
owh@ieee.org CO 2103 1

CO 2103 Introduction to
Assembly Language

Ong Wee Hong
owh@ieee.org, IPIHOAS G.38 or 2.34

Universiti Brunei Darussalam

mailto:owh@ieee.org

owh@ieee.org CO 2103 2

Acknowledgement

The content of the slides used in this course are
extracted from various sources including those
quoted under references in following slides,
teaching material from UBD lecturers who had
taught this course before and from the material
received from the author’s course of studying

owh@ieee.org CO 2103 3

References - 1

• Books
– Assembly language : step-by-step by Jeff Duntemann

– Assembly language for Intel-based computers by Kip
R. Irvine

– Structured Computer Organization by Andrew S.
Tanenbaum

– How Computers Work by Ron White, Downs,
Timothy Edward

– How computers really work by Milind S. Pandit

– IBM microcomputer assembly language : beginning to
advanced by Godfrey J. Terry

owh@ieee.org CO 2103 4

References - 2

• Web pages – assembly language programming

– Assembly language from Wikipedia

• http://en.wikipedia.org/wiki/Assembly_language

– The Place on the Internet to Learn Assembly at
Webster

• http://webster.cs.ucr.edu/

– Assembly Language at OSdata.com

• http://www.osdata.com/topic/language/asm/asmi
ntro.htm

owh@ieee.org CO 2103 5

References - 3

• Web pages – assembly language programming

– The Art of Assembly Language Programming by
Randall Hyde

• http://webster.cs.ucr.edu/AoA/DOS/AoADosInde
x.html

– Complete 8086 instruction set

• http://www.emu8086.com/assembly_language_tutori
al_assembler_reference/8086_instruction_set.html

– documentation for 8086 assembler and emulator

• http://www.emu8086.com/assembly_language_tutori
al_assembler_reference/

owh@ieee.org CO 2103 6

References - 4

• Web pages - hardware

– About CPUs at Karbosguide.com

• http://www.karbosguide.com/hardware/module3a1.ht
m

– Birth of a Chip by Linley Gwennap

• http://www.byte.com/art/9612/sec6/art2.htm

– Chronology of Personal Computers by Ken Polsson

• http://www.islandnet.com/~kpolsson/comphist/

owh@ieee.org CO 2103 7

References - 5

• Web pages – useful reading
– flat assembler

• http://flatassembler.net/

– Unix Assembly Language Programming by G Adam
Stanislav

• http://www.int80h.org/

– PowerPC Assembly Programming on the Mac Mini by
Pramode C.E

• http://linuxgazette.net/117/pramode.html

– PIC Assembly Language for the Complete Beginner

• http://www.ai.uga.edu/mc/microcontrollers/pic/picas
sem2004.pdf

owh@ieee.org CO 2103 8

Course Content

• Introduction

• Background Knowledge
– Digital Logic, Data Representation

• Intel 8086 Microprocessor

• 8086 Assembly vs Machine Language

• Basics of 8086 Assembly Language
Programming

• More into Assembly Language Programming …

owh@ieee.org CO 2103 9

Course Management

• Learning activities (subject to alternative
arrangements)

– Lectures, laboratories and tutorials

• 10:10-12:00am, FSM 1.21, Tuesday

• 10:10-12:00am, FSM 1.19, Saturday

• Assessment scheme

– Examination 70% - 120 min exam in Nov/Dec

– Coursework 30% - few problem solving

owh@ieee.org CO 2103 10

What is Assembly Language (AL)?

• Machine-specific programming language
– an assembly language is a low-level language for

programming computers. It implements a symbolic
representation of the numeric machine codes and
other constants needed to program a particular CPU
architecture. This representation is usually defined by
the hardware manufacturer, and is based on
abbreviations (called mnemonics) that help the
programmer remember individual instructions,
registers, etc. An assembly language is thus specific to
a certain physical or virtual computer architecture (as
opposed to most high-level languages, most of which
are portable). [quoted from Wikipedia]

owh@ieee.org CO 2103 11

Why learn AL?

• Computers don’t understand our languages;
neither Java, C, Pascal, etc

• Someone has got to know their languages to be
able to ask them to work

• Gain insight into hardware concepts and learn
how a processor works

• Direct control over hardware for efficiency

• To program embedded systems

• More …

owh@ieee.org CO 2103 12

Why not just AL?

