CO 2103 Introduction to
Assembly Language

Ong Wee Hong

, IPTHOAS G.38 or 2.34
Universiti Brunei Darussalam

owh@ieee.org CO 2103

mailto:owh@ieee.org

Acknowledgement

The content of the slides used in this course are
extracted from various sources including those
quoted under references in following slides,
teaching material from UBD lecturers who had
taught this course before and from the material
received from the author’s course of studying

owh@ieee.org CO 2103

References - 1

« Books

— Assembly language : step-by-step by Jetf Duntemann

— Assembly language for Intel-based computers by Kip
R. Irvine

— Structured Computer Organization by Andrew S.
Tanenbaum

— How Computers Work by Ron White, Downs,
Timothy Edward

— How computers really work by Milind S. Pandit

— IBM microcomputer assembly language : beginning to
advanced by Godfrey J. Terry

owh@ieee.org CO 2103 3

References - 2

- Web pages — assembly language programming
— Assembly language from Wikipedia
 http://en.wikipedia.org/wiki/Assembly_language

— The Place on the Internet to Learn Assembly at
Webster

e http://webster.cs.ucr.edu/
— Assembly Language at OSdata.com

 http://www.osdata.com/topic/language/asm/asmi
ntro.htm

owh@ieee.org CO 2103 4

References - 3

- Web pages — assembly language programming
— The Art of Assembly Language Programming by
Randall Hyde

 http://webster.cs.ucr.edu/AoA/DOS/AoADosInde
x.html

— Complete 8086 instruction set

e http://www.emu8086.com/assembly_language_tutori
al_assembler_reference/8086_instruction_set.html

— documentation for 8086 assembler and emulator

e http://www.emu8086.com/assembly_language_tutori
al_assembler_reference/

owh@ieee.org CO 2103

References - 4

« Web pages - hardware

— About CPUs at Karbosguide.com

e http://www.karbosguide.com/hardware/module3a1.ht
m

— Birth of a Chip by Linley Gwennap
o http://www.byte.com/art/9612/sec6/art2.htm

— Chronology of Personal Computers by Ken Polsson
e http://www.islandnet.com/~kpolsson/comphist/

owh@ieee.org CO 2103

References - 5

« Web pages — useful reading
— flat assembler
o http://flatassembler.net/

— Unix Assembly Language Programming by G Adam
Stanislav

e http://www.int80h.org/

— PowerPC Assembly Programming on the Mac Mini by
Pramode C.E

e http://linuxgazette.net/117/pramode.html
— PIC Assembly Language for the Complete Beginner

e http://www.ai.uga.edu/mc/microcontrollers/pic/picas
sem2004.pdf

owh@ieee.org CO 2103

Course Content

e Introduction

« Background Knowledge
— Digital Logic, Data Representation

« Intel 8086 Microprocessor
« 8086 Assembly vs Machine Language

» Basics of 8086 Assembly Language
Programming

e More into Assembly Language Programming ...

owh@ieee.org CO 2103

Course Management

« Learning activities (subject to alternative
arrangements)

— Lectures, laboratories and tutorials
e 10:10-12:00am, FSM 1.21, Tuesday
e 10:10-12:00am, FSM 1.19, Saturday
o Assessment scheme
— Examination 70% - 120 min exam in Nov/Dec
— Coursework 30% - few problem solving

owh@ieee.org CO 2103

What is Assembly Language (AL)?

« Machine-specific programming language
— an assembly language is a low-level language for

programming computers. It implements a symbolic
representation of the numeric machine codes and
other constants needed to program a particular CPU
architecture. This representation is usually defined by
the hardware manufacturer, and is based on
abbreviations (called mnemonics) that help the
programmer remember individual instructions,
registers, etc. An assembly language is thus specific to
a certain physical or virtual computer architecture (as
opposed to most high-level languages, most of which
are portable). [quoted from Wikipedia]

owh@ieee.org CO 2103 10

Why learn AL?

« Computers don’t understand our languages;
neither Java, C, Pascal, etc

« Someone has got to know their languages to be
able to ask them to work

« Gain insight into hardware concepts and learn
how a processor works

 Direct control over hardware for efficiency
» To program embedded systems
« More ...

owh@ieee.org CO 2103 11

Why not just AL?

