Background Knowledge

CO 2103 Assembly Language

Topics

- Digital Logic
- Number Systems
- Binary, Octal, Decimal, Hexadecimal
- Conversion between number systems
- Basic arithmetic operations
- Data Representations
- Integer - signed/unsigned, sign \& magnitude, 1's, 2's complement, BCD, biased
- Real - floating point
- Text - ASCII

Digital Logic

- Rationale
- computers operate electronically, using Logic Gates
- Logic Gates easily connected to perform more complex functions, form the basic "building blocks" of computers
- Logic Gates
- electronic circuits, usually written as symbols
- 1 output, 1 or more inputs
- information (values) interpreted from inputs/output have/don't have electronic signal (voltage)
- have voltage $=\mathrm{ON}=$ Logic 1
- no voltage $=\mathrm{OFF}=$ Logic o

Basic Logic Gates - 1

- Basic Logic operations:
- AND, OR, NOT, Exclusive OR (XOR)
- AND

Truth Table		
Inputs		
A	B	Output
0	0	Q
0	1	0
1	0	0
1	1	0

Basic Logic Gates - 2

- OR

Truth Table		
Inputs		
A	B	Output
0	0	Q
0	1	0
1	0	1
1	1	1

Illustration

Basic Logic Gates - 3

- NOT

Basic Logic Gates - 4

- XOR

Truth Table

Inputs		Output
A	B	Q
0	0	0
0	1	1
1	0	1
1	1	0

Inputs	Output
$\mathrm{B}=\mathrm{A} \oplus \mathrm{B}$	Inputs
$\mathrm{MIL/ANSI}$	Output
BSI	

Symbol

Derived Logic Gates

- Derived Logic operations:
- NAND (Not-AND)
- NOR (Not-OR)
- NAND

- NOR

owh@ieee.org

Logic Circuit

- Combine gates into logic circuits to perform useful functions
- Example: "Auto Lock" the doors if:
- someone is in the car AND the doors are closed, OR
- NO one is in the car AND the key is removed AND the doors are closed

Truth Table?

Number Systems - 1

- Decimal - base 10
- o, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Binary - base 2
- 0, 1
- Octal - base 8
- o, 1, 2, 3, 4, 5, 6, 7
- Hexadecimal (Hex) - base 16
- o, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Number Systems - 2

- The base is the number of available symbols ($0,1,2, \ldots$ A, B, ... F) to form the numbers
- Why do we have different number systems?
- Decimal - part of our life; we have 10 fingers?
- Binary - part of computer's life; 0 and 1 only
- Hexadecimal - convenient shorthand for binary
- All systems follow same rules of counting, i.e. when we reach the last symbol we add another 'digit' to the left
- Decimal - 0, 1, ... 9, 10, $11 \ldots$ 99, 100, ...
- Binary - 0, 1, 10, 11, 100, ... 111, 1000, ... 1111, 10000, ...
- Hexadecimal - o, 1, ... F, 10, 11, ... 1F, 20, ... FF, 100, ...

Number Systems - 3

- The base is usually appended, in subscript, to the number to indicate which number system it belongs
- Decimal numbers - $24_{\mathrm{d}}, 133_{\mathrm{d}}, 1000_{10}, 3010_{10}$
- Binary numbers - $\mathbf{1 0}_{b}, \mathbf{1 1 0}_{b}, \mathbf{1 0 0 O}_{\mathbf{2}}, \mathbf{1 0 1 1 1}_{2}$
- Hex numbers - $24_{\mathrm{h}}, 346_{\mathrm{h}}, \mathbf{1 0 0 0}_{16}, 3010_{16}$
- If no base indicated, usually is decimal number

Place (Position) Value

- Decimal
- Binary

Position	7	6	5	4	3	2	1	0
Value	10^{7}	10^{6}	10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	10^{0}
	\ldots	\ldots	\ldots	10,000	1,000	100	10	1

| Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Value | 2^{7} | 2^{6} | 2^{5} | 2^{4} | 2^{3} | 2^{2} | 2^{1} | 2^{0} |
| | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |

