registers Assignment for Addressing
	Slide 26: ML / AL Translation - 1
	Slide 27: ML / AL Translation - 2
	Slide 28: ML / AL Translation - 3
	Slide 29: ML / AL Translation – example 1
	Slide 30: ML / AL Translation – example 2
	Slide 31: ML / AL Translation – example 3
	Slide 32: ML / AL Translation – example 4
	Slide 33: Manual Coding - 1
	Slide 34: Manual Coding - 2
	Slide 35: Sample 8086 AL Program
	Slide 36: Equivalent ML Program
	Slide 37: Summary

