
owh@ieee.org CO 2103 1

Intel 8086 Microprocessor

CO 2103 Assembly Language

owh@ieee.org CO 2103 2

Topics

• Introduction to Processors

– Brief History

– Processor Differences

• Basic Intel 8086
Architecture

– Specifications

– Registers

• Memory System

– Segmentation

– Memory Access

• Input/Output

– Accessing/addressing

– IO Schemes

• Interrupt
– Hardware
– Software

• Fetch-Execute Sequence

owh@ieee.org CO 2103 3

CPU History - 1

• First CPU: Intel 4004 – 1971, 4-bit data bus,
2,250 transistors

– 4-bit: 4004 (1971), 4040 (1972)

– 8-bit: 8008 (1972), 8080 (1974), 6502 (1974), Z80
(1976), 8085 (1976)

• First IBM PC CPU: Intel 8086 – 1978, 16-bit
data bus, 20-bit address bus, 29K transistors

– 16-bit: 8086/8088 (1978), 68000 (1979-1990),
80186/80188 (1982), 80286 (1982), V20/V30 (1984)

owh@ieee.org CO 2103 4

CPU History - 2

• 3rd Generation: Intel 80386 – 1985, 32-bit data bus, 24-
bit/32-bit (DX series) address bus, 275K transistors

– 32-bit: 80386 (1985), 80486 (1989), Pentium (1993), Cyrix 6x86
(1995), AMD K5 (1996), PII (1997), Celeron (1999), PIII (1999)

– 64-bit: P4 (2000), Athlon XP (2001), Petium M (2003)

• Latest (by then): Intel Pentium Core 2 Duo/Quad

– 2006, 64-bit data bus, 2x 32KB L1, 4 MB L2 Cache, >290M
transistors

• References:

– http://redhill.net.au/c/c-1.html

– http://www.cpu-world.com/

– http://www.mynikko.com/CPU/index.html

http://redhill.net.au/c/c-1.html
http://www.cpu-world.com/
http://www.mynikko.com/CPU/index.html

owh@ieee.org CO 2103 5

Processor Differences
(some)

• Size

– data bus – usually dictates size of CPU. It is one
major factor effecting speed of CPU.

– address bus – dictates maximum range of memory

– register – effect speed of processing

• Clock speed

• Data structure – e.g. the Endian

• Instruction set – available functions

• Architecture – incl. parallelism, caching

owh@ieee.org CO 2103 6

The table below lists brands of famous x86 consumer targeted processors
grouped by generations. Note: A definition of CPU generation is not strict.

source: http://en.wikipedia.org/wiki/X86

Famous x86 Processors

owh@ieee.org CO 2103 7

Intel 8086

• Why 8086?

– the first (hence simplest) chip that powered the original IBM PC,
and thousands of other models too

– all later x86 designs (286, 386, 486, Pentium, and so on) have
built on this foundation – hence “upward” compatible
Instruction Set

• Brief specifications

– June 1978, 40 pin DIP, 20-bit address bus, 1 MB max memory,
16-bit data bus, 216 8-bit IO ports or 215 16-bit IO ports, 29K
transistors, 137 instructions (only), 4.77-10 MHz

– 4x 8/16-bit data registers, 5x 16-bit pointer/index registers, 4x
16-bit segment registers, 1x 16-bit status register

owh@ieee.org CO 2103 8

8086 Architecture – 1
(the “how” - how many, arrangement, etc)

• Recall CPU components:

– Registers, Control Unit, ALU, Bus Interfaces

• Various versions of internal architecture block
diagram found, however with similar basic
components

• Two versions given in
next two slides

owh@ieee.org CO 2103 9

8086 Architecture - 2

BIU performs all bus operations for the EU.

In addition, during periods when the EU is

busy executing instructions, the BIU "looks

ahead" and fetches more instructions from

memory.

