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Background Knowledge

CO 2103 Assembly Language
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Topics

• Digital Logic

• Number Systems
– Binary, Octal, Decimal, Hexadecimal

– Conversion between number systems

– Basic arithmetic operations

• Data Representations
– Integer – signed/unsigned, sign & magnitude, 1’s, 2’s 

complement, BCD, biased

– Real – floating point

– Text – ASCII
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Digital Logic

• Rationale

– computers operate electronically, using Logic Gates

– Logic Gates easily connected to perform more complex functions, 
form the basic "building blocks" of computers

• Logic Gates

– electronic circuits, usually written as symbols

– 1 output, 1 or more inputs

– information (values) interpreted from inputs/output have/don’t 
have electronic signal (voltage)

– have voltage = ON = Logic 1

– no voltage = OFF = Logic 0
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Basic Logic Gates - 1

• Basic Logic operations:

– AND, OR, NOT, Exclusive 
OR (XOR)

• AND

Symbol

Lamp

AB

Q

Q=A  B
A

B

Inputs Output

MIL/ANSI

&
A

B

Q

Inputs

BSI

Output

Inputs Output

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

Illustration

Truth Table
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Basic Logic Gates - 2

• OR

Lamp

A

B

Q

Q=A+B
A

B

Inputs Output

MIL/ANSI

>=1
A

B

Q

Inputs

BSI

Output

Inputs Output

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

Symbol

Illustration

Truth Table
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Basic Logic Gates - 3

• NOT

Lamp

A

Q

Q=AA

Inputs Output

MIL/ANSI
BSI

Q=AA

Inputs Output

1

Input Output

A Q

0 1

1 0

Symbol

Illustration

Truth Table
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Basic Logic Gates - 4

• XOR

A

B

Inputs Output

MIL/ANSI

=1
A

B

Q

Inputs

BSI

Output

BAQ =

Inputs Output

A B Q

0 0 0

0 1 1

1 0 1

1 1 0

Symbol

Truth Table
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Derived Logic Gates

• Derived Logic operations:

– NAND (Not-AND)

– NOR (Not-OR)

• NAND

• NOR Inputs Output

A B Q

0 0 1

0 1 0

1 0 0

1 1 0

Q=A  B
A

B

Inputs Output

MIL/ANSI

&
A

B

Q

Inputs

BSI

Output

Q=A+B
A

B

Inputs Output

MIL/ANSI

>=1
A

B

Q

Inputs

BSI

Output

Inputs Output

A B Q

0 0 1

0 1 1

1 0 1

1 1 0
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A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Logic Circuit

• Combine gates into logic circuits to perform useful 
functions

• Example: “Auto Lock” the doors if:

– someone is in the car AND the doors are closed, OR

– NO one is in the car AND the key is removed AND the doors are 
closed

Lock Doors

Door closed

Someone In

Key removed

A

B

C

F

Truth Table?
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Number Systems - 1

• Decimal – base 10

– 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• Binary – base 2

– 0, 1

• Octal – base 8

– 0, 1, 2, 3, 4, 5, 6, 7

• Hexadecimal (Hex) – base 16

– 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
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Number Systems - 2

• The base is the number of available symbols (0, 1, 2, … A, 
B, … F) to form the numbers

• Why do we have different number systems?

– Decimal – part of our life; we have 10 fingers?

– Binary – part of computer’s life; 0 and 1 only

– Hexadecimal – convenient shorthand for binary

• All systems follow same rules of counting, i.e. when we 
reach the last symbol we add another ‘digit’ to the left

– Decimal – 0, 1, … 9, 10, 11 … 99, 100, …

– Binary – 0, 1, 10, 11, 100, … 111, 1000, … 1111, 10000, …

– Hexadecimal – o, 1, … F, 10, 11, … 1F, 20, ... FF, 100, …
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Number Systems - 3

• The base is usually appended, in subscript, to the 
number to indicate which number system it 
belongs

– Decimal numbers – 24d, 133d, 100010, 301010

– Binary numbers – 10b, 110b, 10002, 101112

– Hex numbers – 24h, 346h, 100016, 301016

• If no base indicated, usually is decimal number
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Place (Position) Value

