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Course Content

• Introduction

• Background Knowledge
– Digital Logic, Data Representation

• Intel 8086 Microprocessor

• 8086 Assembly vs Machine Language

• Basics of 8086 Assembly Language 
Programming

• More into Assembly Language Programming …



owh@ieee.org CO 2103 9

Course Management

• Learning activities (subject to alternative 
arrangements)

– Lectures, laboratories and tutorials

• 10:10-12:00am, FSM 1.21, Tuesday

• 10:10-12:00am, FSM 1.19, Saturday

• Assessment scheme

– Examination 70% - 120 min exam in Nov/Dec

– Coursework 30% - few problem solving
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What is Assembly Language (AL)?

• Machine-specific programming language
– an assembly language is a low-level language for 

programming computers.  It implements a symbolic 
representation of the numeric machine codes and 
other constants needed to program a particular CPU 
architecture.  This representation is usually defined by 
the hardware manufacturer, and is based on 
abbreviations (called mnemonics) that help the 
programmer remember individual instructions, 
registers, etc.  An assembly language is thus specific to 
a certain physical or virtual computer architecture (as 
opposed to most high-level languages, most of which 
are portable).  [quoted from Wikipedia]
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Why learn AL?

• Computers don’t understand our languages; 
neither Java, C, Pascal, etc

• Someone has got to know their languages to be 
able to ask them to work

• Gain insight into hardware concepts and learn 
how a processor works

• Direct control over hardware for efficiency

• To program embedded systems

• More …
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Why not just AL?

• After completion of this course, try code one of the large 
program you have created in Java (or other language) in 
AL and you will have the answer to the above question

• Not portable, i.e. processor-specific

• Normally include AL in HLL.  When additional 
performance is required for high-level languages (HLL), 
AL can enhance the performance of these languages with 
small, fast and powerful AL code modules.  This allows 
the HLL to target critical areas of their code in a very 
efficient and convenient manner.
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AL vs HLL

Assembly Language High Level Language

Not intuitive (c.f. English) Intuitive (English like)

Uses instructions specific to the 
processor

Uses commands and rules of compiler 
(C++, Java, etc)

1-to-1 correspondence to Machine 
Language ML (zeros and ones) – direct 
conversion

Each command may be converted to 
few AL instructions before converting 
to ML

Knowledge of architecture of 
processor essential to program in AL

Knowledge of processor architecture 
not required to program in HLL

Not portable (specific processor) Portable (any processor)

Can be efficient and small in size
Easier to program and shorter 
program (less HLL command lines)
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Sample AL Program (8086)
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Into Hardware …

Before we are able to make sense out of what we 
have mentioned in previous slides and what we will 
be learning, we need to have some basic knowledge 
of hardware
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Hardware and Software - 1

• Hardware

– parts you can touch

• CPU, keyboard, screen, circuit boards, wires, etc.

– physical components

• Software

– programs

• consist of instructions telling the computer what to do

– ability to run different programs makes the computer 
a General Purpose machine

– abstract components
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Hardware and Software - 2

• Software without the hardware to execute is 
useless

• Software gives intelligence to the hardware
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From the big picture …

We will look at the hardware organization of a 
microcomputer or personal computer (PC) to begin 
with …
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General Microcomputer 
Organization - 1
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General Microcomputer 
Organization - 2

• Microprocessor or Central Processing Unit (CPU)

– can be considered as the brain of the system.  It controls all 
activities within the system according to instructions given to it.

• Memory

– RAM (Random Access Memory) – volatile read/write memory 
for storing information being processed

– ROM (Read Only Memory) – non-volatile read only memory for 
storing system programs
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General Microcomputer 
Organization - 3

• IO Ports
– Input Port - the point of the system where all external 

data/information enter the system.  External input 
devices (e.g. keyboard) are connected to input ports.

– Output Port - the point of the system where the 
data/information are sent to the external world.  
External output devices (e.g. printer) are connected to 
output ports.