Position	7	6	5	4	3	2	1	0
Value	16^{7}	16^{6}	16^{5}	16^{4}	16^{3}	16^{2}	16^{1}	16^{0}
	\ldots	\ldots	\ldots	65536	4096	256	16	1

- For base-n
- each position to the left has n times value to its right
- the value at x position is given by n^{x}
- Note the right most is smallest, and starts with n^{0} called least significant digit

Terms for Binary

- Bit - binary digit
- Nibble - group of 4-bit
- Byte - group of 8-bit
- Word - usually 16-bit (2 bytes); dependent on hardware
- Doubleword - usually 32-bit
- Quadword - usually 64-bit

b7	b6	b5	b4	b3	b2	b1	b0
1	1	0	0	0	1	0	1
				$)$	$i \quad \uparrow \quad 1$		

- MSB - most significant bit (left most non-zero)

Bits

- Bits are numbered from right: ... $\mathrm{b}_{7} \mathrm{~b}_{6} \mathrm{~b}_{5} \mathrm{~b}_{4} \mathrm{~b}_{3} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}$

Decimal to Binary - 1

- Allocation based on position value
- Start with left most being the largest position value smaller than the number to be converted
- Example: convert 98_{d} into its binary equivalence

| Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Value | 2^{7} | 2^{6} | 2^{5} | 2^{4} | 2^{3} | 2^{2} | 2^{1} | 2^{0} |
| | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| | | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |

- $128>98>64$, start at pos $64-$ enter 1
- 98-64=34, next right position, $34>32$, next at pos $32-$ enter 1
- 98-(64+32)=2, next right position, $16 / 8 / 4>2$, next at pos $2-$ enter 1
$-98_{d} \equiv 1100010_{b}$

Decimal to Binary - 2

- Successive division by 2 and concatenate the remainders from each step to form the resultant binary number
- Example: convert $98{ }_{d}$ into its binary equivalence

		Remainder		
2	98	0		
2	49	1		
2	24	0		
2	12	0		
2	6	0		
2	3	1		
	1			

$-98_{d} \equiv 1100010_{b}$

Binary to Decimal

- Add all position values that have 1 on them
- Example: convert 1100010_{b} into its decimal equivalence

Position	7	6	5	4	3	2	1	0
Value	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
	128	64	32	16	8	4	2	1
		$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$

$-64+32+2=98$

- $1100010_{b} \equiv 98_{d}$
- In general, for a binary number ...fedcba ${ }_{b}$
- decimal $=a^{*} 2^{0}+b^{*} 2^{1}+c^{*} 2^{2}+d^{*} 2^{3}+e^{*} 2^{4}+f^{*} 2^{5}+\ldots$
- This is called Expansion Method

Decimal to Hex - 1

- Similar concept as decimal to binary
- allocation based on position value
- successive division by its base, 16 and concatenate the remainders
- Example: convert 1234_{d} to its hex equivalence

Position	7	6	5	4	3	2	1	0
Value	16^{7}	16^{6}	16^{5}	16^{4}	16^{3}	16^{2}	16^{1}	16^{0}
	\ldots	\ldots	\ldots	65536	4096	256	16	1
						4	D	2

- 4096>1234>256, start at pos 256, but 1234/256=4.8, enter 4
$-1234-\left(4^{*} 256\right)=210,210>16$, next at pos 16 , but $210 / 16=13.1$, enter D_{h} ($=13$)
- 1234-(4*256+13*16)=2, last at pos 1, enter 2
$-1234_{\mathrm{d}} \equiv 4 \mathrm{D} 2_{\mathrm{h}}$

