Background Knowledge

CO 2103 Assembly Language

Topics

- Digital Logic
- Number Systems
 - Binary, Octal, Decimal, Hexadecimal
 - Conversion between number systems
 - Basic arithmetic operations
- Data Representations
 - Integer signed/unsigned, sign & magnitude, 1's, 2's complement, BCD, biased
 - Real floating point
 - Text ASCII

Digital Logic

- Rationale
 - computers operate electronically, using Logic Gates
 - Logic Gates easily connected to perform more complex functions, form the basic "building blocks" of computers
- Logic Gates
 - electronic circuits, usually written as symbols
 - 1 output, 1 or more inputs
 - information (values) interpreted from inputs/output have/don't have electronic signal (voltage)
 - have voltage = ON = Logic 1
 - no voltage = OFF = Logic o

- Basic Logic operations:
 - AND, OR, NOT, Exclusive OR (XOR)

• AND

Illustration

Truth Table

• OR

Illustration

• **NOT**

• XOR

Truth Table

Inp	uts	Output	Inputs	Output	Inputs	Output
А	В	Q	A		=	: 1
0	0	0	в —//	$Q = A \oplus B$	В	
0	1	1	MIL/AN	NSI	В	SI
1	0	1		Symbol		
1	1	0		-		

Derived Logic Gates

• Derived Logic operations:

- NAND (Not-AND)
- NOR (Not-OR)

Logic Circuit

- Combine gates into logic circuits to perform useful functions
- Example: "Auto Lock" the doors if:
 - someone is in the car AND the doors are closed, OR
 - NO one is in the car AND the key is removed AND the doors are closed

Truth Table?

Number Systems - 1

- Decimal base 10
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Binary base 2
 - -0, 1
- Octal base 8
 - 0, 1, 2, 3, 4, 5, 6, 7
- Hexadecimal (Hex) base 16
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Number Systems - 2

- The base is the number of available symbols (0, 1, 2, ... A, B, ... F) to form the numbers
- Why do we have different number systems?
 - Decimal part of our life; we have 10 fingers?
 - Binary part of computer's life; 0 and 1 only
 - Hexadecimal convenient shorthand for binary
- All systems follow same rules of counting, i.e. when we reach the last symbol we add another 'digit' to the left
 - Decimal 0, 1, ... 9, 10, 11 ... 99, 100, ...
 - Binary 0, 1, 10, 11, 100, ... 111, 1000, ... 1111, 10000, ...
 - Hexadecimal 0, 1, ... F, 10, 11, ... 1F, 20, ... FF, 100, ...

Number Systems - 3

- The base is usually appended, in subscript, to the number to indicate which number system it belongs
 - Decimal numbers 24_d, 133_d, 1000₁₀, 3010₁₀
 - Binary numbers 10_b, 110_b, 1000₂, 10111₂
 - Hex numbers 24_h, 346_h, 1000₁₆, 3010₁₆
- If no base indicated, usually is decimal number

Place (Position) Value

- Decimal
- Binary
- Hexadecimal

Position	7	6	5	4	3	2	1	0
Value	107	106	10 ⁵	104	10 ³	10 ²	10 ¹	100
				10,000	1,000	100	10	1
Position	7	6	5	4	3	2	1	0
Value	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
	128	64	32	16	8	4	2	1
				-				
Position	7	6	5	4	3	2	1	0
Value	167	16 ⁶	16 ⁵	16 ⁴	16 ³	16 ²	16 ¹	16 ⁰
				65536	4096	256	16	1

- For base-n
 - each position to the left has n times value to its right
 - the value at x position is given by n^x
- Note the right most is smallest, and starts with n^o called least significant digit

Terms for Binary

- Bit binary digit
- Nibble group of 4-bit
- Byte group of 8-bit
- Word usually 16-bit (2 bytes); dependent on hardware
- Doubleword usually 32-bit
- Quadword usually 64-bit

- MSB most significant bit (left most non-zero)
- Bits are numbered from right: ...b₇b₆b₅b₄b₃b₂b₁b₀