– IO-Mapped Devices use different address space from 
memory

– Memory-Mapped Devices are external devices that 
make use of memory address space
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General Microcomputer 
Organization - 4

• Buses

– cable, group of wires, signals

– Data Bus – where uP communicates data/information 
with other devices

– Address Bus – where uP sends the address of a device 
to select it

– Control Bus – where control signals (synchronization, 
IO signals, interrupt) are communicated between uP 
and devices
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uComputer in Action – Read Data
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Into the important part …

Knowing the general organization of the PC, we 
now look into what made up its CPU …
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CPU Components - 1
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CPU Components - 2

• Register Array (RA) or Registers
– provide fast storage for immediate processing

• Arithmetic and Logic Unit (ALU)
– performs arithmetic (+, –, , ) and logic (NOT, OR, 

AND, etc) operations

• Control Unit (CU)
– co-ordinates the different components of the CPU

• Interface
– connects CPU signals to external devices (memory 

and IO)
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CPU in Action - 1

• CPU does only one thing for all time that it is 
alive:
– execute programs

• It can only be as useful as its programs, i.e. what 
it is programmed to do

• Program execution has 3 phases, called Fetch-
Execute cycle:
– Fetch an instruction – from memory

– Decode the instruction – in Control Unit

– Execute the instruction
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CPU in Action - 2
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Available CPU

• There are many different CPU designed by different 
companies

• John Bayko has compiled a list of “Great 
Microprocessors of the Past and Present”

– http://jbayko.sasktelwebsite.net/cpu.html

• Examples are Intel 80x86, Intel P, Motorola 68k, Zilog 
Z-8k, PowerPC, Microchip PIC

• Different family has different details in their internal 
structure

• Different family uses different set of instructions, i.e. 
they speak different languages

http://jbayko.sasktelwebsite.net/cpu.html
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Heading back to AL …

The brain of the PC is the CPU and there are many 
different CPU available in the market and they 
speak different languages …
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Sample AL Programs - 1

Zilog Z80

.nolist 

#include   "ti83plus.inc" 

#define    ProgStart    $9D95 

.list 

.org    ProgStart - 2 

    .db    t2ByteTok, tAsmCmp 

    b_call(_ClrLCDFull) 

    ld    hl, 0 

    ld    (PenCol), hl 

    ld    hl, msg 

    b_call(_PutS)            ; Display the text 

    b_call(_NewLine) 

    ret 

msg: 

    .db "Hello world!", 0 

.end 

.end 

DATA SEGMENT  

    MSG DB "Hello, World!","$"  

DATA ENDS  

 

CODE SEGMENT  

    ASSUME CS:CODE, DS:DATA  

START:  

    MOV AX, DATA        ;INTILIZE  

    MOV DS, AX  

 

    MOV AH, 09H         ;PRINT STRING  

    LEA DX, MSG  

    INT 21H  

 

STOP:  

    MOV AX, 4C00H       ;TERMINATE  

    INT 21H  

CODE ENDS  

END START  

Intel 8086
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Sample AL Programs - 2
Motorola 6809

N A M E  h e l l o _ w o r l d  

T I T L  ' T h i s  p r o g r a m  p r i n t s   o n  T X 1 6 W '  

 

*  S o m e  s t a t u s  a n d  c o m m a n d  c o d e s  a n d  a d d r e s s e s  f o r  t h e  L C D  

l c d _ c l e a r  =      $ 1  

l c d _ b u s y  =       $ 8 0  

l c d _ i n s t r  =      $ 1 0 0 0 0 0  

l c d _ s t a t u s  =     $ 1 0 0 0 0 0  

l c d _ d a t a  =       $ 1 0 0 0 0 2  

 

 r s e g  m a i n  

 

*  T h i s  i s  t h e  p r o g r a m s  e n t r y  p o i n t。  

s t a r t :  

 

 b s r     F _ L C D c l r  

 p e a     t e x t ( p c )  

 b s r     F _ L C D p r i n t  

 a d d q    # 4 , s p  

 

*  E t e r n a l  l o o p !  T h i s  i s  w h e r e  y o u  h a v e  t o  t u r n  o f f  a n d  r e b o o t  t h e  T X 1 6 W .  

s u i c i d e :  

 b r a     s u i c i d e  

 

*  T h i s  p r o c e d u r e  i n i t i a l i s e  t h e  L C D - s c r e e n  

F _ L C D c l r :  

 b s r . s      F _ L C D w a i t  

 m o v e . w     # l c d _ c l e a r , l c d _ i n s t r  

 r t s  

*  T h i s  f u n c t i o n  w a i t s  u n t i l  b u s y - f l a g  g o e s  l o w .  

F _ L C D w a i t :  

 m o v e . w     d 0 , - ( a 7 )  

w a i t _ l o o p 1 :  

 m o v e . w     l c d _ s t a t u s , d 0  

 a n d . w      # l c d _ b u s y , d 0  

 b n e . s      w a i t _ l o o p 1  

 

 m o v e . w     ( a 7 ) + , d 0  

 r t s  

 

*  T h i s  p r o c e d u r e  p r i n t s  a  s t r i n g  t o  t h e  c u r r e n t  c u r s o r  p o s i t i o n .  