« After completion of this course, try code one of the large
program you have created in Java (or other language) in
AL and you will have the answer to the above question

« Not portable, i.e. processor-specific

« Normally include AL in HLL. When additional
performance is required for high-level languages (HLL),
AL can enhance the performance of these languages with
small, fast and powerful AL code modules. This allows
the HLL to target critical areas of their code in a very
efficient and convenient manner.

owh@ieee.org CO 2103 12

AL vs HLL

Assembly Language

High Level Language

Not intuitive (c.f. English)

Intuitive (English like)

Uses instructions specific to the
processor

Uses commands and rules of compiler
(C++, Java, etc)

1-to-1 correspondence to Machine
Language ML (zeros and ones) — direct
conversion

Each command may be converted to
few AL instructions before converting
to ML

Knowledge of architecture of
processor essential to program in AL

Knowledge of processor architecture
not required to program in HLL

Not portable (specific processor)

Portable (any processor)

Can be efficient and small in size

Easier to program and shorter
program (less HLL command lines)

owh@ieee.org

CO 2103

13

Sample AL

Start proc
mov
mov
mov
mov

mov
int

call
MainLoop:

mov
VRT:
in
test
jnz

call

mov

NoVRT:
in
test
jz

ax, Odata mov
ds, ax int
£s, ax iz
[SegCode], ax
mov
ax,0013h ;changes to 320x200x256 graphics mode int
10h neg
cmp
WriteLines e
mov
dx, 3dah int
mov
al, dx int
al, 8
VRT wait until Verticle Retrace starts Start endp
end Start
RotatePalette
dx, 3dah
al, dx
al,8
NoVRT -wait until Vertiele Retrace ends

-s0 that we dont rotate more than once a frame

owh@ieee.org CO 2103

Program (8086

ah, 1 wait for a keypress
16h
MainLoop

ah, 0

16h -get the key
¢s: [Pal TndexVel]

al,””

MainLoop

ax,0003h :changes to 80x25x16 text mode
10h

ax,4c00h :terminate process and

21h -return control to DOS

14

Into Hardware ...

Before we are able to make sense out of what we
have mentioned in previous slides and what we will
be learning, we need to have some basic knowledge

of hardware

owh@ieee.org CO 2103 15

Hardware and Software - 1

« Hardware
— parts you can touch
« CPU, keyboard, screen, circuit boards, wires, etc.
— physical components

« Software
— programs
» consist of instructions telling the computer what to do

— ability to run different programs makes the computer
a General Purpose machine

— abstract components

owh@ieee.org CO 2103 16

Hardware and Software - 2

o Software without the hardware to execute is
useless

« Software gives intelligence to the hardware

owh@ieee.org CO 2103 17

From the big picture ...

We will look at the hardware organization of a

microcomputer or personal computer (PC) to begin
with ...

owh@ieee.org CO 2103 18

General Microcomputer
Organization - 1

i w R

1 I
I | MICROPROCESSOR ROM |} || INPUT
1 1

POR
MEMORY
i I I § S § S
lock
INPUTS ouU
MEMORY-MAPP! MAP
ES

owh@ieee.org CO 2103

19

General Microcomputer
Organization - 2

e Microprocessor or Central Processing Unit (CPU)
— can be considered as the brain of the system. It controls all
activities within the system according to instructions given to it.
« Memory

— RAM (Random Access Memory) — volatile read/write memory
for storing information being processed

— ROM (Read Only Memory) — non-volatile read only memory for
storing system programs

owh@ieee.org CO 2103 20

General Microcomputer
Organization - 3
e 1O Ports

— Input Port - the point of the system where all external
data/information enter the system. External input
devices (e.g. keyboard) are connected to input ports.

— Output Port - the point of the system where the
data/information are sent to the external world.
External output devices (e.g. printer) are connected to
output ports.

