
owh@ieee.org CO 2103 1

Background Knowledge

CO 2103 Assembly Language

owh@ieee.org CO 2103 2

Topics

• Digital Logic

• Number Systems
– Binary, Octal, Decimal, Hexadecimal

– Conversion between number systems

– Basic arithmetic operations

• Data Representations
– Integer – signed/unsigned, sign & magnitude, 1’s, 2’s

complement, BCD, biased

– Real – floating point

– Text – ASCII

owh@ieee.org CO 2103 3

Digital Logic

• Rationale

– computers operate electronically, using Logic Gates

– Logic Gates easily connected to perform more complex functions,
form the basic "building blocks" of computers

• Logic Gates

– electronic circuits, usually written as symbols

– 1 output, 1 or more inputs

– information (values) interpreted from inputs/output have/don’t
have electronic signal (voltage)

– have voltage = ON = Logic 1

– no voltage = OFF = Logic 0

owh@ieee.org CO 2103 4

Basic Logic Gates - 1

• Basic Logic operations:

– AND, OR, NOT, Exclusive
OR (XOR)

• AND

Symbol

Lamp

AB

Q

Q=A B
A

B

Inputs Output

MIL/ANSI

&
A

B

Q

Inputs

BSI

Output

Inputs Output

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

Illustration

Truth Table

owh@ieee.org CO 2103 5

Basic Logic Gates - 2

• OR

Lamp

A

B

Q

Q=A+B
A

B

Inputs Output

MIL/ANSI

>=1
A

B

Q

Inputs

BSI

Output

Inputs Output

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

Symbol

Illustration

Truth Table

owh@ieee.org CO 2103 6

Basic Logic Gates - 3

• NOT

Lamp

A

Q

Q=AA

Inputs Output

MIL/ANSI
BSI

Q=AA

Inputs Output

1

Input Output

A Q

0 1

1 0

Symbol

Illustration

Truth Table

owh@ieee.org CO 2103 7

Basic Logic Gates - 4

• XOR

A

B

Inputs Output

MIL/ANSI

=1
A

B

Q

Inputs

BSI

Output

BAQ =

Inputs Output

A B Q

0 0 0

0 1 1

1 0 1

1 1 0

Symbol

Truth Table

owh@ieee.org CO 2103 8

Derived Logic Gates

• Derived Logic operations:

– NAND (Not-AND)

– NOR (Not-OR)

• NAND

• NOR Inputs Output

A B Q

0 0 1

0 1 0

1 0 0

1 1 0

Q=A B
A

B

Inputs Output

MIL/ANSI

&
A

B

Q

Inputs

BSI

Output

Q=A+B
A

B

Inputs Output

MIL/ANSI

>=1
A

B

Q

Inputs

BSI

Output

Inputs Output

A B Q

0 0 1

0 1 1

1 0 1

1 1 0

owh@ieee.org CO 2103 9

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Logic Circuit

• Combine gates into logic circuits to perform useful
functions

• Example: “Auto Lock” the doors if:

– someone is in the car AND the doors are closed, OR

– NO one is in the car AND the key is removed AND the doors are
closed

Lock Doors

Door closed

Someone In

Key removed

A

B

C

F

Truth Table?

owh@ieee.org CO 2103 10

Number Systems - 1

• Decimal – base 10

– 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• Binary – base 2

– 0, 1

• Octal – base 8

– 0, 1, 2, 3, 4, 5, 6, 7

• Hexadecimal (Hex) – base 16

– 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

owh@ieee.org CO 2103 11

Number Systems - 2

• The base is the number of available symbols (0, 1, 2, … A,
B, … F) to form the numbers

• Why do we have different number systems?

– Decimal – part of our life; we have 10 fingers?