F _ L C D p r i n t :  

 m o v e . l     a 0 , - ( a 7 )  

 m o v e . l     8 ( a 7 ) , a 0  

p r i n t _ l o o p 1 :  

 b s r     F _ L C D w a i t  

 m o v e . b     ( a 0 ) + , d 0  

 b e q . s      p r i n t _ e o s  

 m o v e . w     d 0 , l c d _ d a t a  

 b r a . s      p r i n t _ l o o p 1  

 

p r i n t _ e o s :  

 m o v e . l     ( a 7 ) + , a 0  

 r t s  

 

t e x t :  

 d c . w     ' H e l l o  W o r l d ' , 0  

 

 e n d  
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Sample AL Programs - 3
Microchip PIC16f84
;  P r o g r a m  t o  s e n d  " H e l l o  W o r l d ! "  t o  a  P C  C O M  p o r t  

 

M S G T X T    A D D W F  P C L ,  f      ;  o f f s e t  a d d e d  t o  P C L  

           R E T L W  $ 4 8         ;  ' H '  

           R E T L W  $ 6 5         ;  ' e '  

           R E T L W  $ 6 C         ;  ' l '  

           R E T L W  $ 6 C         ;  ' l '  

           R E T L W  $ 6 F         ;  ' o '  

           R E T L W  $ 2 0         ;  '  '  

           R E T L W  $ 5 7         ;  ' W '  

           R E T L W  $ 6 F         ;  ' o '  

           R E T L W  $ 7 2         ;  ' r '  

           R E T L W  $ 6 C         ;  ' l '  

           R E T L W  $ 6 4         ;  ' d '  

           R E T L W  $ 2 1         ;  ' ! '  

           R E T L W  $ 0 D         ;  c a r r i a g e  r e t u r n  

           R E T L W  $ 0 A         ;  l i n e  f e e d  

           R E T L W  $ 0 0         ;  i n d i c a t e s  e n d  

 

O U T M S G      M O V W F  M S G P T R      ;  p u t  ' W '  i n t o  m e s s a g e  p o i n t e r  

M S G L O O P     M O V F  M S G P T R ,  W    ;  p u t  t h e  o f f s e t  i n  ' W '  

           C A L L  M S G T X T       ;  r e t u r n s  A S C I I  c h a r a c t e r  i n  ' W '  

           A D D L W  0           ;  s e t s  t h e  z e r o  f l a g  i f  W  =  0  

           B T F S C  S T A T U S ,  Z   ;  s k i p  i f  z e r o  b i t  n o t  s e t  

           R E T U R N            ;  f i n i s h e d  i f  W  =  0  

           C A L L  O U T C H        ;  o u t p u t  t h e  c h a r a c t e r  

           I N C F  M S G P T R ,  f    ;  p o i n t  a t  n e x t  

           G O T O  M S G L O O P      ;  m o r e  c h a r a c t e r s  

O U T C H       M O V W F  T X R E G       ;  p u t  W  i n t o  t r a n s m i t  r e g i s t e r  

           M O V L W  8           ;  e i g h t  b i t s  o f  d a t a  

           M O V W F  B I T S        ;  a  c o u n t e r  f o r  b i t s  

           B S F  P O R T A ,  2      ;  s t a r t  b i t  ( f l i p p e d  r e m e m b e r ) ,  R A 2  

T X L O O P      M O V L W  $ 3 1         ;  4 9  d e c i m a l ,  d e l a y  t i m e  

           C A L L  M I C R O 4       ;  w a i t  4 9  x  4  =  1 9 6  m i c r o s e c o n d s  

           R R F  T X R E G ,  f      ;  r o l l  r i g h t m o s t  b i t  i n t o  c a r r y  

           B T F S C  S T A T U S ,  C   ;  i f  c a r r y  0  w a n t  t o  s e t  b i t ,  (  a  l o w  )  

           G O T O  C L R B I T       ;  e l s e  c l e a r  b i t ,  (  a  h i g h  )  

           B S F  P O R T A ,  2      ;  + 5 V  o n  p i n  1  (  R A 2  )  

           G O T O  T E S T D O N E     ;  a r e  w e  f i n i s h e d ?  