• After completion of this course, try code one of the large
program you have created in Java (or other language) in
AL and you will have the answer to the above question

• Not portable, i.e. processor-specific

• Normally include AL in HLL. When additional
performance is required for high-level languages (HLL),
AL can enhance the performance of these languages with
small, fast and powerful AL code modules. This allows
the HLL to target critical areas of their code in a very
efficient and convenient manner.

owh@ieee.org CO 2103 13

AL vs HLL

Assembly Language High Level Language

Not intuitive (c.f. English) Intuitive (English like)

Uses instructions specific to the
processor

Uses commands and rules of compiler
(C++, Java, etc)

1-to-1 correspondence to Machine
Language ML (zeros and ones) – direct
conversion

Each command may be converted to
few AL instructions before converting
to ML

Knowledge of architecture of
processor essential to program in AL

Knowledge of processor architecture
not required to program in HLL

Not portable (specific processor) Portable (any processor)

Can be efficient and small in size
Easier to program and shorter
program (less HLL command lines)

owh@ieee.org CO 2103 14

Sample AL Program (8086)

owh@ieee.org CO 2103 15

Into Hardware …

Before we are able to make sense out of what we
have mentioned in previous slides and what we will
be learning, we need to have some basic knowledge
of hardware

owh@ieee.org CO 2103 16

Hardware and Software - 1

• Hardware

– parts you can touch

• CPU, keyboard, screen, circuit boards, wires, etc.

– physical components

• Software

– programs

• consist of instructions telling the computer what to do

– ability to run different programs makes the computer
a General Purpose machine

– abstract components

owh@ieee.org CO 2103 17

Hardware and Software - 2

• Software without the hardware to execute is
useless

• Software gives intelligence to the hardware

owh@ieee.org CO 2103 18

From the big picture …

We will look at the hardware organization of a
microcomputer or personal computer (PC) to begin
with …

owh@ieee.org CO 2103 19

General Microcomputer
Organization - 1

owh@ieee.org CO 2103 20

General Microcomputer
Organization - 2

• Microprocessor or Central Processing Unit (CPU)

– can be considered as the brain of the system. It controls all
activities within the system according to instructions given to it.

• Memory

– RAM (Random Access Memory) – volatile read/write memory
for storing information being processed

– ROM (Read Only Memory) – non-volatile read only memory for
storing system programs

owh@ieee.org CO 2103 21

General Microcomputer
Organization - 3

• IO Ports
– Input Port - the point of the system where all external

data/information enter the system. External input
devices (e.g. keyboard) are connected to input ports.

– Output Port - the point of the system where the
data/information are sent to the external world.
External output devices (e.g. printer) are connected to
output ports.

– IO-Mapped Devices use different address space from
memory

– Memory-Mapped Devices are external devices that
make use of memory address space

owh@ieee.org CO 2103 22

General Microcomputer
Organization - 4

• Buses

– cable, group of wires, signals

– Data Bus – where uP communicates data/information
with other devices

– Address Bus – where uP sends the address of a device
to select it

– Control Bus – where control signals (synchronization,
IO signals, interrupt) are communicated between uP
and devices

owh@ieee.org CO 2103 23

uComputer in Action – Read Data

owh@ieee.org CO 2103 24

Into the important part …

Knowing the general organization of the PC, we
now look into what made up its CPU …

owh@ieee.org CO 2103 25

CPU Components - 1

owh@ieee.org CO 2103 26

CPU Components - 2

• Register Array (RA) or Registers
– provide fast storage for immediate processing

• Arithmetic and Logic Unit (ALU)
– performs arithmetic (+, –, , ) and logic (NOT, OR,

AND, etc) operations

• Control Unit (CU)
– co-ordinates the different components of the CPU

• Interface
– connects CPU signals to external devices (memory

and IO)

owh@ieee.org CO 2103 27

CPU in Action - 1

• CPU does only one thing for all time that it is
alive:
– execute programs

• It can only be as useful as its programs, i.e. what
it is programmed to do

• Program execution has 3 phases, called Fetch-
Execute cycle:
– Fetch an instruction – from memory

– Decode the instruction – in Control Unit

– Execute the instruction

owh@ieee.org CO 2103 28

CPU in Action - 2

owh@ieee.org CO 2103 29

Available CPU

• There are many different CPU designed by different
companies

• John Bayko has compiled a list of “Great
Microprocessors of the Past and Present”

– http://jbayko.sasktelwebsite.net/cpu.html

• Examples are Intel 80x86, Intel P, Motorola 68k, Zilog
Z-8k, PowerPC, Microchip PIC