• Decimal

• Binary

• Hexadecimal

• For base-n
– each position to the left has n times value to its right

– the value at x position is given by nx

• Note the right most is smallest, and starts with n0 called 
least significant digit

Position 7 6 5 4 3 2 1 0 

Value 10
7 10

6 10
5 10

4 10
3 10

2 10
1 10

0 

  ... ... ... 10,000 1,000 100 10 1 

Position 7 6 5 4 3 2 1 0 

Value 2
7 2

6 2
5 2

4 2
3 2

2 2
1 2

0 

  128 64 32 16 8 4 2 1 

Position 7 6 5 4 3 2 1 0 

Value 16
7 16

6 16
5 16

4 16
3 16

2 16
1 16

0 

  ... ... ... 65536 4096 256 16 1 
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Terms for Binary

• Bit – binary digit

• Nibble – group of 4-bit

• Byte – group of 8-bit

• Word – usually 16-bit (2 bytes); dependent on hardware

• Doubleword – usually 32-bit

• Quadword – usually 64-bit

• LSB – least significant bit (right most)

• MSB – most significant bit (left most non-zero)

• Bits are numbered from right: …b7b6b5b4b3b2b1b0

 

1 1 0 0 0 1 0 1 

Bits 

Nibble 

Byte 

b7 b6 b5 b4 b3 b2 b1 b0 
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Decimal to Binary - 1

• Allocation based on position value

• Start with left most being the largest position value 
smaller than the number to be converted

• Example: convert 98d into its binary equivalence

– 128 > 98 > 64, start at pos 64 – enter 1

– 98-64=34, next right position, 34>32, next at pos 32 – enter 1

– 98-(64+32)=2, next right position, 16/8/4>2, next at pos 2 – enter 1

– 98d  1100010b

Position 7 6 5 4 3 2 1 0 

Value 2
7 2

6 2
5 2

4 2
3 2

2 2
1 2

0 

  128 64 32 16 8 4 2 1 

  1 1 0 0 0 1 0 
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Decimal to Binary - 2

• Successive division by 2 and concatenate the remainders 
from each step to form the resultant binary number

• Example: convert 98d into its binary equivalence

– 98d  1100010b

  Remainder 

2 98 0 

2 49 1 

2 24 0 

2 12 0 

2 6 0 

2 3 1 

 1  
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Binary to Decimal

• Add all position values that have 1 on them

• Example: convert 1100010b into its decimal equivalence

– 64+32+2=98

– 1100010b  98d

• In general, for a binary number …fedcbab

– decimal = a*20+b*21+c*22+d*23+e*24+f*25+…

– This is called Expansion Method

Position 7 6 5 4 3 2 1 0 

Value 2
7 2

6 2
5 2

4 2
3 2

2 2
1 2

0 

  128 64 32 16 8 4 2 1 

  1 1 0 0 0 1 0 
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Decimal to Hex - 1

• Similar concept as decimal to binary
– allocation based on position value
– successive division by its base, 16 and concatenate the 

remainders

• Example: convert 1234d to its hex equivalence

– 4096>1234>256, start at pos 256, but 1234/256=4.8, enter 4
– 1234-(4*256)=210, 210>16, next at pos 16, but 210/16=13.1, enter Dh

(13)
– 1234-(4*256+13*16)=2, last at pos 1, enter 2
– 1234d  4D2h

Position 7 6 5 4 3 2 1 0 

Value 16
7 16

6 16
5 16

4 16
3 16

2 16
1 16

0 

  ... ... ... 65536 4096 256 16 1 

      4 D 2 
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Decimal to Hex - 2

• Conversion using successive division by 16

– Solving problem in previous slide

– 1234d  4D2h

  Remainder 

16 1234 2 

16 77 13 (Dh) 

 4  
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Hex to Decimal

• Similar concept with binary to decimal

– Sum up products of the position value and the 
number on it

– for a hex number …fedcbah

• decimal = a*160+b*161+c*162+d*163+e*164+f*165+…

• Example: convert 4D2h into decimal

– for calculation, use Dh  13

– 4D2h = 2*160+13*161+4*162=2*1+13*16+4*256=1234

– 4D2h  1234d
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Binary vs Hex

0000 0 1000 8

0001 1 1001 9

0010 2 1010 A

0011 3 1011 B

0100 4 1100 C

0101 5 1101 D

0110 6 1110 E

0111 7 1111 F

Hex is a convenient shorthand for Binary
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Binary to Hex