– Binary – part of computer’s life; 0 and 1 only

– Hexadecimal – convenient shorthand for binary

• All systems follow same rules of counting, i.e. when we
reach the last symbol we add another ‘digit’ to the left

– Decimal – 0, 1, … 9, 10, 11 … 99, 100, …

– Binary – 0, 1, 10, 11, 100, … 111, 1000, … 1111, 10000, …

– Hexadecimal – o, 1, … F, 10, 11, … 1F, 20, ... FF, 100, …

owh@ieee.org CO 2103 12

Number Systems - 3

• The base is usually appended, in subscript, to the
number to indicate which number system it
belongs

– Decimal numbers – 24d, 133d, 100010, 301010

– Binary numbers – 10b, 110b, 10002, 101112

– Hex numbers – 24h, 346h, 100016, 301016

• If no base indicated, usually is decimal number

owh@ieee.org CO 2103 13

Place (Position) Value

• Decimal

• Binary

• Hexadecimal

• For base-n
– each position to the left has n times value to its right

– the value at x position is given by nx

• Note the right most is smallest, and starts with n0 called
least significant digit

Position 7 6 5 4 3 2 1 0

Value 10
7 10

6 10
5 10

4 10
3 10

2 10
1 10

0

 10,000 1,000 100 10 1

Position 7 6 5 4 3 2 1 0

Value 2
7 2

6 2
5 2

4 2
3 2

2 2
1 2

0

 128 64 32 16 8 4 2 1

Position 7 6 5 4 3 2 1 0

Value 16
7 16

6 16
5 16

4 16
3 16

2 16
1 16

0

 65536 4096 256 16 1

owh@ieee.org CO 2103 14

Terms for Binary

• Bit – binary digit

• Nibble – group of 4-bit

• Byte – group of 8-bit

• Word – usually 16-bit (2 bytes); dependent on hardware

• Doubleword – usually 32-bit

• Quadword – usually 64-bit

• LSB – least significant bit (right most)

• MSB – most significant bit (left most non-zero)

• Bits are numbered from right: …b7b6b5b4b3b2b1b0

1 1 0 0 0 1 0 1

Bits

Nibble

Byte

b7 b6 b5 b4 b3 b2 b1 b0

owh@ieee.org CO 2103 15

Decimal to Binary - 1

• Allocation based on position value

• Start with left most being the largest position value
smaller than the number to be converted

• Example: convert 98d into its binary equivalence

– 128 > 98 > 64, start at pos 64 – enter 1

– 98-64=34, next right position, 34>32, next at pos 32 – enter 1

– 98-(64+32)=2, next right position, 16/8/4>2, next at pos 2 – enter 1

– 98d  1100010b

Position 7 6 5 4 3 2 1 0

Value 2
7 2

6 2
5 2

4 2
3 2

2 2
1 2

0

 128 64 32 16 8 4 2 1

 1 1 0 0 0 1 0

owh@ieee.org CO 2103 16

Decimal to Binary - 2

• Successive division by 2 and concatenate the remainders
from each step to form the resultant binary number

• Example: convert 98d into its binary equivalence

– 98d  1100010b

 Remainder

2 98 0

2 49 1

2 24 0

2 12 0

2 6 0

2 3 1

 1

owh@ieee.org CO 2103 17

Binary to Decimal

• Add all position values that have 1 on them

• Example: convert 1100010b into its decimal equivalence

– 64+32+2=98

– 1100010b  98d

• In general, for a binary number …fedcbab

– decimal = a*20+b*21+c*22+d*23+e*24+f*25+…

– This is called Expansion Method

Position 7 6 5 4 3 2 1 0

Value 2
7 2

6 2
5 2

4 2
3 2

2 2
1 2

0

 128 64 32 16 8 4 2 1

 1 1 0 0 0 1 0

owh@ieee.org CO 2103 18

Decimal to Hex - 1

• Similar concept as decimal to binary
– allocation based on position value
– successive division by its base, 16 and concatenate the

remainders

• Example: convert 1234d to its hex equivalence

– 4096>1234>256, start at pos 256, but 1234/256=4.8, enter 4
– 1234-(4*256)=210, 210>16, next at pos 16, but 210/16=13.1, enter Dh