EU contains all components that are

responsible for the execution of instructions.

owh@ieee.org CO 2103 10

8086 Architecture - 3

This is the preferred
representation in this course

owh@ieee.org CO 2103 11

Von Neumann

• Intel 8086 uses Von Neumann architecture

• The von Neumann architecture is a design model
for a stored-program digital computer that uses
a processing unit and a single separate storage
structure to hold both instructions and data.

Processor

Input Output

Data

Program

memory

owh@ieee.org CO 2103 12

Registers - 1

• Out of all CPU components, of interest to programmers
are the Registers – storage for immediate processing

owh@ieee.org CO 2103 13

Registers - 2

• Data registers , also known as General Purpose registers:
– used for arithmetic operations and data movement

– can be addressed as 16 bit or 8 bit values

• Pointer and Index registers contain the offsets to a base
memory address
– offset refers to the distance of a variable, label, or instruction

from its base segment

– used when processing strings, arrays, and other data structures

– pointer registers are sometimes called as Index registers

• Segment registers are used as base locations for program
instructions, data, and the stack
– all references to memory involve a segment register as the base

location

owh@ieee.org CO 2103 14

Registers - 3

• Data registers
– AX – Accumulator – involves in most ALU operations.

Store most ALU results.

– BX – Base – can be used to hold base address in
indirect addressing, e.g. accessing array

– CX – Counter – can be used when programming
iteration to count the loops

– DX – Double/Data – used in double-word
multiply/divide. Used to hold IO port address in IO
instructions.

– all above can be used as two 8-bit registers (high &
low)

owh@ieee.org CO 2103 15

Registers - 4

• Pointer registers
– IP (Instruction Pointer)

• store address of next instruction

• specifies an offset into the CS segment

• not the operand of any instruction

– SP (Stack Pointer)

• points to the top item on the stack

• specifies an offset into the SS segment

• can be used as an operand in some instructions

– BP (Base Pointer)

• specifies an offset into any segment, but most commonly the
SS segment

• can be used as an operand in some instructions

owh@ieee.org CO 2103 16

Registers - 5

• Index registers

– SI (Source Index)

• specifies an offset into the DS segment, although they
can be used as offsets into any segment (using BX)

• use with BP to index into SS segment

• points to source string in some string instructions

– DI (Destination Index)

• specifies an offset into the DS segment, although they
can be used as offsets into any segment (using BX)

• use with BP to index into SS segment

• points to destination string in some string instructions

owh@ieee.org CO 2103 17

Registers - 6

• Segment registers

– points to 64K segments in main memory

• more details in segmented memory later

– segments:

• CS (Code Segment) – where program goes; works with
IP

• SS (Stack Segment) –where temporary storage goes;
works with SP

• DS (Data Segment) – where data (variables, etc) go

• ES (Extra Segment) – used as a segment override to
read a few bytes from far memory or for additional data

owh@ieee.org CO 2103 18

Registers - 7

• Status register

– PSW (Processor Status Word) or Flag register

• individual bits store the status of the CPU

• bits are set or cleared as the result of many operations

• bits may be affected indirectly (by the execution of an
instruction) or directly by an instruction designed to access
the status word

– flags in PSW:

O D I T S Z A P C

owh@ieee.org CO 2103 19

Registers - 8

• PSW flags (1  Set/Yes; 0  Clear/No → 0)

– C (Carry) – is there carry in previous operation?

– P (Parity) – is the parity even?

– A (Auxiliary) – is there half-carry (nibble) in previous operation?

– Z (Zero) – is the previous result zero?

– S (Sign) – is the previous result negative?

– T (Trap) – set to put processor in single-step mode for debugging

– I (Interrupt) – is the interrupt enabled?

– O (Overflow) – is there overflow in previous operation?