Decimal to Hex-2

- Conversion using successive division by 16
- Solving problem in previous slide

$-1234_{d} \equiv 4 D 2_{h}$

Hex to Decimal

- Similar concept with binary to decimal
- Sum up products of the position value and the number on it
- for a hex number ...fedcba ${ }_{h}$
- decimal $=a^{*} 16^{0}+b^{*} 16^{1}+c^{*} 16^{2}+d^{*} 16^{3}+e^{*} 16^{4}+f^{*} 16^{5}+\ldots$
- Example: convert 4D2 into decimal
- for calculation, use $\mathrm{D}_{\mathrm{h}} \equiv 13$
$-4 \mathrm{D} 2_{\mathrm{h}}=2^{*} 16^{0}+13^{*} 16^{1}+4^{*} 16^{2}=2^{*} 1+13^{*} 16+4^{*} 256=1234$
$-4 D 2_{h} \equiv 1234_{d}$

Binary vs Hex

Hex is a convenient shorthand for Binary

0000	0	1000	8
0001	1	1001	9
0010	2	1010	A
0011	3	1011	B
0100	4	1100	C
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

Binary to Hex

- Group bits by fours, starting from the right (i.e. least significant bits)
- Add leading zeros as necessary to complete the last group
- Convert each group to equivalent hex digits
- Example: convert 101001_{b} into hex
$-0010,1001_{\mathrm{b}} \rightarrow \mathrm{001O}_{\mathrm{b}} \equiv 2_{\mathrm{h}}, 1001_{\mathrm{b}} \equiv 9_{\mathrm{h}}$
- 0010, $1001_{\mathrm{b}} \equiv 29_{\mathrm{h}}$

Hex to Binary

- Expand each hex digit to the equivalent 4-bit binary form
- Example: convert 29 ${ }_{h}$ into binary

$$
\begin{aligned}
& -2_{\mathrm{h}} \equiv 0010_{\mathrm{b}}, 9_{\mathrm{h}} \equiv 1001_{\mathrm{b}} \\
& -29_{\mathrm{h}} \equiv 0010,1001_{\mathrm{b}}
\end{aligned}
$$

Why Hex?

- We are used to decimal. So, we need decimal
- Computer only understand binary. So, we need binary
- however, binary is difficult (too long) to read, write and remember; e.g. $11111010001111_{\mathrm{b}}=16015_{\mathrm{d}}=3 \mathrm{E} 8 \mathrm{~F}_{\mathrm{d}}$, it is useful to read/write in shorter form (decimal or hexadecimal)
- But, why Hex?
- Try convert the four numbers into decimal and hex: $11001101_{b}, 100011_{b}, 10111001_{b}, 11111100_{b}$
- is it easier to convert between binary and hex than binary and decimal?
- for the four numbers, which is hardest to read, remember and write?
- with answers to the above two questions, is hex useful?

Addition

- Same ADD algorithm for all bases
- add digit to digit, at same value position, from right to left (from lsb to msb)
- when the sum reaches/exceeds the base, carry to left

Adding Decimal Numbers

- Example: $1234+567=1801$
$-4+7$ = 11
- 11 reaches/exceeds base 10
- therefore carry (10) to the left
- leaving $11-10=1$ at original pos
$-1+3+6=10$
- 10 reaches/exceeds base 10
- therefore carry (10) to the left
- leaving $10-10=0$
$-1+2+5=8$

carry:		${ }^{1} \times 1$		
	1	2	3	4
+		5	6	7
	1	8	o	1

Adding Binary Numbers

- Example: $10001111_{b}+{11011 O_{b}}=11000101_{b}$
carry:

	1	0	0	0	1	1	1	1
+			1	1	0	1	1	0
	1	1	0	0	0	1	0	1

Adding Hex Numbers

- Example: $1234_{\mathrm{h}}+3 \mathrm{FB}_{\mathrm{h}}=162 \mathrm{~F}_{\mathrm{h}}$
$-4_{h}+B_{h}=4+11=15=F_{h}$
$-3_{h}+\mathrm{F}_{\mathrm{h}}=3+15=18=12_{\mathrm{h}}$
- 18 reaches/exceeds base 16
- therefore carry (16) to left carry:
- leaving $18-16=2=2_{h}$
$-1_{h}+2_{h}+3_{h}=6_{h}$