Byte

b7

b6

b5

0

b4

0

b3

0

Nibble

b1

0

Bits

b0

b2

Decimal to Binary - 1

- Allocation based on position value
- Start with left most being the largest position value smaller than the number to be converted
- Example: convert 98_d into its binary equivalence

Position	7	6	5	4	3	2	1	0
Value	27	2 ⁶	2 ⁵	24	2 ³	2^2	2 ¹	20
	128	64	32	16	8	4	2	1
		1	1	0	0	0	1	0

- 128 > 98 > 64, start at pos 64 enter 1
- 98-64=34, next right position, 34>32, next at pos 32 enter 1
- 98-(64+32)=2, next right position, 16/8/4>2, next at pos 2 enter 1
- $-98_{d} \equiv 1100010_{b}$

CO 2103

Decimal to Binary - 2

- Successive division by 2 and concatenate the remainders from each step to form the resultant binary number
- Example: convert 98_d into its binary equivalence

		Remain	der
2	98	0	•
2	49	1	
2	24	0	
2	12	0	
2	6	0	
2	3	1	
	1		

 $-98_{d} \equiv 1100010_{b}$

Binary to Decimal

- Add all position values that have 1 on them
- Example: convert 1100010_b into its decimal equivalence

Position	7	6	5	4	3	2	1	0
Value	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
	128	64	32	16	8	4	2	1
		1	1	0	0	0	1	0

- 64+32+2=98
- $-1100010_{b} \equiv 98_{d}$
- In general, for a binary number ...fedcba_b
 - decimal = $a^2 2^0 + b^2 2^1 + c^2 2^2 + d^2 2^3 + e^2 2^4 + f^2 2^5 + \dots$
 - This is called Expansion Method

Decimal to Hex - 1

- Similar concept as decimal to binary
 - allocation based on position value
 - successive division by its base, 16 and concatenate the remainders
- Example: convert 1234_d to its hex equivalence

Position	7	6	5	4	3	2	1	0
Value	16 ⁷	16 ⁶	16 ⁵	164	16 ³	16 ²	16 ¹	16 ⁰
				65536	4096	256	16	1
						4	D	2

- 4096>1234>256, start at pos 256, but 1234/256=4.8, enter 4
- − 1234-(4*256)=210, 210>16, next at pos 16, but 210/16=13.1, enter D_h (=13)
- 1234-(4*256+13*16)=2, last at pos 1, enter 2
- $1234_d \equiv 4D2_h$

Decimal to Hex - 2

Conversion using successive division by 16

 Solving problem in previous slide

$$-1234_{\rm d} \equiv 4D2_{\rm h}$$

Hex to Decimal

- Similar concept with binary to decimal
 - Sum up products of the position value and the number on it
 - for a hex number ...fedcba_h
 - decimal = $a^{*16^{\circ}}+b^{*16^{1}}+c^{*16^{2}}+d^{*16^{3}}+e^{*16^{4}}+f^{*16^{5}}+...$
- Example: convert $4D2_h$ into decimal
 - for calculation, use $D_h \equiv 13$
 - $-4D2_{h} = 2*16^{o} + 13*16^{1} + 4*16^{2} = 2*1 + 13*16 + 4*256 = 1234$ $-4D2_{h} \equiv 1234_{d}$

Binary vs Hex

Hex is a convenient shorthand for Binary

0000	0	1000	8
0001	1	1001	9
0010	2	1010	Α
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

Binary to Hex

- Group bits by fours, starting from the right (i.e. least significant bits)
- Add leading zeros as necessary to complete the last group
- Convert each group to equivalent hex digits
- Example: convert 101001_b into hex

 $-0010,1001_{b} \rightarrow 0010_{b} \equiv 2_{h},1001_{b} \equiv 9_{h}$

 $-0010,1001_{b} \equiv 29_{h}$

Hex to Binary

- Expand each hex digit to the equivalent 4-bit binary form
- Example: convert 29_h into binary

$$-2_{\rm h} \equiv 0010_{\rm b}, \, 9_{\rm h} \equiv 1001_{\rm b}$$

 $-29_{\rm h} \equiv 0010,1001_{\rm b}$

Why Hex?