• Different family has different details in their internal
structure

• Different family uses different set of instructions, i.e.
they speak different languages

http://jbayko.sasktelwebsite.net/cpu.html

owh@ieee.org CO 2103 30

Heading back to AL …

The brain of the PC is the CPU and there are many
different CPU available in the market and they
speak different languages …

owh@ieee.org CO 2103 31

Sample AL Programs - 1

Zilog Z80

.nolist

#include "ti83plus.inc"

#define ProgStart $9D95

.list

.org ProgStart - 2

 .db t2ByteTok, tAsmCmp

 b_call(_ClrLCDFull)

 ld hl, 0

 ld (PenCol), hl

 ld hl, msg

 b_call(_PutS) ; Display the text

 b_call(_NewLine)

 ret

msg:

 .db "Hello world!", 0

.end

.end

DATA SEGMENT

 MSG DB "Hello, World!","$"

DATA ENDS

CODE SEGMENT

 ASSUME CS:CODE, DS:DATA

START:

 MOV AX, DATA ;INTILIZE

 MOV DS, AX

 MOV AH, 09H ;PRINT STRING

 LEA DX, MSG

 INT 21H

STOP:

 MOV AX, 4C00H ;TERMINATE

 INT 21H

CODE ENDS

END START

Intel 8086

owh@ieee.org CO 2103 32

Sample AL Programs - 2
Motorola 6809

N A M E h e l l o _ w o r l d

T I T L ' T h i s p r o g r a m p r i n t s o n T X 1 6 W '

* S o m e s t a t u s a n d c o m m a n d c o d e s a n d a d d r e s s e s f o r t h e L C D

l c d _ c l e a r = $ 1

l c d _ b u s y = $ 8 0

l c d _ i n s t r = $ 1 0 0 0 0 0

l c d _ s t a t u s = $ 1 0 0 0 0 0

l c d _ d a t a = $ 1 0 0 0 0 2

 r s e g m a i n

* T h i s i s t h e p r o g r a m s e n t r y p o i n t。

s t a r t :

 b s r F _ L C D c l r

 p e a t e x t (p c)

 b s r F _ L C D p r i n t

 a d d q # 4 , s p

* E t e r n a l l o o p ! T h i s i s w h e r e y o u h a v e t o t u r n o f f a n d r e b o o t t h e T X 1 6 W .

s u i c i d e :

 b r a s u i c i d e

* T h i s p r o c e d u r e i n i t i a l i s e t h e L C D - s c r e e n

F _ L C D c l r :

 b s r . s F _ L C D w a i t

 m o v e . w # l c d _ c l e a r , l c d _ i n s t r

 r t s

* T h i s f u n c t i o n w a i t s u n t i l b u s y - f l a g g o e s l o w .

F _ L C D w a i t :

 m o v e . w d 0 , - (a 7)

w a i t _ l o o p 1 :

 m o v e . w l c d _ s t a t u s , d 0

 a n d . w # l c d _ b u s y , d 0

 b n e . s w a i t _ l o o p 1

 m o v e . w (a 7) + , d 0

 r t s

* T h i s p r o c e d u r e p r i n t s a s t r i n g t o t h e c u r r e n t c u r s o r p o s i t i o n .

F _ L C D p r i n t :

 m o v e . l a 0 , - (a 7)

 m o v e . l 8 (a 7) , a 0

p r i n t _ l o o p 1 :

 b s r F _ L C D w a i t

 m o v e . b (a 0) + , d 0

 b e q . s p r i n t _ e o s

 m o v e . w d 0 , l c d _ d a t a

 b r a . s p r i n t _ l o o p 1

p r i n t _ e o s :

 m o v e . l (a 7) + , a 0

 r t s

t e x t :

 d c . w ' H e l l o W o r l d ' , 0

 e n d

owh@ieee.org CO 2103 33

Sample AL Programs - 3
Microchip PIC16f84
; P r o g r a m t o s e n d " H e l l o W o r l d ! " t o a P C C O M p o r t

M S G T X T A D D W F P C L , f ; o f f s e t a d d e d t o P C L

 R E T L W $ 4 8 ; ' H '

 R E T L W $ 6 5 ; ' e '

 R E T L W $ 6 C ; ' l '

 R E T L W $ 6 C ; ' l '

 R E T L W $ 6 F ; ' o '

 R E T L W $ 2 0 ; ' '

 R E T L W $ 5 7 ; ' W '

 R E T L W $ 6 F ; ' o '

 R E T L W $ 7 2 ; ' r '

 R E T L W $ 6 C ; ' l '

 R E T L W $ 6 4 ; ' d '

 R E T L W $ 2 1 ; ' ! '