1	2	3	4
+	3	F	B
	6	2	F

Subtraction

- Same SUBTRACT algorithm for all bases
- subtract digit by digit, at same value position, from right to left (from lsb to msb)
- when there is not enough to subtract, borrow from the left, if left position has not enough to borrow, borrow from afar (next left to left)
- each borrow has value equivalent to the base

Subtract Decimal Numbers

- Example: $1234-567=667$
$-4<7$, borrow 1 ($=10$), giving $14-7=7$
- 3-1 (borrowed)<6, borrow 1 ($=10$), giving $12-6=6$
- 2-1 (borrowed) <5, borrow 1 (=10), giving $11-5=6$

Subtract Binary Numbers

- Example: 1100101O $_{b}-11001_{b}=10110001_{b}$

borrow:		-1	-1					-1	
value:				2	2				
	1	1	0	0	1	0	1	0	
				1	1	0	0	1	

1	0	1	1	0	0	0	1

Subtract Hex Numbers

- Example:
$A B 31_{h}-\mathrm{FE}_{\mathrm{h}}=9 \mathrm{~B} 5 \mathrm{O}_{\mathrm{h}}$
$-1-1=0$
- $3<E$ ($\equiv 14$), borrow 1 ($=16$), giving $(16+3)-14=5 \quad$ borrow: $-1 \quad-1$
- B (=11) - 1 (borrowed) < F ($\equiv 15$),
borrow 1 (=16),
giving $(16+11-1)-15=11$ ($\equiv \mathrm{B}$)
- $\mathrm{A}-1$ (borrowed) $=9$
- mentally equate each hex to decimal, and vice versa

Terms in Addition and Subtraction

- $\mathrm{X}+\mathrm{Y}=\mathrm{Z}$
$-\mathrm{X}=$ Augend
$-\mathrm{Y}=$ Addend
- Z = Sum
- other terms: Carry
- $\mathrm{X}-\mathrm{Y}=\mathrm{Z}$
- $\mathrm{X}=$ Minuend
$-\mathrm{Y}=$ Subtrahend
- Z = Difference, or Remainder (less common)
- other terms: Borrow

Data Representation

- Integers
- unsigned
- Signed
- sign \& magnitude
- 1's complement
- 2's complement
- biased - n
- BCD
- Real
- floating point
- Text
- ASCII
- Why Data Representation?
- computers only understand 0 and 1
- everything else need to be represented in os and 1s
- so called coding or encoding
- the reverse process of encoding, i.e. determining the meaning of the os and 1 s , is called decoding

Unsigned Integer

- Natural numbers, only positive
- Binary number unmodified
- All bits represent the magnitude of the number
- Minimum is zero
- Maximum depends on the size of the binary code used
- for 1 byte (8 bits), maximum number will be 11111111_{b} $=2^{8}-1=255$
- for n bits code, maximum will be $2^{\mathrm{n}}-1$
- Not the most useful though most computer support

Signed Integer

- Signed integer is more important - various representations:
- sign \& magnitude
- 1's complement
- 2's complement
- biased - m
- 2's complement most common - implemented in most computers for arithmetic

Sign \& Magnitude

- Leftmost ("most significant") bit represents the sign of the integer: 0 is $+\mathrm{ve}, 1$ is -ve
- Remaining bits to represent its magnitude
- Two representations for zero: usually use the all os, i.e. $000 . . .000_{b}$
- Range for n bits:

$$
-\left(2^{\mathrm{n}-1}-1\right) \leq \mathrm{S} \& \mathrm{M} \leq+\left(2^{\mathrm{n}-1}-1\right)
$$

- Example: $-7 \leq 4$-bit $S \& M \leq+7 ; 2^{4-1}-1=7$

Bit Pattern	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sign \& Magnitude	+0	+1	+2	+3	+4	+5	+6	+7	-0	-1	-2	-3	-4	-5	-6	-7

1's Complement - 1

- Leftmost ("most significant") bit represents the sign of the integer: 0 is $+\mathrm{ve}, 1$ is -ve
- Remaining bits to represent its magnitude
- Negative numbers are the complement of the positive numbers
- Two representations for zero: usually use the all os, i.e. $000 . .0^{0} 0_{b}$
- Range for n bits (same as S \& M):
$-\left(2^{\mathrm{n}-1}-1\right) \leq 1$'s $\leq+\left(2^{\mathrm{n}-1}-1\right)$