- We are used to decimal. So, we need decimal
- Computer only understand binary. So, we need binary
 - however, binary is difficult (too long) to read, write and remember; e.g. $1111010001111_b = 16015_d = 3E8F_d$, it is useful to read/write in shorter form (decimal or hexadecimal)
- But, why Hex?
- Try convert the four numbers into decimal and hex: 11001101_b , 100011_b , 10111001_b , 1111100_b
 - is it easier to convert between binary and hex than binary and decimal?
 - for the four numbers, which is hardest to read, remember and write?
 - with answers to the above two questions, is hex useful?

Addition

- Same ADD algorithm for all bases
 - add digit to digit, at same value position, from right to left (from lsb to msb)
 - when the sum reaches/exceeds the base, carry to left

Adding Decimal Numbers

- Example: 1234 + 567 = 1801
 - -4+7=11
 - 11 reaches/exceeds base 10
 - therefore carry (10) to the left
 - leaving 11 10 = 1 at original pos

Adding Binary Numbers

• Example: $10001111_b + 110110_b = 11000101_b$

Adding Hex Numbers

• Example: $1234_h + 3FB_h = 162F_h$

$$-4_{\rm h} + B_{\rm h} = 4 + 11 = 15 = F_{\rm h}$$

$$-3_{\rm h} + F_{\rm h} = 3 + 15 = 18 = 12_{\rm h}$$

- 18 reaches/exceeds base 16
- therefore carry (16) to left *carry*:

• leaving
$$18 - 16 = 2 = 2_h$$

$$-1_{h}+2_{h}+3_{h}=6_{h}$$

-1

Subtraction

- Same **SUBTRACT** algorithm for all bases
 - subtract digit by digit, at same value position, from right to left (from lsb to msb)
 - when there is not enough to subtract, borrow from the left, if left position has not enough to borrow, borrow from afar (next left to left)
 - each borrow has value equivalent to the base

Subtract Decimal Numbers

- Example: 1234 567 = 667
 - 4<7, borrow 1 (=10), giving 14 7 = 7
 - 3-1 (borrowed)<6, borrow 1 (=10), giving 12 - 6 = 6
 - 2-1 (borrowed)<5,
 borrow 1 (=10),
 giving 11 5 = 6

Subtract Binary Numbers

• Example: $11001010_{b} - 11001_{b} = 10110001_{b}$

Subtract Hex Numbers

- Example:
 - $AB31_h FE1_h = 9B5O_h$
 - -1-1=0
 - 3<E (≡14), borrow 1 (=16), giving (16+3) - 14 = 5
 - B (=11) 1 (borrowed) < F
 (≡15),
 borrow 1 (=16),
 - giving (16+11-1) − 15 = 11 (≡B)
 - A 1 (borrowed) = 9
 - mentally equate each hex to decimal, and vice versa

Terms in Addition and Subtraction

- X + Y = Z
 - X = Augend
 - -Y = Addend
 - -Z = Sum
 - other terms: Carry
- X Y = Z
 - X = Minuend
 - Y = Subtrahend
 - Z = Difference, or Remainder (less common)
 - other terms: Borrow

Data Representation

• Integers

- unsigned
- Signed
 - sign & magnitude
 - 1's complement
 - 2's complement
 - biased n
- BCD
- Real
 - floating point
- Text
 - ASCII

- Why Data Representation?
 - computers only understand
 o and 1
 - everything else need to be represented in Os and 1s
 - so called coding or encoding
 - the reverse process of encoding, i.e. determining the meaning of the Os and 1s, is called decoding

Unsigned Integer

- Natural numbers, only positive
- Binary number unmodified
- All bits represent the magnitude of the number
- Minimum is zero
- Maximum depends on the size of the binary code used
 - for 1 byte (8 bits), maximum number will be 1111111_b = $2^8 - 1 = 255$
 - for n bits code, maximum will be $2^n 1$
- Not the most useful though most computer support

owh@ieee.org

CO 2103

Signed Integer

- Signed integer is more important various representations:
 - sign & magnitude
 - 1's complement
 - 2's complement
 - biased m
- 2's complement most common implemented in most computers for arithmetic