 R E T L W $ 0 D ; c a r r i a g e r e t u r n

 R E T L W $ 0 A ; l i n e f e e d

 R E T L W $ 0 0 ; i n d i c a t e s e n d

O U T M S G M O V W F M S G P T R ; p u t ' W ' i n t o m e s s a g e p o i n t e r

M S G L O O P M O V F M S G P T R , W ; p u t t h e o f f s e t i n ' W '

 C A L L M S G T X T ; r e t u r n s A S C I I c h a r a c t e r i n ' W '

 A D D L W 0 ; s e t s t h e z e r o f l a g i f W = 0

 B T F S C S T A T U S , Z ; s k i p i f z e r o b i t n o t s e t

 R E T U R N ; f i n i s h e d i f W = 0

 C A L L O U T C H ; o u t p u t t h e c h a r a c t e r

 I N C F M S G P T R , f ; p o i n t a t n e x t

 G O T O M S G L O O P ; m o r e c h a r a c t e r s

O U T C H M O V W F T X R E G ; p u t W i n t o t r a n s m i t r e g i s t e r

 M O V L W 8 ; e i g h t b i t s o f d a t a

 M O V W F B I T S ; a c o u n t e r f o r b i t s

 B S F P O R T A , 2 ; s t a r t b i t (f l i p p e d r e m e m b e r) , R A 2

T X L O O P M O V L W $ 3 1 ; 4 9 d e c i m a l , d e l a y t i m e

 C A L L M I C R O 4 ; w a i t 4 9 x 4 = 1 9 6 m i c r o s e c o n d s

 R R F T X R E G , f ; r o l l r i g h t m o s t b i t i n t o c a r r y

 B T F S C S T A T U S , C ; i f c a r r y 0 w a n t t o s e t b i t , (a l o w)

 G O T O C L R B I T ; e l s e c l e a r b i t , (a h i g h)

 B S F P O R T A , 2 ; + 5 V o n p i n 1 (R A 2)

 G O T O T E S T D O N E ; a r e w e f i n i s h e d ?

C L R B I T B C F P O R T A , 2 ; 0 V o n p i n 1 (R A 2)

 N O P ; t o m a k e b o t h o p t i o n s 1 2 m i c o s e c

T E S T D O N E D E C F S Z B I T S , f ; 1 l e s s d a t a b i t , s k i p w h e n z e r o

 G O T O T X L O O P ; m o r e b i t s l e f t , d e l a y f o r t h i s o n e

 M O V L W $ 3 4 ; f u l l 2 0 8 m i c r o s e c t h i s t i m e

 C A L L M I C R O 4 ; d e l a y f o r l a s t d a t a b i t

 B C F P O R T A , 2 ; 0 V , (a h i g h) f o r s t o p b i t s

 M O V L W $ 6 8 ; d e c i m a l 1 0 4 d e l a y f o r 2 s t o p b i t s

 C A L L M I C R O 4

 R E T U R N

M S E C 1 M O V L W $ F 9 ; a l l o w f o r 4 m i c r o s e c o v e r h e a d . .

 N O P ; (2 f o r C A L L)

M I C R O 4 A D D L W $ F F ; s u b t r a c t 1 f r o m W

 B T F S S S T A T U S , Z ; s k i p w h e n y o u r e a c h z e r o

 G O T O M I C R O 4 ; m o r e l o o p s

 R E T U R N

AL programs are hardware dependent

owh@ieee.org CO 2103 34

Sample Instruction Sets - 1

owh@ieee.org CO 2103 35

Sample Instruction Sets - 2

owh@ieee.org CO 2103 36

AL Bad and Good News

• Bad news

– AL is machine-specific (or CPU-specific)

– There are many different CPU available

– Too heavy to learn AL for all of them

• Good news

– We will only learn AL for Intel 80x86 CPU

– It’s easy to learn the others once knowing one

owh@ieee.org CO 2103 37

Levels of Abstraction - 1

• Generalize a computer
into different levels

• From the programmer's
point of view:

– High-Level Programming
Languages

– Assembly Language

– Machine Code

– Microcode (CISC)

– Logic Gates

Logic Gates

(ON/OFF)

Microcode

(ON/OFF)

Machine Code

(1 / 0) 1 0 1 1 0 0 0 0

Assembly

(Symbolic)
MVI AL, n

High Level Programming Language

(words)

Algorithm

(sentences)
Human Language

Machine Language

High Level

Low Level

HARDWARE

SOFTWARE

Programmer

owh@ieee.org CO 2103 38

Levels of Abstraction - 2

• From the User's Point-of-View:

– Applications Software

• Word Processor, Spreadsheet, etc.