— IO-Mapped Devices use different address space from
memory

— Memory-Mapped Devices are external devices that
make use of memory address space

owh@ieee.org CO 2103 21

General Microcomputer
Organization - 4

 Buses
— cable, group of wires, signals

— Data Bus — where uP communicates data/information
with other devices

— Address Bus — where uP sends the address of a device
to select it

— Control Bus — where control signals (synchronization,
10 signals, interrupt) are communicated between uP
and devices

owh@ieee.org CO 2103 22

uComputer in Action — Read Data

CPU

@® #01

ADDRESS

® Read
CON]‘R0>

® Data
< DATA

PORT #01

INPUT
DEVICE

e.g. keyboard

owh@ieee.org

CO 2103

23

Into the important part ...

Knowing the general organization of the PC, we
now look into what made up its CPU ...

owh@ieee.org CO 2103

24

CPU Components - 1

Internal Bus

REGISTERS

| T

INTERFACE

CONTROL
ALU ——/ UNIT) To external buses
owh@ieee.org CO 2103 25

CPU Components - 2

Register Array (RA) or Registers
— provide fast storage for immediate processing

Arithmetic and Logic Unit (ALU)

— performs arithmetic (+, —, x, +) and logic (NOT, OR,
AND, etc) operations

Control Unit (CU)

— co-ordinates the different components of the CPU

Interftace

— connects CPU signals to external devices (memory
and I10)

owh@ieee.org CO 2103

CPU in Action - 1

« CPU does only one thing for all time that it is
alive:

— execute programs

It can only be as useful as its programs, i.e. what
it is programmed to do

« Program execution has 3 phases, called Fetch-
Execute cycle:
— Fetch an instruction — from memory
— Decode the instruction — in Control Unit
— Execute the instruction

owh@ieee.org CO 2103 27

CPU in Action - 2

CPU

@ Decode

® Execute

@ Fetch an instruction

/I BUSES I\
N 7

MEMORY

owh@ieee.org

CO 2103

28

Available CPU

« There are many different CPU designed by different
companies

« John Bayko has compiled a list of “Great
Microprocessors of the Past and Present”

« Examples are Intel 80x86, Intel P, Motorola 68k, Zilog
Z-8k, PowerPC, Microchip PIC

 Different family has different details in their internal
structure

 Different family uses different set of instructions, i.e.
they speak different languages

owh@ieee.org CO 2103 29

http://jbayko.sasktelwebsite.net/cpu.html

Heading back to AL ...

The brain of the PC is the CPU and there are many
different CPU available in the market and they
speak different languages ...

owh@ieee.org CO 2103 30

Sample AL Programs - 1

Zilog Z80

.nolist
#include “ti83plus. inc”
ttdefine ProgStart $9D95
.list
.org ProgStart — 2
.db t2ByteTok, tAsmCmp
b call(ClrLCDFull)

1d hl, 0
1d (PenCol), hl
1d hl, msg

b call(PutS)
b call(NewLine)

ret

: Display the text

msg:
.db “Hello world!”, 0
. end

.end

owh@ieee.org

Intel 8086

DATA SEGMENT
MSG DB “Hello, World!”,”§”
DATA ENDS

CODE SEGMENT
ASSUME CS:CODE, DS:DATA

START:
MOV AX, DATA INTILIZE
MOV DS, AX
MOV AH, 09H :PRINT STRING
LEA DX, MSG
INT 21H

STOP:
MOV AX, 4CO00H - TERMINATE
INT 21H

CODE ENDS

END START

CO 2103

31

Sample AL Programs - 2

M 1 68 % This function waits until busy-flag goes low.
otorola 09 FLthuaits

move.w 40, -(aT)

NAME hello_world wait_loopl:
TITL ' This program prints on TXI16W move.w led status, d0
and. v #lcd busy,d0
% Some status and command codes and addresses for the LCD bne. s vait loopl
led clear = $1
lcd busy = $80
move.w (a7)+,d0
led instr = $100000
rts
led status = $100000
lcd data = $100002
% This procedure prints a string to the current cursor position.
rseg main F LCDprint:
nove. | al,-(a7)
% This is the programs entry point, move. 1 8(aT),al
start:

print_loopl:
bsr F LCDwait

bs F LCDclr
st _LCDelr move. b (a0)+,d0

pea text(pc)