Sign & Magnitude

- Leftmost ("most significant") bit represents the sign of the integer: 0 is +ve, 1 is -ve
- Remaining bits to represent its magnitude
- Two representations for zero: usually use the all os, i.e.
 000...000_b
- Range for n bits: $-(2^{n-1}-1) \le S \& M \le +(2^{n-1}-1)$
- Example: $-7 \le 4$ -bit S & M $\le +7$; $2^{4-1}-1 = 7$

Bit Pattern	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sign & Magnitude	+0	+1	+2	+3	+4	+5	+6	+7	-0	-1	-2	-3	-4	-5	-6	-7

- Leftmost ("most significant") bit represents the sign of the integer: 0 is +ve, 1 is -ve
- Remaining bits to represent its magnitude
- Negative numbers are the complement of the positive numbers
- Two representations for zero: usually use the all os, i.e.
 000...000_b
- Range for n bits (same as S & M): $-(2^{n-1}-1) \le 1$'s $\le +(2^{n-1}-1)$

• Example: $-7 \le 4$ -bit 1's $\le +7$; $2^{4-1}-1 = 7$

Bit Pattern	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1's Complement	+0	+1	+2	+3	+4	+5	+6	+7	-7	-6	-5	-4	-3	-2	-1	-0

- Encoding by example: for 4-bit 1's Complement code, determine the code for -6
 - for positive number, simply convert to binary (use only n-1 bits)
 - for 4-bit, $+6 \equiv 0110_b$ (note MSB is 0 for +ve number)
 - complement each bit of +6 gives: $+6 = 0 \quad 1 \quad 1 \quad 0$
 - $-6 \equiv 1001_{b}$ (note MSB is 1)

$$1'S = 1 \quad O \quad O \quad 1$$

- Leftmost ("most significant") bit represents the sign of the integer: 0 is +ve, 1 is -ve
- Remaining bits to represent its magnitude
- Only one bit pattern for zero
- Most useful property: X Y = X + (-Y)
- no need for a separate subtractor (S & M) or carry-out adjustments (1's Complement)
- Range for n bits (one extra negative number): $-2^{n-1} \le 2$'s $\le +(2^{n-1}-1)$

• Example: $-8 \le 4$ -bit 2's $\le +7$; $2^{4-1} = 8$ and $2^{4-1}-1 = 7$

Bit Pattern	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2's Complement	+0	+1	+2	+3	+4	+5	+6	+7	-8	-7	-6	-5	-4	-3	-2	-1

- The 2's codes for x and -x add to a power of 2
 - 4-bit code: $c+(-c)=2^4$
 - 8-bit code: $c+(-c)=2^8$
- Mathematically x+(-x) = 0, then $2^n \equiv 0$ giving: $(-c) = 0-c = 2^n-c = [(2^n-1)-c]+1$
 - Note that $(2^{n}-1)$ is $1111..1_{b}$, making subtraction a cinch!
 - Roles of (-c) and c can be reversed
 - 2ⁿ-c → Change Sign Rule I, $[(2^{n}-1)-c]+1$ → Change Sign Rule II

- Change Sign Rule I
 - Subtract from 2ⁿ
- Change Sign Rule II (recommended)
 - Flip all the bits
 - Add 1
- Change Sign Rule III
 - Scan right to left to the first bit with value 1
 - Flip all bits to its left
- Encoding 2's:
 - for positive number: simply convert to binary (use only n-1 bits, with MSB as 0)
 - for negative number: apply either of the 3 change sign rules to the positive code