• Group bits by fours, starting from the right (i.e. 
least significant bits)

• Add leading zeros as necessary to complete the 
last group

• Convert each group to equivalent hex digits

• Example: convert 101001b into hex

– 0010,1001b → 0010b  2h, 1001b  9h

– 0010,1001b  29h
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Hex to Binary

• Expand each hex digit to the equivalent 4-bit 
binary form

• Example: convert 29h into binary

– 2h  0010b, 9h  1001b

– 29h  0010,1001b
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Why Hex?

• We are used to decimal.  So, we need decimal

• Computer only understand binary.  So, we need binary
– however, binary is difficult (too long) to read, write and 

remember; e.g. 11111010001111b = 16015d = 3E8Fd, it is useful to 
read/write in shorter form (decimal or hexadecimal)

• But, why Hex?

• Try convert the four numbers into decimal and hex: 
11001101b, 100011b, 10111001b, 11111100b

– is it easier to convert between binary and hex than binary and 
decimal?

– for the four numbers, which is hardest to read, remember and 
write?

– with answers to the above two questions, is hex useful?
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Addition

• Same ADD algorithm for all bases

– add digit to digit, at same value position, from right to 
left (from lsb to msb)

– when the sum reaches/exceeds the base, carry to left
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Adding Decimal Numbers

• Example: 1234 + 567 = 1801

– 4 + 7 = 11

• 11 reaches/exceeds base 10

• therefore carry (10) to the left

• leaving 11 – 10 = 1 at original pos

– 1 + 3 + 6 = 10

• 10 reaches/exceeds base 10

• therefore carry (10) to the left

• leaving 10 – 10 = 0

– 1 + 2 + 5 = 8

carry: 1 1

1 2 3 4

+ 5 6 7

1 8 0 1
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Adding Binary Numbers

• Example: 10001111b + 110110b = 11000101b

carry: 1 1 1 1 1

1 0 0 0 1 1 1 1

+ 1 1 0 1 1 0

1 1 0 0 0 1 0 1
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Adding Hex Numbers

• Example: 1234h + 3FBh = 162Fh

– 4h + Bh = 4 + 11 = 15 = Fh

– 3h + Fh = 3 + 15 = 18 = 12h

• 18 reaches/exceeds base 16

• therefore carry (16) to left

• leaving 18 – 16 = 2 = 2h

– 1h + 2h + 3h = 6h

carry: 1

1 2 3 4

+ 3 F B

1 6 2 F
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Subtraction

• Same SUBTRACT algorithm for all bases

– subtract digit by digit, at same value position, from 
right to left (from lsb to msb)

– when there is not enough to subtract, borrow from the 
left, if left position has not enough to borrow, borrow 
from afar (next left to left)

– each borrow has value equivalent to the base



owh@ieee.org CO 2103 30

Subtract Decimal Numbers

• Example: 1234 – 567 = 667

– 4<7, borrow 1 (=10), giving 14 – 7 = 7

– 3-1 (borrowed)<6, 
borrow 1 (=10), 
giving 12 – 6 = 6

– 2-1 (borrowed)<5, 
borrow 1 (=10), 
giving 11 – 5 = 6

borrow: -1 -1 -1

value: 10 10 10

1 2 3 4

– 5 6 7

6 6 7
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Subtract Binary Numbers

• Example: 11001010b – 11001b = 10110001b

borrow: -1 -1 -1

value: 2 2 2

1 1 0 0 1 0 1 0

– 1 1 0 0 1

1 0 1 1 0 0 0 1
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Subtract Hex Numbers

• Example: 
AB31h – FE1h = 9B50h

– 1 – 1 = 0

– 3<E (14), borrow 1 (=16),
giving (16+3) – 14 = 5

– B (=11) – 1 (borrowed) < F 
(15),
borrow 1 (=16),
giving (16+11-1) – 15 = 11 
(B)