– D (Direction) – set to process block data transfer or string from
high order to low order memory; reset for reverse direction

owh@ieee.org CO 2103 20

Registers - 9

• Other registers available, example:

– IR – Instruction Register

– and other temporary registers

– not for use by programmers

owh@ieee.org CO 2103 21

Memory System - 1

• Recall microcomputer (or any microprocessor-based
system) components:

– CPU, Memory, IO, Buses

• Of interest to programmers: CPU, Memory, IO

– memory as important as registers

– note register is a form of memory

• Memory external to CPU, while registers are in CPU

– memory slower than registers

– memory cheaper than registers

– memory more space than registers

• Two types: Random Access (RAM) and Read Only
(ROM)

owh@ieee.org CO 2103 22

Memory System - 2

• Intel 8086 memory system:

– 20-bit address bus giving 220 locations, i.e. 1 MB (each
location stores a byte)

– each memory location is accessed by specifying a 20-
bit address (00000h – FFFFFh)

• However, internal registers are only 16-bit wide,
i.e. can’t hold full address

• Solution: Use Memory Segmentation

owh@ieee.org CO 2103 23

Memory Access
(brief info)

• The desired address is asserted on
the address lines (address bus), by
the CPU: An … A0

• The selection circuit of the
memory will select the desired
memory location to connect to the
data lines (data bus) for
read/write: Dn … D0

• n address lines can select upto 2n

different addresses (memory
locations) – these are physical
addresses

• Intel 8086 has 20-bit physical
address – but cannot be stored in
single 16-bit registers (for
programming)

11..11

11..10

11..01

11..00

00..11

00..10

00..01

00..00

Address

?

?

?

?

?

?

?

?

?

?

MEMORY

S
E

L
E

C
T

IO
N

 C
IR

C
U

IT

A3

A2
A1

A0

D3 D2 D1 D0 Dn Dn-1 ..

An

An-1

owh@ieee.org CO 2103 24

Memory Segmentation - 1

• Divide the memory space into logical segments of 64K,
i.e. accessible by 16-bit address (216 = 64K)

• Enable two 16-bit registers to store the address into two
parts:
– segment address – point to the start of segment

– offset address – point within the segment

– logical address – written in the form of segment:offset

• Physical Address (PA) computed from Segment Address
(SA) and Offset Address (OA)
– PA = (SA  16) + OA = (SA  10h) + OA

• (SA x 10h) is the base address of the segment

• x 10h (shift 4 bits or 1 hex digit to left) effectively convert 16-
bit into 20-bit

owh@ieee.org CO 2103 25

Memory Segmentation - 2

• Example: Given CS = 010Ch, IP = 14D2h, determine the
physical address of the next instruction

– PA = (010Ch  10h) + 14D2h = 010C0h + 14D2h

= 02592h

– logical address 010C:14D2  physical address 02592

– in general for: xxxx:yyyy  aaaaa

16-bit CS 0 1 0 C 0

16-bit IP + 1 4 D 2

20-bit Address 0 2 5 9 2

16-bit CS x x x x 0

16-bit IP + y y y y

20-bit Address a a a a a

owh@ieee.org CO 2103 26

Memory Segmentation - 3

• Segments can overlap

– Two logical addresses can point to the same physical address –
this is called Aliasing (or overlapping)

• e.g. 1234:4321  16661h and 1665:0011  16661h

owh@ieee.org CO 2103 27

Memory Segmentation - 4

• Programmers use Logical Address, while CPU use
Physical Address

• 80286 and above have Real and Protected Mode

– simple calculation of PA only for Real Mode (compatible with
8088, 8086, 80186)

– Protected Mode uses different algorithm to map logical address
into physical address

• Segment base address is always physically at xxxx0h

– segment must begin at address that is multiple of 10h (16) –
called Paragraph boundary

– each 10h block is called a Paragraph

Physical Address Memory

00000h Paragraph 1

00010h Paragraph 2

00020h Paragraph 3

owh@ieee.org CO 2103 28

Memory Segmentation - 5

• Segments in 8086 (repeat)
– CS (Code Segment) – where program goes; IP stores the offset
– SS (Stack Segment) –where temporary storage goes; SP stores

the offset
– DS (Data Segment) – where data (variables, etc) go
– ES (Extra Segment) – used as a segment override to move from

one segment to another
– segment base address stored in CS, SS, DS and ES registers

accordingly

• Reserved segments
– 0000h - 03FFh are reserved for interrupt vectors
– FFFF0h - FFFFFh - after RESET the processor always starts