- Encoding example: assuming 4-bit code, convert 4, 6, -6, -7 into 2's complement code
 - positive numbers: simply convert to binary
 - $4 \equiv 0100_{b}$, $6 \equiv 0110_{b}$; note MSB is 0
 - negative numbers: convert its positive value to binary and apply sign change (any 1 rule)
 - $-6 \rightarrow 6 \equiv 0110_{b} \rightarrow \text{flip all bits} \rightarrow 1001_{b} \rightarrow \text{add } 1 \rightarrow 1010_{b};$ - $6 \equiv 1010_{b}$
 - $-7 \rightarrow 7 \equiv 0111_{b} \rightarrow \text{flip all bits} \rightarrow 1000_{b} \rightarrow \text{add } 1 \rightarrow 1001_{b};$ $-7 \equiv 1001_{b}$
 - note MSB is 1 for negative numbers

- Decoding 2's:
 - for positive number: leading o indicates value is positive simply convert to decimal
 - for negative number: leading 1 indicates value is negative apply change sign rule, then convert to decimal (remember the negative sign)
- Decoding example: assuming 4-bit 2's code, determine the decimal equivalent of 0101_b , 0111_b , 1011_b , 1110_b
 - positive numbers (MSB is o): simply convert binary to decimal
 - $0101_b \equiv 5, 0111_b \equiv 7$
 - negative numbers (MSB is 1): change sign to positive and then convert to decimal
 - $1011_b \rightarrow \text{flip all bits} \rightarrow 0100_b \rightarrow \text{add } 1 \rightarrow 0101b \equiv 5; 1011_b \equiv -5$
 - $1110_b \rightarrow \text{flip all bits} \rightarrow 0001_b \rightarrow \text{add } 1 \rightarrow 0010b \equiv 2; 1110_b \equiv -2$
 - remember the negative sign

Biased – m (Excess – m)

- Integer N represented by N + m
- For n bits, normally use $m = 2^{n-1}$ (half range $2^n/2$)
- Like 2's complement, asymmetric
- Used when important to compare and sort numbers
- Example: for 4-bit code, $m = 2^{4-1} = 8$
 - o is represented by $0+8 = 8 \equiv 1000_{b}$
 - -8 is represented by $-8+8 = 0 \equiv 0000_b$ (smallest)
 - 7 is presented by $7+8 = 15 \equiv 1111_b$ (largest)

Bit Pattern	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Bias-8	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7

Binary Coded Decimal (BCD)

- Use 4 bits (1 nibble) to represent each decimal digit direct binary-decimal conversion
- Easy for human to understand
- Wastes some bit patterns (can use one of them for sign)
- Not efficient for storage

Bit Pattern	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
BCD	0	1	2	3	4	5	6	7	8	9	-	-	-	-	-	-

Summary of Integers 4-bit Code Representations

Bit Pattern	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sign & Magnitude	+0	+1	+2	+3	+4	+5	+6	+7	-0	-1	-2	-3	-4	-5	-6	-7
1's Complement	+0	+1	+2	+3	+4	+5	+6	+7	-7	-6	-5	-4	-3	-2	-1	-0
2's Complement	+0	+1	+2	+3	+4	+5	+6	+7	-8	-7	-6	-5	-4	-3	-2	-1
Excess-8	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
BCD	0	1	2	3	4	5	6	7	8	9	-	-	-	-	-	-

Floating Point - 1

- All previous representations only encode integers (whole numbers)
- Floating point numbers are real numbers, i.e. with decimal point, in binary

- format: $\pm 1.xxxxx... \times 2^{yyy...}$

• In computer, floating point numbers are stored with 3 data – sign, mantissa and exponent

– format: $-1^{S} \times M \times 2^{E}$

- S=sign, M=mantissa (1.xxxx...), E=exponent (yyyy...)
- exponent is represented in bias-m

Floating Point - 2

- Single-precision floating point numbers:
 - occupy 32 bits, give approx range of $\pm 10^{-38} \dots 10^{38}$
 - exponent encoded in bias-127 ($2^{n-1}-1$)
- Double-precision floating point numbers:
 - occupy 64 bits, give approx range of $\pm 10^{-308} \dots 10^{308}$
 - Exponent encoded in bias-1023 $(2^{n-1}-1)$
- More on this in tutorial