1's Complement - 2

- Example: $-7 \leq 4$-bit 1 's $\leq+7 ; 2^{4-1}-1=7$

Bit Pattern	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1's Complement	+0	+1	+2	+3	+4	+5	+6	+7	-7	-6	-5	-4	-3	-2	-1	-0

- Encoding by example: for 4-bit 1's Complement code, determine the code for -6
- for positive number, simply convert to binary (use only n-1 bits)
- for 4 -bit, $+6 \equiv 011 \mathrm{O}_{\mathrm{b}}$ (note MSB is o for + ve number)
- complement each bit of +6 gives: $+6=\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$
$--6 \equiv 1001_{\mathrm{b}}$ (note MSB is 1)

$$
1 \text { 's }=\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}
$$

2's Complement - 1

- Leftmost ("most significant") bit represents the sign of the integer: 0 is $+\mathrm{ve}, 1$ is -ve
- Remaining bits to represent its magnitude
- Only one bit pattern for zero
- Most useful property: $\mathrm{X}-\mathrm{Y}=\mathrm{X}+(-\mathrm{Y})$
- no need for a separate subtractor (S \& M) or carry-out adjustments (1's Complement)
- Range for n bits (one extra negative number):

$$
-2^{\mathrm{n}-1} \leq 2^{\prime} \mathrm{s} \leq+\left(2^{\mathrm{n}-1}-1\right)
$$

2's Complement - 2

- Example: $-8 \leq 4$-bit 2 's $\leq+7 ; 2^{4-1}=8$ and $2^{4-1}-1=7$

Bit Pattern	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2's Complement	+0	+1	+2	+3	+4	+5	+6	+7	-8	-7	-6	-5	-4	-3	-2	-1

- The 2's codes for x and -x add to a power of 2
- 4-bit code: $\mathrm{c}+(-\mathrm{c})=2^{4}$
- 8-bit code: $\mathrm{c}+(-\mathrm{c})=2^{8}$
- Mathematically $\mathrm{x}+(-\mathrm{x})=0$, then $2^{\mathrm{n}} \equiv 0$ giving: $(-c)=0-c=2^{n}-c=\left[\left(2^{\mathrm{n}}-1\right)-\mathrm{c}\right]+1$
- Note that ($2^{\mathrm{n}}-1$) is $1111 . .1_{\mathrm{b}}$, making subtraction a cinch!
- Roles of (-c) and c can be reversed
$-2^{\mathrm{n}}-\mathrm{c} \rightarrow$ Change Sign Rule I, [(2 $\left.\left.{ }^{\mathrm{n}}-1\right)-\mathrm{c}\right]+1 \rightarrow$ Change Sign Rule II

2's Complement - 3

- Change Sign Rule I
- Subtract from $2^{\text {n }}$
- Change Sign Rule II (recommended)
- Flip all the bits
- Add 1
- Change Sign Rule III
- Scan right to left to the first bit with value 1
- Flip all bits to its left
- Encoding 2's:
- for positive number: simply convert to binary (use only n-1 bits, with MSB as o)
- for negative number: apply either of the 3 change sign rules to the positive code

2's Complement - 4

- Encoding example: assuming 4-bit code, convert 4, 6, -6, -7 into 2's complement code
- positive numbers: simply convert to binary
- $4 \equiv \mathrm{O1OO}_{\mathrm{b}}, 6 \equiv 011 \mathrm{O}_{\mathrm{b}}$; note MSB is o
- negative numbers: convert its positive value to binary and apply sign change (any 1 rule)
- $-6 \rightarrow 6 \equiv 011 \mathrm{O}_{\mathrm{b}} \rightarrow$ flip all bits $\rightarrow 1001_{\mathrm{b}} \rightarrow$ add $1 \rightarrow 101 \mathrm{O}_{\mathrm{b}}$; $-6 \equiv 1010_{\mathrm{b}}$