program execution at the FFFF0h address, i.e. CS=FFFFh,
IP=0000h

owh@ieee.org CO 2103 29

Memory Segmentation - 6

• Max value for segment = FFFF and max value for offset = FFFF

– max memory that can be addressed:
FFFF:FFFF = FFFF0 + FFFF

= FFFF0 + (FFF0 + F) = FFFFF + FFF0
= 1MB + FFF0

• FFFFF equals to 1MB

• FFF0 equals to 64Kb minus 16 bytes

• In Real mode a program can actually refer to (1MB + 64KB - 16) bytes
of memory

– however, Intel 8086 has 20-bit address bus and can only access up
to 1MB, and this resulted in wrapping around of the addresses

– e.g. if a code is referring to 1Mb + 1, this will get wrapped around
and point to zeroth location in memory, likewise 1MB+2 will wrap
around to address 1 (or 0000:0001)

owh@ieee.org CO 2103 30

Memory Access - 1

• Main memories generally store and recall rows, which
are multi-byte in length (e.g. 16-bit word = 2 bytes, 32-
bit word = 4 bytes)

• 16-bit data bus implies that the CPU can access a 16-bit
data at once
– for 8086, 16-bit data bus → 16-bit per row of memory

• However, most architectures, make main memory byte-
addressable rather than word addressable (read/write)
– a memory address is assigned to each byte within the memory

owh@ieee.org CO 2103 31

Memory Access - 2

• The diagrams below show a memory system with 32-bit
memory rows

– the memory locations (rows of quad-words) have even addresses

– often represented logically in
rows of bytes, which have
consecutive logical addresses
(byte addressing)

0

1

2

3

4

5

6

7

9

10

11

1-byte (8-bit)

Logical representation

Physical arrangement

owh@ieee.org CO 2103 32

Memory Access - 3

• Memory access (read/write) of multi-byte data can be
either of the two orders (schemes) :

– Big Endian - the most significant byte of a multi-byte data item
has the lowest address

– Little Endian - the least significant byte of a multi-byte data item
has the lowest address

– Example on right:
read/write a quad-word

– Intel 8086 uses Little
Endian system

owh@ieee.org CO 2103 33

Memory Map of Intel PC

00000

00400

A0000

B0000

C0000

D0000

E0000

F0000

Interrupt Vectors
BIOS and DOS Data

DOS

Application

Program Area

Video

Reserved

BIOS

384K System Area

640K TPA
Transient Program Area
(vary between systems)

owh@ieee.org CO 2103 34

System Startup

• Reset state

– CS = FFFFh

– IP = 0000h

• Executes an

instruction in ROM

that transfers to a

BIOS routine

• System memory

check

• Initialize interrupt

vectors and BIOS

data

• Load operating

system from disk

– boot sector

owh@ieee.org CO 2103 35

Input / Output - 1

• Input and Output are essential
– imagine PC without keyboard, mouse, screen

– imagine calculator without keypad and display

• I/O devices are interfaced to CPU through I/O
Controllers and simplest I/O Controller has two I/O
Ports (or addresses)
– Data Port – passing data to/from CPU and the I/O device

– Control Port – issue I/O COMMANDS (configuration) and to
check the STATUS of the device

• Many I/O Controllers have Status Port for checking its status

• In 8086, an I/O Port can use either of two address spaces
– Dedicated I/O Space

– Memory-Mapped I/O

owh@ieee.org CO 2103 36

Dedicated I/O Space

• 64K 8-bit I/O ports addresses or 32K 16-bit I/O ports
– two consecutive bytes can be treated as a 16-bit port

– four consecutive bytes can be treated as a 32-bit port (386
onwards?)