(13)
– 1234-(4*256+13*16)=2, last at pos 1, enter 2
– 1234d  4D2h

Position 7 6 5 4 3 2 1 0

Value 16
7 16

6 16
5 16

4 16
3 16

2 16
1 16

0

 65536 4096 256 16 1

 4 D 2

owh@ieee.org CO 2103 19

Decimal to Hex - 2

• Conversion using successive division by 16

– Solving problem in previous slide

– 1234d  4D2h

 Remainder

16 1234 2

16 77 13 (Dh)

 4

owh@ieee.org CO 2103 20

Hex to Decimal

• Similar concept with binary to decimal

– Sum up products of the position value and the
number on it

– for a hex number …fedcbah

• decimal = a*160+b*161+c*162+d*163+e*164+f*165+…

• Example: convert 4D2h into decimal

– for calculation, use Dh  13

– 4D2h = 2*160+13*161+4*162=2*1+13*16+4*256=1234

– 4D2h  1234d

owh@ieee.org CO 2103 21

Binary vs Hex

0000 0 1000 8

0001 1 1001 9

0010 2 1010 A

0011 3 1011 B

0100 4 1100 C

0101 5 1101 D

0110 6 1110 E

0111 7 1111 F

Hex is a convenient shorthand for Binary

owh@ieee.org CO 2103 22

Binary to Hex

• Group bits by fours, starting from the right (i.e.
least significant bits)

• Add leading zeros as necessary to complete the
last group

• Convert each group to equivalent hex digits

• Example: convert 101001b into hex

– 0010,1001b → 0010b  2h, 1001b  9h

– 0010,1001b  29h

owh@ieee.org CO 2103 23

Hex to Binary

• Expand each hex digit to the equivalent 4-bit
binary form

• Example: convert 29h into binary

– 2h  0010b, 9h  1001b

– 29h  0010,1001b

owh@ieee.org CO 2103 24

Why Hex?

• We are used to decimal. So, we need decimal

• Computer only understand binary. So, we need binary
– however, binary is difficult (too long) to read, write and

remember; e.g. 11111010001111b = 16015d = 3E8Fd, it is useful to
read/write in shorter form (decimal or hexadecimal)

• But, why Hex?

• Try convert the four numbers into decimal and hex:
11001101b, 100011b, 10111001b, 11111100b

– is it easier to convert between binary and hex than binary and
decimal?

– for the four numbers, which is hardest to read, remember and
write?

– with answers to the above two questions, is hex useful?

owh@ieee.org CO 2103 25

Addition

• Same ADD algorithm for all bases

– add digit to digit, at same value position, from right to
left (from lsb to msb)

– when the sum reaches/exceeds the base, carry to left

owh@ieee.org CO 2103 26

Adding Decimal Numbers

• Example: 1234 + 567 = 1801

– 4 + 7 = 11

• 11 reaches/exceeds base 10

• therefore carry (10) to the left

• leaving 11 – 10 = 1 at original pos

– 1 + 3 + 6 = 10

• 10 reaches/exceeds base 10

• therefore carry (10) to the left

• leaving 10 – 10 = 0

– 1 + 2 + 5 = 8

carry: 1 1

1 2 3 4

+ 5 6 7

1 8 0 1

owh@ieee.org CO 2103 27

Adding Binary Numbers

• Example: 10001111b + 110110b = 11000101b

carry: 1 1 1 1 1

1 0 0 0 1 1 1 1

+ 1 1 0 1 1 0

1 1 0 0 0 1 0 1

owh@ieee.org CO 2103 28

Adding Hex Numbers

• Example: 1234h + 3FBh = 162Fh

– 4h + Bh = 4 + 11 = 15 = Fh

– 3h + Fh = 3 + 15 = 18 = 12h

• 18 reaches/exceeds base 16

• therefore carry (16) to left

• leaving 18 – 16 = 2 = 2h

– 1h + 2h + 3h = 6h

carry: 1

1 2 3 4

+ 3 F B

1 6 2 F

owh@ieee.org CO 2103 29

Subtraction

• Same SUBTRACT algorithm for all bases

– subtract digit by digit, at same value position, from
right to left (from lsb to msb)