– A – 1 (borrowed) = 9

– mentally equate each hex to 
decimal, and vice versa

borrow: -1 -1

value: 16 16

A B 3 1

– F E 1

9 B 5 0
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Terms in Addition and Subtraction

• X + Y = Z
– X = Augend

– Y = Addend

– Z = Sum

– other terms: Carry

• X – Y = Z
– X = Minuend

– Y = Subtrahend

– Z = Difference, or Remainder (less common)

– other terms: Borrow
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Data Representation

• Integers
– unsigned

– Signed

• sign & magnitude

• 1’s complement

• 2’s complement

• biased - n 

– BCD

• Real
– floating point

• Text
– ASCII

• Why Data Representation?
– computers only understand 

0 and 1

– everything else need to be 
represented in 0s and 1s

– so called coding or 
encoding

– the reverse process of 
encoding, i.e. determining 
the meaning of the 0s and 
1s, is called decoding
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Unsigned Integer

• Natural numbers, only positive

• Binary number unmodified

• All bits represent the magnitude of the number

• Minimum is zero

• Maximum depends on the size of the binary code 
used
– for 1 byte (8 bits), maximum number will be 11111111b

= 28 – 1 = 255

– for n bits code, maximum will be 2n – 1 

• Not the most useful though most computer 
support
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Signed Integer

• Signed integer is more important – various 
representations:
– sign & magnitude

– 1’s complement

– 2’s complement

– biased - m

• 2’s complement most common – implemented in 
most computers for arithmetic
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Sign & Magnitude

• Leftmost ("most significant") bit represents the sign of 
the integer: 0 is +ve, 1 is –ve

• Remaining bits to represent its magnitude

• Two representations for zero: usually use the all 0s, i.e. 
000…000b

• Range for n bits: 
−(2n−1−1) ≤ S & M ≤ +(2n−1−1)

• Example: −7 ≤ 4-bit S & M ≤ +7; 24−1−1 = 7

Bit Pattern 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

Unsigned 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Sign & Magnitude +0 +1 +2 +3 +4 +5 +6 +7 –0 –1 –2 –3 –4 –5 –6 –7 
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1’s Complement - 1

• Leftmost ("most significant") bit represents the sign of 

the integer: 0 is +ve, 1 is –ve

• Remaining bits to represent its magnitude

• Negative numbers are the complement of the positive 
numbers

• Two representations for zero: usually use the all 0s, i.e. 
000…000b

• Range for n bits (same as S & M):
−(2n−1−1) ≤ 1's ≤ +(2n−1−1)
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1’s Complement - 2

• Example: −7 ≤ 4-bit 1’s ≤ +7; 24−1−1 = 7

• Encoding by example: for 4-bit 1’s Complement code, 
determine the code for −6

– for positive number, simply convert to binary (use only n-1 bits)

– for 4-bit, +6  0110b (note MSB is 0 for +ve number)

– complement each bit of +6 gives:

– −6  1001b (note MSB is 1)

Bit Pattern 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

Unsigned 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1's Complement +0 +1 +2 +3 +4 +5 +6 +7 –7 –6 –5 –4 –3 –2 –1 –0 

+6 = 0 1 1 0

1’s = 1 0 0 1
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2’s Complement - 1

• Leftmost ("most significant") bit represents the sign of 

the integer: 0 is +ve, 1 is –ve

• Remaining bits to represent its magnitude

• Only one bit pattern for zero

• Most useful property: X − Y = X + (−Y)

• no need for a separate subtractor (S & M) or carry-out 
adjustments (1's Complement)

• Range for n bits (one extra negative number):
−2n−1 ≤ 2's ≤ +(2n−1−1)
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2’s Complement - 2

• Example: −8 ≤ 4-bit 2’s ≤ +7; 24−1 = 8 and 24−1−1 = 7

• The 2’s codes for x and -x add to a power of 2
– 4-bit code: c+(-c)=24

– 8-bit code: c+(-c)=28

• Mathematically x+(-x) = 0, then 2n  0 giving:
(-c) = 0-c = 2n-c = [(2n-1)-c]+1
– Note that (2n-1) is 1111..1b, making subtraction a cinch!
– Roles of (-c) and c can be reversed
– 2n-c → Change Sign Rule I, [(2n-1)-c]+1 → Change Sign Rule II