$-7 \equiv 1001_{b}$
- note MSB is 1 for negative numbers

2's Complement - 5

- Decoding 2's:
- for positive number: leading o indicates value is positive simply convert to decimal
- for negative number: leading 1 indicates value is negative - apply change sign rule, then convert to decimal (remember the negative sign)
- Decoding example: assuming 4-bit 2's code, determine the decimal equivalent of $0101_{b}, 0111_{b}, 1011_{b}, 111 O_{b}$
- positive numbers (MSB is o): simply convert binary to decimal
- $0101_{\mathrm{b}} \equiv 5,0111_{\mathrm{b}} \equiv 7$
- negative numbers (MSB is 1): change sign to positive and then convert to decimal
- $1011_{\mathrm{b}} \rightarrow$ flip all bits $\rightarrow 0100_{\mathrm{b}} \rightarrow$ add $1 \rightarrow 0101 \mathrm{~b} \equiv 5 ; 1011_{\mathrm{b}} \equiv-5$
- $111 \mathrm{O}_{\mathrm{b}} \rightarrow$ flip all bits $\rightarrow 0001_{\mathrm{b}} \rightarrow$ add $1 \rightarrow 0010 \mathrm{~b} \equiv 2 ; 111 \mathrm{O}_{\mathrm{b}} \equiv-2$
- remember the negative sign

Biased - m (Excess - m)

- Integer N represented by $\mathrm{N}+\mathrm{m}$
- For n bits, normally use $m=2^{\mathrm{n}-1}$ (half range $2^{\mathrm{n}} / 2$)
- Like 2's complement, asymmetric
- Used when important to compare and sort numbers
- Example: for 4-bit code, $\mathrm{m}=2^{4-1}=8$
- o is represented by o $+8=8 \equiv 100 \mathrm{o}_{\mathrm{b}}$
--8 is represented by $-8+8=0 \equiv 0000_{b}$ (smallest)
-7 is presented by $7+8=15 \equiv 1111_{\mathrm{b}}$ (largest)

Bit Pattern	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Bias-8	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7

Binary Coded Decimal (BCD)

- Use 4 bits (1 nibble) to represent each decimal digit direct binary-decimal conversion
- Easy for human to understand
- Wastes some bit patterns (can use one of them for sign)
- Not efficient for storage

Bit Pattern	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
BCD	0	1	2	3	4	5	6	7	8	9	-	-	-	-	-	-

Summary of Integers 4-bit Code Representations

Bit Pattern	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sign \& Magnitude	+0	+1	+2	+3	+4	+5	+6	+7	-0	-1	-2	-3	-4	-5	-6	-7
1's Complement	+0	+1	+2	+3	+4	+5	+6	+7	-7	-6	-5	-4	-3	-2	-1	-0
2's Complement	+0	+1	+2	+3	+4	+5	+6	+7	-8	-7	-6	-5	-4	-3	-2	-1
Excess-8	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
BCD	0	1	2	3	4	5	6	7	8	9	-	-	-	-	-	-

Floating Point - 1

- All previous representations only encode integers (whole numbers)
- Floating point numbers are real numbers, i.e. with decimal point, in binary
- format: ± 1.xxxxxx... $\times 2^{\text {yyyy... }}$
- In computer, floating point numbers are stored with 3 data - sign, mantissa and exponent
- format: $-1^{\mathrm{S}} \times \mathrm{M} \times 2^{\mathrm{E}}$
- $S=$ sign, $M=$ mantissa (1.xxxx...), $\mathrm{E}=$ exponent (yyyy...)
- exponent is represented in bias-m

Floating Point - 2

- Single-precision floating point numbers:
- occupy 32 bits, give approx range of $\pm 10^{-38} \ldots 10^{38}$
- exponent encoded in bias-127 ($2^{\mathrm{n}-}$ ${ }^{1}-1$)

Bit No	Size	Field Name
31	1 bit	Sign (S)
$23-30$	8 bits	Exponent (E)
$0-22$	23 bits	Mantissa (M)