– when there is not enough to subtract, borrow from the
left, if left position has not enough to borrow, borrow
from afar (next left to left)

– each borrow has value equivalent to the base

owh@ieee.org CO 2103 30

Subtract Decimal Numbers

• Example: 1234 – 567 = 667

– 4<7, borrow 1 (=10), giving 14 – 7 = 7

– 3-1 (borrowed)<6,
borrow 1 (=10),
giving 12 – 6 = 6

– 2-1 (borrowed)<5,
borrow 1 (=10),
giving 11 – 5 = 6

borrow: -1 -1 -1

value: 10 10 10

1 2 3 4

– 5 6 7

6 6 7

owh@ieee.org CO 2103 31

Subtract Binary Numbers

• Example: 11001010b – 11001b = 10110001b

borrow: -1 -1 -1

value: 2 2 2

1 1 0 0 1 0 1 0

– 1 1 0 0 1

1 0 1 1 0 0 0 1

owh@ieee.org CO 2103 32

Subtract Hex Numbers

• Example:
AB31h – FE1h = 9B50h

– 1 – 1 = 0

– 3<E (14), borrow 1 (=16),
giving (16+3) – 14 = 5

– B (=11) – 1 (borrowed) < F
(15),
borrow 1 (=16),
giving (16+11-1) – 15 = 11
(B)

– A – 1 (borrowed) = 9

– mentally equate each hex to
decimal, and vice versa

borrow: -1 -1

value: 16 16

A B 3 1

– F E 1

9 B 5 0

owh@ieee.org CO 2103 33

Terms in Addition and Subtraction

• X + Y = Z
– X = Augend

– Y = Addend

– Z = Sum

– other terms: Carry

• X – Y = Z
– X = Minuend

– Y = Subtrahend

– Z = Difference, or Remainder (less common)

– other terms: Borrow

owh@ieee.org CO 2103 34

Data Representation

• Integers
– unsigned

– Signed

• sign & magnitude

• 1’s complement

• 2’s complement

• biased - n

– BCD

• Real
– floating point

• Text
– ASCII

• Why Data Representation?
– computers only understand

0 and 1

– everything else need to be
represented in 0s and 1s

– so called coding or
encoding

– the reverse process of
encoding, i.e. determining
the meaning of the 0s and
1s, is called decoding

owh@ieee.org CO 2103 35

Unsigned Integer

• Natural numbers, only positive

• Binary number unmodified

• All bits represent the magnitude of the number

• Minimum is zero

• Maximum depends on the size of the binary code
used
– for 1 byte (8 bits), maximum number will be 11111111b

= 28 – 1 = 255

– for n bits code, maximum will be 2n – 1

• Not the most useful though most computer
support

owh@ieee.org CO 2103 36

Signed Integer

• Signed integer is more important – various
representations:
– sign & magnitude

– 1’s complement

– 2’s complement

– biased - m

• 2’s complement most common – implemented in
most computers for arithmetic

owh@ieee.org CO 2103 37

Sign & Magnitude

• Leftmost ("most significant") bit represents the sign of
the integer: 0 is +ve, 1 is –ve

• Remaining bits to represent its magnitude

• Two representations for zero: usually use the all 0s, i.e.
000…000b

• Range for n bits:
−(2n−1−1) ≤ S & M ≤ +(2n−1−1)

• Example: −7 ≤ 4-bit S & M ≤ +7; 24−1−1 = 7

Bit Pattern 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Unsigned 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sign & Magnitude +0 +1 +2 +3 +4 +5 +6 +7 –0 –1 –2 –3 –4 –5 –6 –7

owh@ieee.org CO 2103 38

1’s Complement - 1

• Leftmost ("most significant") bit represents the sign of

the integer: 0 is +ve, 1 is –ve

• Remaining bits to represent its magnitude

• Negative numbers are the complement of the positive
numbers

• Two representations for zero: usually use the all 0s, i.e.
000…000b

• Range for n bits (same as S & M):
−(2n−1−1) ≤ 1's ≤ +(2n−1−1)

owh@ieee.org CO 2103 39

1’s Complement - 2

• Example: −7 ≤ 4-bit 1’s ≤ +7; 24−1−1 = 7

• Encoding by example: for 4-bit 1’s Complement code,
determine the code for −6

– for positive number, simply convert to binary (use only n-1 bits)