• Used in the IN and OUT instructions

• Not segmented, i.e. 8-bit physical address used in
programming

• Locations F8h through FFh (eight of the 64k locations)
are reserved by lntel Corporation for use by future Intel
hardware and software products
– using these locations for any other purpose may inhibit

compatibility with future Intel products.

owh@ieee.org CO 2103 37

Memory-Mapped I/O

• I/O devices may be placed in the memory space

• As long as the devices respond like memory components,
the CPU does not know the difference

• Pros and Cons of Memory-mapped I/O

– provides additional programming flexibility

– brings the power of the full instruction set and addressing modes
to I/O processing

– reduces the number of addresses available for memory

– memory reference instructions also take longer to execute

– somewhat less compact than the simpler IN and OUT
instructions

owh@ieee.org CO 2103 38

I/O Schemes

• Four I/O Schemes (ways to manage IO operations)
– Programmed I/O

• Continually "poll" a device’s control port until the device is
ready, then initiate transfer.

– Interrupt-Driven I/O
• CPU initiate transfer and then do something else. Device will

"interrupt" CPU when transfer is complete.
– DMA I/O

• CPU initiate large data (block) transfer and then do
something else. DMA controller will transfer block to/from
main memory and then "interrupt" CPU after block is
transferred.

– I/O Processor
• Delegate complex I/O processing tasks to a dedicated

processor.

owh@ieee.org CO 2103 39

Interrupt - 1

• An interrupt

– is signal from an event that alters the sequence in
which the processor executes instructions

– might be planned (specifically requested by the
currently running program) or unplanned (caused by
an event that might or might not be related to the
currently running program)

• Types of Interrupt (sources of interrupt signal)

– Hardware Interrupt

– Software Interrupt (a.k.a Trap or Exception)

owh@ieee.org CO 2103 40

Interrupt - 2

• When a program receives an interrupt signal, it takes a
specified action (which can be to ignore the signal)

– hardware interrupt causes the processor to save its state of
execution via a context switch, and begin execution of an
interrupt handler

– software interrupts are usually implemented as instructions in
the instruction set, which cause a context switch to an interrupt
handler similar to a hardware interrupt

• PCs support 256 types of software interrupts and 15
hardware interrupts

• Both processed the same way – use of interrupt handlers
(interrupt service routines)

owh@ieee.org CO 2103 41

Hardware Interrupt - 1

• A way to avoid wasting the processor's valuable time in
polling loops, waiting for external events

• Two types

– INTR is a maskable hardware interrupt - can be
enabled/disabled in programming

– NMI is a non-maskable interrupt - cannot be ignored and has
higher priority than INTR

• Initiated through interrupt input lines

– often identified by an index with the format of IRQ followed by a
number

– the combined set of lines are referred to as IRQ0 through IRQ15

owh@ieee.org CO 2103 42

Hardware Interrupt - 2

• IRQ Numbers
– IRQ 0 - System timer. Reserved for the system.

Cannot be changed by a user.
– IRQ 1 - Keyboard. Reserved for the system. Cannot be

altered even if no keyboard is present or needed.
– IRQ 2 - Cascaded to 9
– IRQ 3 - COM 2(Default) COM 4(User)
– IRQ 4 - COM 1(Default) COM 3(User)
– IRQ 5 - Sound card (Sound Blaster Pro or later) or

LPT2(User)
– IRQ 6 - Floppy disk controller
– IRQ 7 - LPT1(Parallel port) or sound card (8-bit

Sound Blaster and compatibles)

owh@ieee.org CO 2103 43

Hardware Interrupt - 3

• IRQ Numbers (continued)
– IRQ 8 - Real time clock
– IRQ 9 - Cascaded to 2
– IRQ 10 - Free / Open interrupt / Available / SCSI
– IRQ 11 - Free / Open interrupt / Available / SCSI
– IRQ 12 - PS/2 connector Mouse / If no PS/2

connector mouse is used, this can be used for other
peripherals

– IRQ 13 - ISA / Math Co-Processor
– IRQ 14 - Primary IDE. If no Primary IDE this can be

changed
– IRQ 15 - Secondary IDE

owh@ieee.org CO 2103 44

Software Interrupt

• Each software interrupt is associated with an interrupt
handler – a routine that takes control when the interrupt
occurs