- Double-precision floating point numbers:
- occupy 64 bits, give approx range of $\pm 10^{-308} \ldots 10^{308}$
- Exponent encoded in bias-1023 $\left(2^{\mathrm{n}-1}-1\right)$
- More on this in tutorial

ASCII

- ASCII \equiv American Standard Code for Information Interchange
- Representation of non-numerical data, i.e. character encoding
- Use 7-bit code to represent 128 characters (including control characters, e.g. line feed)
- In byte data system, MSB set as o or used as parity bit for error checking

ASCII Table

$\begin{gathered} \text { Low } \\ 4 \text { Bits } \end{gathered}$	High 3 Bits							
	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	-	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	B	R	b	r
0011	ETX	DC3	\#	3	C	S	c	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	\%	5	E	U	e	u
0110	ACK	SYN	\&	6	F	V	f	v
0111	BEL	ETB	'	7	G	W	g	w
1000	BS	CAN	(8	H	X	h	x
1001	HT	EMT)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	z
1011	VT	ESC	+	;	K	[k	\{
1100	FF	FS	,	<	L	1	1	\|
1101	CR	GS	-	=	M]	m)
1110	SO	RS	.	>	N	\&	n	\sim
1111	SI	US	1	?	O	-	o	DEL

2's Complement Addition - 1

- Adding n-bit 2's Complement codes gives an nbit result
- use the coded representations, treating them as unsigned values (normal binary)
- add the values and discard any carry-out bit
- Overflow rule for addition:
- overflow occurs if (check MSB, i.e. sign bit)
- $(+\mathrm{A})+(+\mathrm{B})=-\mathrm{C}$
- $(-\mathrm{A})+(-\mathrm{B})=+\mathrm{C}$
- Overflow - result exceeds range

2’s Complement Addition - 2

- Examples (4-bit 2's code):
- $4+3=$?
- $5+7=$?

0	1	0	0	\equiv	4	
+	0	0	1	1	\equiv	3
0	1	1	1	\equiv	7	

0	1	0	1	\equiv	5	
+	0	1	1	1	\equiv	7
1	1	0	0	\equiv	-4	

- above result shows overflow - incorrect
- $2+(-8)=$?

$$
\begin{array}{ccccccc}
0 & 0 & 1 & 0 & \equiv & 2 \\
+ & 1 & 0 & 0 & 0 & \equiv & -8 \\
\hline 1 & 0 & 1 & 0 & \equiv & -6
\end{array}
$$

2's Complement Subtraction - 1

- Subtracting n-bit 2's Complement codes gives an n-bit result
- use the coded representations, treating them as unsigned values (normal binary)
- change the sign and add
- $\mathrm{X}-\mathrm{Y}=\mathrm{X}+(-\mathrm{Y})$, i.e. obtain -Y from Y first
- Overflow rule for subtraction:
- overflow occurs if (check MSB, i.e. sign bit)
- $(+\mathrm{A})-(-\mathrm{B})=-\mathrm{C}$
- $(-\mathrm{A})-(+\mathrm{B})=+\mathrm{C}$

2's Complement Subtraction-2

- Examples (4-bit 2's code):
- $4-\mathbf{3}=4+(-3)=$?
- $2-(-8)=2+8=$?

0	0	1	0	\equiv	2
+	$?$	$?$	$?$	$?$	\equiv
$?$	$?$	$?$	$?$	\equiv	$?$

- there is no representation
- $5-7=5+(-7)=$? for +8 in 4 -bit 2 's
- what will happen?

+	1	0	0	1	\equiv	-7
	1	1	1	0	\equiv	-2

Summary

- Computers are made up of logic circuits
- Logic operations AND, OR, NOT, XOR, NAND, NOR recapped
- Computers only understand os and 1 s , therefore need to know binary and other related matters
- number systems recapped: binary, hexadecimal
- data representation: integers (unsigned, S\&M, 1's, 2's, bias-m, BCD, floating point, ASCII)
- arithmetic on 2's - most useful representation for integers