– for 4-bit, +6  0110b (note MSB is 0 for +ve number)

– complement each bit of +6 gives:

– −6  1001b (note MSB is 1)

Bit Pattern 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Unsigned 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1's Complement +0 +1 +2 +3 +4 +5 +6 +7 –7 –6 –5 –4 –3 –2 –1 –0

+6 = 0 1 1 0

1’s = 1 0 0 1

owh@ieee.org CO 2103 40

2’s Complement - 1

• Leftmost ("most significant") bit represents the sign of

the integer: 0 is +ve, 1 is –ve

• Remaining bits to represent its magnitude

• Only one bit pattern for zero

• Most useful property: X − Y = X + (−Y)

• no need for a separate subtractor (S & M) or carry-out
adjustments (1's Complement)

• Range for n bits (one extra negative number):
−2n−1 ≤ 2's ≤ +(2n−1−1)

owh@ieee.org CO 2103 41

2’s Complement - 2

• Example: −8 ≤ 4-bit 2’s ≤ +7; 24−1 = 8 and 24−1−1 = 7

• The 2’s codes for x and -x add to a power of 2
– 4-bit code: c+(-c)=24

– 8-bit code: c+(-c)=28

• Mathematically x+(-x) = 0, then 2n  0 giving:
(-c) = 0-c = 2n-c = [(2n-1)-c]+1
– Note that (2n-1) is 1111..1b, making subtraction a cinch!
– Roles of (-c) and c can be reversed
– 2n-c → Change Sign Rule I, [(2n-1)-c]+1 → Change Sign Rule II

Bit Pattern 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Unsigned 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2's Complement +0 +1 +2 +3 +4 +5 +6 +7 –8 –7 –6 –5 –4 –3 –2 –1

owh@ieee.org CO 2103 42

2’s Complement - 3

• Change Sign Rule I
– Subtract from 2n

• Change Sign Rule II (recommended)
– Flip all the bits

– Add 1

• Change Sign Rule III
– Scan right to left to the first bit with value 1

– Flip all bits to its left

• Encoding 2’s:
– for positive number: simply convert to binary (use only n-1 bits,

with MSB as 0)

– for negative number: apply either of the 3 change sign rules to
the positive code

owh@ieee.org CO 2103 43

2’s Complement - 4

• Encoding example: assuming 4-bit code, convert
4, 6, -6, -7 into 2’s complement code

– positive numbers: simply convert to binary

• 4  0100b, 6  0110b; note MSB is 0

– negative numbers: convert its positive value to binary
and apply sign change (any 1 rule)

• -6 → 6  0110b → flip all bits → 1001b → add 1 → 1010b;
-6  1010b

• -7→ 7  0111b → flip all bits → 1000b → add 1 → 1001b;
-7  1001b

• note MSB is 1 for negative numbers

owh@ieee.org CO 2103 44

2’s Complement - 5

• Decoding 2’s:
– for positive number: leading 0 indicates value is positive –

simply convert to decimal
– for negative number: leading 1 indicates value is negative – apply

change sign rule, then convert to decimal (remember the
negative sign)

• Decoding example: assuming 4-bit 2’s code, determine
the decimal equivalent of 0101b, 0111b, 1011b, 1110b
– positive numbers (MSB is 0): simply convert binary to decimal

• 0101b  5, 0111b  7
– negative numbers (MSB is 1): change sign to positive and then

convert to decimal
• 1011b → flip all bits → 0100b → add 1 → 0101b  5; 1011b  -5
• 1110b → flip all bits → 0001b → add 1 → 0010b  2; 1110b  -2
• remember the negative sign

owh@ieee.org CO 2103 45

Biased – m (Excess – m)

• Integer N represented by N + m

• For n bits, normally use m = 2n-1 (half range 2n/2)