• Interrupt Vector Table
– stores complete list of 256 interrupts and associated interrupt

handlers

– sides in the first 1 K of addressable memory

• Software interrupts can be caused by:
– INT instruction - breakpoint interrupt

– INT <interrupt number> instruction - any one interrupt from
available 256 interrupts

– INTO instruction - interrupt on overflow

– Single-step interrupt - generated if the TF flag is set

– Processor exceptions - due to error

owh@ieee.org CO 2103 45

INT – brief info

• INT n are instructions to invoke BIOS or DOS function
calls

– allow AL to access system hardware conveniently (ready-made
routines)

– standard list available as reference - which n for what function,
how to call, etc

– more on this in laboratories; few quick examples:

Return to DOS:
mov ax, 4c00h ;function number
INT 21h

Print string on screen:
mov ah, 09h ;function number
mov dx, 200h ;offset to string
INT 21h

Red a character from keyboard:
mov ah, 01h ;function number
INT 21h ;AL=character read

owh@ieee.org CO 2103 46

Fetch-Execute Sequence - 1

• Only one thing CPU does: fetch-decode-execute
– regulated by clock signal – execution of instruction

not within one clock cycle

– step-by-step, clock-by-clock

• fetch instruction byte from memory into IR

• update the IP to point at the next byte

• decode the instruction to see what operation

• if required, fetch further operands and update IP after
each fetch

– compute the address of the operand, if necessary

• execute the instruction

• if any, store the result into the destination register

owh@ieee.org CO 2103 47

Fetch-Execute Sequence - 2

owh@ieee.org CO 2103 48

Summary

• Intel 8086 – good starting point and compatible
with later Intel CPUs

• Important component of CPU (for programmers)
– registers

• Important component of PC (for programmers)
– memory and I/O
– Memory segmentation
– Memory Access – Big Endian and Little Endian
– Memory mapped and dedicated IO
– 4 IO Schemes

• Other stuff
– Interrupt –Hardware and Software

	Slide 1: Intel 8086 Microprocessor
	Slide 2: Topics
	Slide 3: CPU History - 1
	Slide 4: CPU History - 2
	Slide 5: Processor Differences (some)‏
	Slide 6: Famous x86 Processors
	Slide 7: Intel 8086
	Slide 8: 8086 Architecture – 1 (the “how” - how many, arrangement, etc)
	Slide 9: 8086 Architecture - 2
	Slide 10: 8086 Architecture - 3
	Slide 11: Von Neumann
	Slide 12: Registers - 1
	Slide 13: Registers - 2
	Slide 14: Registers - 3
	Slide 15: Registers - 4
	Slide 16: Registers - 5
	Slide 17: Registers - 6
	Slide 18: Registers - 7
	Slide 19: Registers - 8
	Slide 20: Registers - 9
	Slide 21: Memory System - 1
	Slide 22: Memory System - 2
	Slide 23: Memory Access (brief info)
	Slide 24: Memory Segmentation - 1
	Slide 25: Memory Segmentation - 2
	Slide 26: Memory Segmentation - 3
	Slide 27: Memory Segmentation - 4
	Slide 28: Memory Segmentation - 5
	Slide 29: Memory Segmentation - 6
	Slide 30: Memory Access - 1
	Slide 31: Memory Access - 2
	Slide 32: Memory Access - 3
	Slide 33: Memory Map of Intel PC
	Slide 34: System Startup
	Slide 35: Input / Output - 1
	Slide 36: Dedicated I/O Space
	Slide 37: Memory-Mapped I/O
	Slide 38: I/O Schemes
	Slide 39: Interrupt - 1
	Slide 40: Interrupt - 2
	Slide 41: Hardware Interrupt - 1
	Slide 42: Hardware Interrupt - 2
	Slide 43: Hardware Interrupt - 3
	Slide 44: Software Interrupt
	Slide 45: INT – brief info
	Slide 46: Fetch-Execute Sequence - 1
	Slide 47: Fetch-Execute Sequence - 2
	Slide 48: Summary