Bit Pattern 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

Unsigned 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2's Complement +0 +1 +2 +3 +4 +5 +6 +7 –8 –7 –6 –5 –4 –3 –2 –1 
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2’s Complement - 3

• Change Sign Rule I
– Subtract from 2n

• Change Sign Rule II (recommended)
– Flip all the bits

– Add 1

• Change Sign Rule III
– Scan right to left to the first bit with value 1

– Flip all bits to its left

• Encoding 2’s:
– for positive number: simply convert to binary (use only n-1 bits, 

with MSB as 0)

– for negative number: apply either of the 3 change sign rules to 
the positive code
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2’s Complement - 4

• Encoding example: assuming 4-bit code, convert 
4, 6, -6, -7 into 2’s complement code

– positive numbers: simply convert to binary

• 4  0100b, 6  0110b; note MSB is 0

– negative numbers: convert its positive value to binary 
and apply sign change (any 1 rule)

• -6 → 6  0110b → flip all bits → 1001b → add 1 → 1010b; 
-6  1010b

• -7→ 7  0111b → flip all bits → 1000b → add 1 → 1001b; 
-7  1001b

• note MSB is 1 for negative numbers
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2’s Complement - 5

• Decoding 2’s:
– for positive number: leading 0 indicates value is positive –

simply convert to decimal
– for negative number: leading 1 indicates value is negative – apply 

change sign rule, then convert to decimal (remember the 
negative sign)

• Decoding example: assuming 4-bit 2’s code, determine 
the decimal equivalent of 0101b, 0111b, 1011b, 1110b
– positive numbers (MSB is 0): simply convert binary to decimal

• 0101b  5, 0111b  7
– negative numbers (MSB is 1): change sign to positive and then 

convert to decimal
• 1011b → flip all bits → 0100b → add 1 → 0101b  5; 1011b  -5
• 1110b → flip all bits → 0001b → add 1 → 0010b  2; 1110b  -2
• remember the negative sign
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Biased – m (Excess – m)

• Integer N represented by N + m

• For n bits, normally use m = 2n-1 (half range 2n/2)

• Like 2's complement, asymmetric

• Used when important to compare and sort numbers

• Example: for 4-bit code, m = 24-1 = 8

– 0 is represented by 0+8 = 8  1000b

– -8 is represented by -8+8 = 0  0000b (smallest)

– 7 is presented by 7+8 = 15  1111b (largest)

Bit Pattern 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

Unsigned 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Bias-8 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 
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Binary Coded Decimal (BCD)

• Use 4 bits (1 nibble) to represent each decimal digit –
direct binary-decimal conversion

• Easy for human to understand

• Wastes some bit patterns (can use one of them for sign)

• Not efficient for storage

Bit Pattern 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

Unsigned 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

BCD 0 1 2 3 4 5 6 7 8 9 - - - - - - 
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Summary of Integers
4-bit Code Representations

Bit Pattern 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

Unsigned 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Sign & Magnitude +0 +1 +2 +3 +4 +5 +6 +7 –0 –1 –2 –3 –4 –5 –6 –7 

1's Complement +0 +1 +2 +3 +4 +5 +6 +7 –7 –6 –5 –4 –3 –2 –1 –0 

2's Complement +0 +1 +2 +3 +4 +5 +6 +7 –8 –7 –6 –5 –4 –3 –2 –1 

Excess-8 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 

BCD 0 1 2 3 4 5 6 7 8 9 - - - - - - 
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Floating Point - 1

• All previous representations only encode 
integers (whole numbers)

• Floating point numbers are real numbers, i.e. 
with decimal point, in binary

– format: ±1.xxxxxx…  2yyyy…

• In computer, floating point numbers are stored 
with 3 data – sign, mantissa and exponent

– format: –1S  M  2E

• S=sign, M=mantissa (1.xxxx…), E=exponent (yyyy…)

• exponent is represented in bias-m
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Floating Point - 2

• Single-precision floating point 
numbers:
– occupy 32 bits, give approx range 

of ±10-38 … 1038

– exponent encoded in bias-127 (2n-

1 – 1)