Bit No	Size	Field Name				
31	1 bit	Sign (S)				
23-30	8 bits	Exponent (E)				
0-22	23 bits	Mantissa (M)				

Bit No	Size	Field Name				
63	1 bit	Sign (S)				
52-62	11 bits	Exponent (E)				
0-51	52 bits	Mantissa (M)				

ASCII

- ASCII = American Standard Code for Information Interchange
- Representation of non-numerical data, i.e. character encoding
- Use 7-bit code to represent 128 characters (including control characters, e.g. line feed)
- In byte data system, MSB set as o or used as parity bit for error checking

ASCII Table

Low 4 Bits	High 3 Bits								
	000	001	010	011	100	101	110	111	
0000	NUL	DLE	SP	0	@	Р		р	
0001	SOH	DC1	!	1	A	Q	a	q	
0010	STX	DC2	"	2	В	R	b	r	
0011	ETX	DC3	#	3	C	S	c	s	
0100	EOT	DC4	\$	4	D	Т	d	t	
0101	ENQ	NAK	%	5	Е	U	e	u	
0110	ACK	SYN	&	6	F	v	f	v	
0111	BEL	ETB	,	7	G	W	g	w	
1000	BS	CAN	(8	Н	X	h	x	
1001	HT	EMT)	9	Ι	Y	i	У	
1010	LF	SUB	*	:	J	Z	j	z	
1011	VT	ESC	+	;	K	[k	{	
1100	FF	FS	,	<	L	\	1		
1101	CR	GS	-	=	М]	m	}	
1110	SO	RS		>	N	&	n	~	
1111	SI	US	/	?	0	_	о	DEL	

2's Complement Addition - 1

- Adding n-bit 2's Complement codes gives an nbit result
 - use the coded representations, treating them as unsigned values (normal binary)
 - add the values and discard any carry-out bit
- Overflow rule for addition:
 - overflow occurs if (check MSB, i.e. sign bit)
 - (+A) + (+B) = -C
 - (-A) + (-B) = +C
- Overflow result exceeds range

2's Complement Addition - 2

- Examples (4-bit 2's code):
- 4 + 3 = ?0 0 1 0 \equiv 4 1 1 3 +0 0 \equiv 1 0 1 1 \equiv 7 • 2 + (-8) = ?0 0 1 0 2 \equiv -8 +1 0 0 0 \equiv -6 1 1 0 0 \equiv
- 5+7=?
 - 0 1 0 1 5 \equiv + 1 1 7 0 1 \equiv 1

1 0 0 \equiv -4

• above result shows overflow - incorrect

2's Complement Subtraction - 1

- Subtracting n-bit 2's Complement codes gives an n-bit result
 - use the coded representations, treating them as unsigned values (normal binary)
 - change the sign and add
 - X Y = X + (-Y), i.e. obtain -Y from Y first
- Overflow rule for subtraction:
 - overflow occurs if (check MSB, i.e. sign bit)
 - (+A) (-B) = -C
 - (-A) (+B) = +C

2's Complement Subtraction - 2

- Examples (4-bit 2's code):
- 4 3 = 4 + (-3) = ?0 1 0 0 \equiv 4 0 1 1 1 -3 + \equiv (1)0 1 1 0 0 \equiv
- 5-7=5+(-7)=?
- 1 0 1 5 0 \equiv +1 0 0 1 \equiv -7 1 1 1 -2 0 \equiv

- 2 (-8) = 2 + 8 = ?
 - 0 0 1 0 2 \equiv ? ? ? ? 8 + \equiv ? ? ? ? ? =
- there is no representation for +8 in 4-bit 2's
- what will happen?

Summary

- Computers are made up of logic circuits
 - Logic operations AND, OR, NOT, XOR, NAND, NOR recapped
- Computers only understand os and 1s, therefore need to know binary and other related matters
 - number systems recapped: binary, hexadecimal
 - data representation: integers (unsigned, S&M, 1's, 2's, bias-m, BCD, floating point, ASCII)
 - arithmetic on 2's most useful representation for integers