• Like 2's complement, asymmetric

• Used when important to compare and sort numbers

• Example: for 4-bit code, m = 24-1 = 8

– 0 is represented by 0+8 = 8  1000b

– -8 is represented by -8+8 = 0  0000b (smallest)

– 7 is presented by 7+8 = 15  1111b (largest)

Bit Pattern 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Unsigned 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bias-8 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

owh@ieee.org CO 2103 46

Binary Coded Decimal (BCD)

• Use 4 bits (1 nibble) to represent each decimal digit –
direct binary-decimal conversion

• Easy for human to understand

• Wastes some bit patterns (can use one of them for sign)

• Not efficient for storage

Bit Pattern 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Unsigned 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BCD 0 1 2 3 4 5 6 7 8 9 - - - - - -

owh@ieee.org CO 2103 47

Summary of Integers
4-bit Code Representations

Bit Pattern 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Unsigned 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sign & Magnitude +0 +1 +2 +3 +4 +5 +6 +7 –0 –1 –2 –3 –4 –5 –6 –7

1's Complement +0 +1 +2 +3 +4 +5 +6 +7 –7 –6 –5 –4 –3 –2 –1 –0

2's Complement +0 +1 +2 +3 +4 +5 +6 +7 –8 –7 –6 –5 –4 –3 –2 –1

Excess-8 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

BCD 0 1 2 3 4 5 6 7 8 9 - - - - - -

owh@ieee.org CO 2103 48

Floating Point - 1

• All previous representations only encode
integers (whole numbers)

• Floating point numbers are real numbers, i.e.
with decimal point, in binary

– format: ±1.xxxxxx…  2yyyy…

• In computer, floating point numbers are stored
with 3 data – sign, mantissa and exponent

– format: –1S  M  2E

• S=sign, M=mantissa (1.xxxx…), E=exponent (yyyy…)

• exponent is represented in bias-m

owh@ieee.org CO 2103 49

Floating Point - 2

• Single-precision floating point
numbers:
– occupy 32 bits, give approx range

of ±10-38 … 1038

– exponent encoded in bias-127 (2n-

1 – 1)

• Double-precision floating
point numbers:
– occupy 64 bits, give approx range

of ±10-308 … 10308

– Exponent encoded in bias-1023
(2n-1 – 1)

• More on this in tutorial

Bit No Size Field Name

31 1 bit Sign (S)

23-30 8 bits Exponent (E)

0-22 23 bits Mantissa (M)

Bit No Size Field Name

63 1 bit Sign (S)

52-62 11 bits Exponent (E)

0-51 52 bits Mantissa (M)

owh@ieee.org CO 2103 50

ASCII

• ASCII  American Standard Code for
Information Interchange

• Representation of non-numerical data, i.e.
character encoding

• Use 7-bit code to represent 128 characters
(including control characters, e.g. line feed)

• In byte data system, MSB set as 0 or used as
parity bit for error checking

owh@ieee.org CO 2103 51

ASCII Table
Low

4 Bits

High

3 Bits

000 001 010 011 100 101 110 111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EMT

SUB

ESC

FS

GS

RS

US

SP

!

"

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

&

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

DEL

owh@ieee.org CO 2103 52

2’s Complement Addition - 1

• Adding n-bit 2’s Complement codes gives an n-
bit result

– use the coded representations, treating them as
unsigned values (normal binary)

– add the values and discard any carry-out bit

• Overflow rule for addition:

– overflow occurs if (check MSB, i.e. sign bit)

• (+A) + (+B) = –C

• (–A) + (–B) = +C

• Overflow – result exceeds range

owh@ieee.org CO 2103 53

2’s Complement Addition - 2

• Examples (4-bit 2’s code):

• 4 + 3 = ?

• 2 + (–8) = ?

• 5 + 7 = ?