) beg.s print _eos

bsr F_LCDprint

eddq £, 5p nove.w d0,lcd data
bra.s print _loopl

% Eternal loop! This is where you have to turn off and reboot the TX16W.

suicide: print_eos:

bra suicide nove. | (al)+, a0
rts

% This procedure initialise the LCD-screen

F LCDelr:
text:

bsr.s F LCDwait))
de.w Hello World ,0

move. w #lcd clear,lcd instr

rts
end

owh@ieee.org CO 2103

ample AL Programs - 3

[] L] .
Microchip PIC16184
: Program to send “Hello World!” to a PC COM port
TXLOOP

MSGTXT ~ ADDWF PCL, f ; offset added to PCL

RETLW $48 D

RETLW $65 cel

RETLW $6C 0

RETLW $6C 0

RETLW $6F s o)

RETLY $20 P CLRBIT

RETLW $57 W

RETLV $6F Sy TESTDONE

RETLW $72 o

RETLW $6C 0l

RETLVW $64 o

RETLW $21 Y

RETLW $0D ; carriage return

RETLW $0A . line feed

RETLW $00 . indicates end
0UTHSG MOVFF MSGPTR ; put ‘W into message pointer WSECT
MSGLOOP MOVF MSGPTR, W . put the offset in "W

CALL MSGTXT ; returns ASCII character in "W WICRO4

ADDLY 0 . sets the zero flag if W =0

BTFSC STATUS, Z ; skip if zero bit not set

RETURN o finished if W =10

CALL OUTCH ; output the character

INCF MSGPTR, f
GOTO MSGLOOP

; point at next

. more characters

owh@ieee.org

MOVWF TXREG
NOVLW 8

MOVWF BITS
BSF PORTA, 2
NOVLE §31
CALL MICRO4
RRF TXREG, f
BTFSC STATUS, C
GOTO CLRBIT
BSF PORTA, 2
GOTO TESTDONE
BCF PORTA, 2
NOP

DECFSZ BITS, f
GOTO TXLOOP
WOVLE $34
CALL MICRO4
BCF PORTA, 2
MOVLE $68
CALL MICRO4
RETURN

WOVLE $F9

NOP

ADDLW $FF
BTFSS STATUS, Z
GOTO MICRO4
RETURN

coput W ointo transmit register

. eight bits of data

;a counter for bits

: start bit (flipped remember), RA2
o 49 decimal, delay time

;owait 49 x 4 = 196 microseconds

o roll rightmost bit into carry
©if carry 0 want to set bit, (a low)
. else clear bit, (a high)

. #5V on pin 1 (RA2)

; are we finished?

© 0V oon pin 1 (RA2)

: to make both options 12 micosec
o1 less data bit, skip when zero
o more bits left, delay for this one
o full 208 microsec this time

. delay for last data bit

. 0V, (a high) for stop bits

. decimal 104 delay for 2 stop bits

o allow for 4 microsec overhead.

(2 for CALL)

; subtract 1 from W
. skip when you reach zero

. more loops

AL programs are hardware dependent

CO 2103

33

Sample Instruction Sets - 1

Motorola 6809 Instruction Set: Intel 8086/80186/80286/80386,/80486 Instruction Set:
ABX - Add to Index Register AAA - Ascii Adjust for Addition
ADCa s — Add with Carrv AAD — Ascii Adjust for Division
ADDa s — Add AAM — Ascii Adjust for Multiplication

AAS — Ascii Adjust for Subtraction
ADC — Add With Carry
ADD — Arithmetic Addition