– Operating System Software

• UNIX, MS-DOS, OS/2, VMS, etc.

– Hardware

• Mainframe, Workstation, Personal Computer

• Applications are written for a specific Operating System

– Operating System shields the Application from the Hardware

– Different combinations of Hardware Platform, Operating System
and Applications are possible

Hardware

OS

Application

User

owh@ieee.org CO 2103 39

High Level vs Low Level
Programming

• Working at higher levels ...

– Programming is easier

– Programs are more portable (hardware independent)

– Little or no knowledge of hardware required

• Working at Lower Levels ...

– More control over the machine

– Unrestricted access to hardware

– Requires specific knowledge of target hardware

– Possible to write small, very efficient programs

owh@ieee.org CO 2103 40

Translation Programs - 1

• Rationale

– CPU is an electronic device (hardware)

– CPU only understands electronic signals

– CPU uses ON (1) or OFF (0) as electronic signals;
called logic signals

– CPU only understands 0 and 1

– Native language of all CPU is the Machine Language
(Machine Code) made up of string of 0s and 1s

– Programs written, not in Machine Codes, must be
translated into Machine Codes for storage and for the
CPU to execute

owh@ieee.org CO 2103 41

Translation Programs - 2

• Compiler

– Translates High-level language (HLL) file to file of Machine Code
instructions

– HLLs are independent of CPU type

– Examples of compiled languages: C/C++, Pascal, FORTRAN

• Assembler

– Translates Assembly Language file to Machine Code file

– Assembly Language is specific to CPU type

– Assembly Language is the lowest level of program that people
will write as it has one-to-one correspondence with Machine
Code

owh@ieee.org CO 2103 42

Translation Programs - 3

• Interpreter

– Translates HLL instructions to Lower Level instructions on-the-
fly (at "run-time")

– Generates equivalent Machine Code instructions for each HLL
instruction

– Examples: LISP, Prolog, BASIC, Java Bytecode

• Compilers and Assemblers work on whole files at a time
and generate a separate executable version of the
program, while Interpreter does not generate a separate
Machine Code executable version of program

• Interpreted programs generally run much slower than
machine code programs (compiled or assembled)

owh@ieee.org CO 2103 43

Summary

• PC and CPU are electronic devices

• CPU only understands 0s and 1s, i.e. Machine Code

• AL is low-level programming that has one-on-one
correspondence with Machine Code

• AL is machine-specific (CPU-specific)

• AL is closest to the hardware (c.f. HLL) and allow
efficient control of the hardware

• Some insight into PC and CPU hardware

• All programming languages require translation into
Machine Code

	Slide 1: CO 2103 Introduction to Assembly Language
	Slide 2: Acknowledgement
	Slide 3: References - 1
	Slide 4: References - 2
	Slide 5: References - 3
	Slide 6: References - 4
	Slide 7: References - 5
	Slide 8: Course Content
	Slide 9: Course Management
	Slide 10: What is Assembly Language (AL)?
	Slide 11: Why learn AL?
	Slide 12: Why not just AL?
	Slide 13: AL vs HLL
	Slide 14: Sample AL Program (8086)‏
	Slide 15: Into Hardware …
	Slide 16: Hardware and Software - 1
	Slide 17: Hardware and Software - 2
	Slide 18: From the big picture …
	Slide 19: General Microcomputer Organization - 1
	Slide 20: General Microcomputer Organization - 2
	Slide 21: General Microcomputer Organization - 3
	Slide 22: General Microcomputer Organization - 4
	Slide 23: uComputer in Action – Read Data
	Slide 24: Into the important part …
	Slide 25: CPU Components - 1
	Slide 26: CPU Components - 2
	Slide 27: CPU in Action - 1
	Slide 28: CPU in Action - 2
	Slide 29: Available CPU
	Slide 30: Heading back to AL …
	Slide 31: Sample AL Programs - 1
	Slide 32: Sample AL Programs - 2
	Slide 33: Sample AL Programs - 3
	Slide 34: Sample Instruction Sets - 1
	Slide 35: Sample Instruction Sets - 2
	Slide 36: AL Bad and Good News
	Slide 37: Levels of Abstraction - 1
	Slide 38: Levels of Abstraction - 2
	Slide 39: High Level vs Low Level Programming
	Slide 40: Translation Programs - 1
	Slide 41: Translation Programs - 2
	Slide 42: Translation Programs - 3
	Slide 43: Summary