• Double-precision floating 
point numbers:
– occupy 64 bits, give approx range 

of ±10-308 … 10308

– Exponent encoded in bias-1023 
(2n-1 – 1)

• More on this in tutorial

Bit No Size Field Name 

31 1 bit  Sign (S) 

23-30 8 bits Exponent (E) 

0-22 23 bits Mantissa (M) 

Bit No Size Field Name 

63 1 bit  Sign (S) 

52-62 11 bits Exponent (E) 

0-51 52 bits Mantissa (M) 
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ASCII

• ASCII  American Standard Code for 
Information Interchange

• Representation of non-numerical data, i.e. 
character encoding

• Use 7-bit code to represent 128 characters 
(including control characters, e.g. line feed)

• In byte data system, MSB set as 0 or used as 
parity bit for error checking
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ASCII Table
Low 

4 Bits 

High 

3 Bits 

000 001 010 011 100 101 110 111 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 
 

NUL 

SOH 

STX 

ETX 

EOT 

ENQ 

ACK 

BEL 

BS 

HT 

LF 

VT 

FF 

CR 

SO 

SI 
 

DLE 

DC1 

DC2 

DC3 

DC4 

NAK 

SYN 

ETB 

CAN 

EMT 

SUB 

ESC 

FS 

GS 

RS 

US 
 

SP 

! 

" 

# 

$ 

% 

& 

' 

( 

) 

* 

+ 

, 

- 

. 

/ 
 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

: 

; 

< 

= 

> 

? 
 

@ 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

O 
 

P 

Q 

R 

S 

T 

U 

V 

W 

X 

Y 

Z 

[ 

\ 

] 

& 

_ 
 

` 

a 

b 

c 

d 

e 

f 

g 

h 

i 

j 

k 

l 

m 

n 

o 
 

p 

q 

r 
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2’s Complement Addition - 1

• Adding n-bit 2’s Complement codes gives an n-
bit result

– use the coded representations, treating them as 
unsigned values (normal binary)

– add the values and discard any carry-out bit

• Overflow rule for addition:

– overflow occurs if (check MSB, i.e. sign bit)

• (+A) + (+B) = –C

• (–A) + (–B) = +C

• Overflow – result exceeds range
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2’s Complement Addition - 2

• Examples (4-bit 2’s code):

• 4 + 3 = ?

• 2 + (–8) = ? 

• 5 + 7 = ?

• above result shows 
overflow - incorrect

0 1 0 0  4

+ 0 0 1 1  3

0 1 1 1  7

0 0 1 0  2

+ 1 0 0 0  -8

1 0 1 0  -6

0 1 0 1  5

+ 0 1 1 1  7

1 1 0 0  -4
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2’s Complement Subtraction - 1

• Subtracting n-bit 2’s Complement codes gives an 
n-bit result

– use the coded representations, treating them as 
unsigned values (normal binary)

– change the sign and add

• X – Y = X + (–Y), i.e. obtain –Y from Y first

• Overflow rule for subtraction:

– overflow occurs if (check MSB, i.e. sign bit)

• (+A) – (–B) = –C

• (–A) – (+B) = +C
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2’s Complement Subtraction - 2

• Examples (4-bit 2’s code):

• 4 – 3 = 4 + (–3) = ?

• 5 – 7 = 5 + (-7) = ? 

• 2 – (–8) = 2 + 8 = ?

• there is no representation 
for +8 in 4-bit 2’s

• what will happen?

0 1 0 0  4

+ 1 1 0 1  -3

(1) 0 0 0 1  1

0 1 0 1  5

+ 1 0 0 1  -7

1 1 1 0  -2

0 0 1 0  2

+ ? ? ? ?  8

? ? ? ?  ?

• overflow detected
• system can’t handle
• need higher bit number
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Summary

• Computers are made up of logic circuits

– Logic operations AND, OR, NOT, XOR, NAND, NOR 
recapped

• Computers only understand 0s and 1s, therefore 
need to know binary and other related matters

– number systems recapped: binary, hexadecimal

– data representation: integers (unsigned, S&M, 1’s, 2’s, 
bias-m, BCD, floating point, ASCII)

– arithmetic on 2’s – most useful representation for 
integers
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