ADDD s — Add to Double ace
ANDa s — Logical AND

ANDCC s - Logical AND with CCR AND — Logical And
ASL d - Arithmetic Shift Left ARPL - Adjusted Requested Privilege Lewel of Selector (286+ FM)
ASLa — Arithmetie Shift Left BOUND — Arrayv Index Bound Check (80188+)
ASRE d — Arithmetic Shift Right BSF - Bit Scan Forward (386+)
ASRa — Arithmetie Shift Right BSR — Bit Scan Reverse (386+)
BCC m - Branch if Carry Clear BSWAP - Byte Swap F?Sﬁ_)
BCS m - Branch if Carry Set ET - Bit Test (386+) _
E - h if Eoual BTIC - Bit Test with Compliment (386+)
BGg = Bmmi ?f una A BTR - Bit Test with Reset (386+)
m — Praneh 1t Lreat/bqua BIS - Bit Test and Set (386+)
BGT m - Branch if Greater Than CALL - Procedure Call
BHI m — Branch if Higher CBW - Convert Byvte to Word
BHS m - Branch if Higher/Same CDQ - Convert Double to Quad (386+)
BITa s — Bit Test accumulator CLC - Clear Carry
BLE m - Branch if Less/Equal CLD - Clear Direction Flag o
B0 5 - Brach it Lovr LGl et s o)
, - : Swi : + privi
EBLS m — Branch if Lower/Same p—— car lask Swite © a8 privisese
CMC — Comnlement Carrv Flag
[| [|
| |
: | | | |
owh@ieee.org . CO 2103 . 34

Sample Instruction Sets - 2

Microchip PIC16f84 Instruction Set: Zilog Z80 Instruction Set:
addlw k — Add literal to W aIc ADD WITH CARRY
addwf £,d - Add W and f 4D ADD
andlw k — AND literal and W AND LOGICAL AND
andwf £,d ~ AND ¥ and £ E%L EELTE; ROUTINE
bef £,b — Bit clear f CCE COMPLEMENT CARRY FLAG
bsf £f.b — Bit set f cP COMPARE
btfse f,b — Bit test, skip next instruction if clear CPD COMPARE AND DECREMENT
btfss f,b — Bit test, skip next instruction if set CPDR COMPARE DECREMENT AND REPEAT
call k — Call subroutine CPL COMPARE AND INCREMENT
clrf £ — Clear f CPIR COMPARE INCREMENT AND REPEAT
clrw — Clear W CPL COMPLEMENT ACCUMULATOR
clrwdt — Clear watchdog timer DAA DECIMAL ADJUST ACCUMULATOR
comf f,d — Complement f DEC DECREMENT
decf f,d — Decrement f DI DISAELE INTERRUPTS
decfsz f,d — Decrement f, skip if zeroc f DINZ DEC JUMP NON-ZERO
goto k — Goto address k EI ENAELE INTERRUPTS
inef f£.d — Increment f EX EXCHANGE REGISTER PAIR
incfsz £,d — Increment f, skip if zero EXX EXCHANGE ALTERNATE REGISTERS
iorlw k — Incl. OR literal and W HALT HALT, WAIT FOR INTERRUPT OR RESET
iorwf f,d — Inclusive OR W and f % R;E?l{;‘géuﬂgggq‘ﬁ L2
movf £,d — Move £ _ INC INCREMENT
movlw k — Move Literal to W —— TATITT mme T mne

owh@ieee.org CO 2103

35

AL Bad and Good News

« Bad news
— AL is machine-specific (or CPU-specific)
— There are many different CPU available
— Too heavy to learn AL for all of them
e Good news
— We will only learn AL for Intel 80x86 CPU
— It’s easy to learn the others once knowing one

owh@ieee.org CO 2103

36

[evels of Abstraction - 1

« Generalize a computer
into different levels

e From the programmer's
point of view:

— High-Level Programming
Languages

— Assembly Language
— Machine Code
— Microcode (CISC)

— Logic Gates

owh@ieee.org

Assembly
(Symbolic)

Machine Code
(1/0)

Microcode
(ON/OFF)

Logic Gates
(ON/OFF)

CO 2103

Programmer

Algorithm
(sentences)

High Level Programming Language
(words)

MVI AL, n

Human Language

High Level

SOFTWARE

10110000

Low Level

Machine Language

" unnn

HARDWARE

il "l "}

37

Levels of Abstraction - 2

e From the User's Point-of-View: vser
— Applications Software Application
« Word Processor, Spreadsheet, etc. oS
— Operating System Software
+ UNIX, MS-DOS, 0S/2, VMS, etc. -

— Hardware
« Mainframe, Workstation, Personal Computer
« Applications are written for a specific Operating System