• above result shows
overflow - incorrect

0 1 0 0  4

+ 0 0 1 1  3

0 1 1 1  7

0 0 1 0  2

+ 1 0 0 0  -8

1 0 1 0  -6

0 1 0 1  5

+ 0 1 1 1  7

1 1 0 0  -4

owh@ieee.org CO 2103 54

2’s Complement Subtraction - 1

• Subtracting n-bit 2’s Complement codes gives an
n-bit result

– use the coded representations, treating them as
unsigned values (normal binary)

– change the sign and add

• X – Y = X + (–Y), i.e. obtain –Y from Y first

• Overflow rule for subtraction:

– overflow occurs if (check MSB, i.e. sign bit)

• (+A) – (–B) = –C

• (–A) – (+B) = +C

owh@ieee.org CO 2103 55

2’s Complement Subtraction - 2

• Examples (4-bit 2’s code):

• 4 – 3 = 4 + (–3) = ?

• 5 – 7 = 5 + (-7) = ?

• 2 – (–8) = 2 + 8 = ?

• there is no representation
for +8 in 4-bit 2’s

• what will happen?

0 1 0 0  4

+ 1 1 0 1  -3

(1) 0 0 0 1  1

0 1 0 1  5

+ 1 0 0 1  -7

1 1 1 0  -2

0 0 1 0  2

+ ? ? ? ?  8

? ? ? ?  ?

• overflow detected
• system can’t handle
• need higher bit number

owh@ieee.org CO 2103 56

Summary

• Computers are made up of logic circuits

– Logic operations AND, OR, NOT, XOR, NAND, NOR
recapped

• Computers only understand 0s and 1s, therefore
need to know binary and other related matters

– number systems recapped: binary, hexadecimal

– data representation: integers (unsigned, S&M, 1’s, 2’s,
bias-m, BCD, floating point, ASCII)

– arithmetic on 2’s – most useful representation for
integers

	Slide 1: Background Knowledge
	Slide 2: Topics
	Slide 3: Digital Logic
	Slide 4: Basic Logic Gates - 1
	Slide 5: Basic Logic Gates - 2
	Slide 6: Basic Logic Gates - 3
	Slide 7: Basic Logic Gates - 4
	Slide 8: Derived Logic Gates
	Slide 9: Logic Circuit
	Slide 10: Number Systems - 1
	Slide 11: Number Systems - 2
	Slide 12: Number Systems - 3
	Slide 13: Place (Position) Value
	Slide 14: Terms for Binary
	Slide 15: Decimal to Binary - 1
	Slide 16: Decimal to Binary - 2
	Slide 17: Binary to Decimal
	Slide 18: Decimal to Hex - 1
	Slide 19: Decimal to Hex - 2
	Slide 20: Hex to Decimal
	Slide 21: Binary vs Hex
	Slide 22: Binary to Hex
	Slide 23: Hex to Binary
	Slide 24: Why Hex?
	Slide 25: Addition
	Slide 26: Adding Decimal Numbers
	Slide 27: Adding Binary Numbers
	Slide 28: Adding Hex Numbers
	Slide 29: Subtraction
	Slide 30: Subtract Decimal Numbers
	Slide 31: Subtract Binary Numbers
	Slide 32: Subtract Hex Numbers
	Slide 33: Terms in Addition and Subtraction
	Slide 34: Data Representation
	Slide 35: Unsigned Integer
	Slide 36: Signed Integer
	Slide 37: Sign & Magnitude
	Slide 38: 1’s Complement - 1
	Slide 39: 1’s Complement - 2
	Slide 40: 2’s Complement - 1
	Slide 41: 2’s Complement - 2
	Slide 42: 2’s Complement - 3
	Slide 43: 2’s Complement - 4
	Slide 44: 2’s Complement - 5
	Slide 45: Biased – m (Excess – m)
	Slide 46: Binary Coded Decimal (BCD)
	Slide 47: Summary of Integers 4-bit Code Representations
	Slide 48: Floating Point - 1
	Slide 49: Floating Point - 2
	Slide 50: ASCII
	Slide 51: ASCII Table
	Slide 52: 2’s Complement Addition - 1
	Slide 53: 2’s Complement Addition - 2
	Slide 54: 2’s Complement Subtraction - 1
	Slide 55: 2’s Complement Subtraction - 2
	Slide 56: Summary