— Operating System shields the Application from the Hardware

— Different combinations of Hardware Platform, Operating System
and Applications are possible

owh@ieee.org CO 2103 38

High Level vs Low Level
Programming

« Working at higher levels ...
— Programming is easier
— Programs are more portable (hardware independent)
— Little or no knowledge of hardware required
« Working at Lower Levels ...
— More control over the machine
— Unrestricted access to hardware
— Requires specific knowledge of target hardware
— Possible to write small, very efficient programs

owh@ieee.org CO 2103 39

Translation Programs - 1

« Rationale
— CPU is an electronic device (hardware)
— CPU only understands electronic signals

— CPU uses ON (1) or OFF (0) as electronic signals;
called logic signals

— CPU only understands 0 and 1

— Native language of all CPU is the Machine Language
(Machine Code) made up of string of 0s and 1s

— Programs written, not in Machine Codes, must be
translated into Machine Codes for storage and for the
CPU to execute

owh@ieee.org CO 2103 40

Translation Programs - 2

e Compiler
— Translates High-level language (HLL) file to file of Machine Code
instructions
— HLLs are independent of CPU type
— Examples of compiled languages: C/C++, Pascal, FORTRAN
e Assembler
— Translates Assembly Language file to Machine Code file
— Assembly Language is specific to CPU type

— Assembly Language is the lowest level of program that people

will write as it has one-to-one correspondence with Machine
Code

owh@ieee.org CO 2103 41

Translation Programs - 3

o Interpreter

— Translates HLL instructions to Lower Level instructions on-the-
fly (at "run-time")

— Generates equivalent Machine Code instructions for each HLL
instruction

— Examples: LISP, Prolog, BASIC, Java Bytecode

« Compilers and Assemblers work on whole files at a time
and generate a separate executable version of the
program, while Interpreter does not generate a separate
Machine Code executable version of program

« Interpreted programs generally run much slower than
machine code programs (compiled or assembled)

owh@ieee.org CO 2103 42

Summary

« PC and CPU are electronic devices
e CPU only understands os and 1s, i.e. Machine Code

« AL islow-level programming that has one-on-one
correspondence with Machine Code

« AL is machine-specific (CPU-specific)

« AL is closest to the hardware (c.f. HLL) and allow
efficient control of the hardware

« Some insight into PC and CPU hardware

« All programming languages require translation into
Machine Code

owh@ieee.org CO 2103 43

	Slide 1: CO 2103 Introduction to Assembly Language
	Slide 2: Acknowledgement
	Slide 3: References - 1
	Slide 4: References - 2
	Slide 5: References - 3
	Slide 6: References - 4
	Slide 7: References - 5
	Slide 8: Course Content
	Slide 9: Course Management
	Slide 10: What is Assembly Language (AL)?
	Slide 11: Why learn AL?
	Slide 12: Why not just AL?
	Slide 13: AL vs HLL
	Slide 14: Sample AL Program (8086)‏
	Slide 15: Into Hardware …
	Slide 16: Hardware and Software - 1
	Slide 17: Hardware and Software - 2
	Slide 18: From the big picture …
	Slide 19: General Microcomputer Organization - 1
	Slide 20: General Microcomputer Organization - 2
	Slide 21: General Microcomputer Organization - 3
	Slide 22: General Microcomputer Organization - 4
	Slide 23: uComputer in Action – Read Data
	Slide 24: Into the important part …
	Slide 25: CPU Components - 1
	Slide 26: CPU Components - 2
	Slide 27: CPU in Action - 1
	Slide 28: CPU in Action - 2
	Slide 29: Available CPU
	Slide 30: Heading back to AL …
	Slide 31: Sample AL Programs - 1
	Slide 32: Sample AL Programs - 2
	Slide 33: Sample AL Programs - 3
	Slide 34: Sample Instruction Sets - 1
	Slide 35: Sample Instruction Sets - 2
	Slide 36: AL Bad and Good News
	Slide 37: Levels of Abstraction - 1
	Slide 38: Levels of Abstraction - 2
	Slide 39: High Level vs Low Level Programming
	Slide 40: Translation Programs - 1
	Slide 41: Translation Programs - 2
	Slide 42: Translation Programs - 3
	Slide 43: Summary