C L R B I T      B C F  P O R T A ,  2      ;  0 V  o n  p i n  1  (  R A 2  )  

           N O P               ;  t o  m a k e  b o t h  o p t i o n s  1 2  m i c o s e c  

T E S T D O N E    D E C F S Z  B I T S ,  f    ;  1  l e s s  d a t a  b i t ,  s k i p  w h e n  z e r o  

           G O T O  T X L O O P       ;  m o r e  b i t s  l e f t ,  d e l a y  f o r  t h i s  o n e  

           M O V L W  $ 3 4         ;  f u l l  2 0 8  m i c r o s e c  t h i s  t i m e  

           C A L L  M I C R O 4       ;  d e l a y  f o r  l a s t  d a t a  b i t  

           B C F  P O R T A ,  2      ;  0 V ,  (  a  h i g h  )  f o r  s t o p  b i t s  

           M O V L W  $ 6 8         ;  d e c i m a l  1 0 4  d e l a y  f o r  2  s t o p  b i t s  

           C A L L  M I C R O 4        

           R E T U R N  

 

M S E C 1       M O V L W  $ F 9         ;  a l l o w  f o r  4  m i c r o s e c  o v e r h e a d . .   

           N O P               ;  ( 2  f o r  C A L L )   

M I C R O 4      A D D L W  $ F F         ;  s u b t r a c t  1  f r o m  W  

           B T F S S  S T A T U S , Z    ;  s k i p  w h e n  y o u  r e a c h  z e r o  

           G O T O  M I C R O 4       ;  m o r e  l o o p s  

           R E T U R N  

AL programs are hardware dependent
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Sample Instruction Sets - 1
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Sample Instruction Sets - 2
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AL Bad and Good News

• Bad news

– AL is machine-specific (or CPU-specific)

– There are many different CPU available

– Too heavy to learn AL for all of them

• Good news

– We will only learn AL for Intel 80x86 CPU

– It’s easy to learn the others once knowing one



owh@ieee.org CO 2103 37

Levels of Abstraction - 1

• Generalize a computer 
into different levels

• From the programmer's 
point of view:

– High-Level Programming 
Languages

– Assembly Language

– Machine Code

– Microcode (CISC)

– Logic Gates 

 

Logic Gates 

(ON/OFF) 

Microcode 

(ON/OFF) 

Machine Code 

( 1 / 0 ) 1 0 1 1 0 0 0 0 

Assembly 

(Symbolic) 
MVI AL, n 

High Level Programming Language 

(words) 

Algorithm 

(sentences) 
Human Language 

Machine Language 

High Level 

Low Level 

HARDWARE 

SOFTWARE 

Programmer
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Levels of Abstraction - 2

• From the User's Point-of-View:

– Applications Software

• Word Processor, Spreadsheet, etc.

– Operating System Software

• UNIX, MS-DOS, OS/2, VMS, etc.

– Hardware

• Mainframe, Workstation, Personal Computer

• Applications are written for a specific Operating System

– Operating System shields the Application from the Hardware

– Different combinations of Hardware Platform, Operating System 
and Applications are possible

Hardware

OS

Application

User
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High Level vs Low Level 
Programming

• Working at higher levels ...

– Programming is easier

– Programs are more portable (hardware independent)

– Little or no knowledge of hardware required

• Working at Lower Levels ...

– More control over the machine

– Unrestricted access to hardware

– Requires specific knowledge of target hardware

– Possible to write small, very efficient programs
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Translation Programs - 1

• Rationale

– CPU is an electronic device (hardware)

– CPU only understands electronic signals

– CPU uses ON (1) or OFF (0) as electronic signals; 
called logic signals

– CPU only understands 0 and 1

– Native language of all CPU is the Machine Language
(Machine Code) made up of string of 0s and 1s

– Programs written, not in Machine Codes, must be 
translated into Machine Codes for storage and for the 
CPU to execute
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Translation Programs - 2

• Compiler

– Translates High-level language (HLL) file to file of Machine Code 
instructions

– HLLs are independent of CPU type

– Examples of compiled languages: C/C++, Pascal, FORTRAN

• Assembler

– Translates Assembly Language file to Machine Code file

– Assembly Language is specific to CPU type

– Assembly Language is the lowest level of program that people 
will write as it has one-to-one correspondence with Machine 
Code
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Translation Programs - 3

• Interpreter

– Translates HLL instructions to Lower Level instructions on-the-
fly (at "run-time")

– Generates equivalent Machine Code instructions for each HLL 
instruction

– Examples: LISP, Prolog, BASIC, Java Bytecode

• Compilers and Assemblers work on whole files at a time 
and generate a separate executable version of the 
program, while Interpreter does not generate a separate 
Machine Code executable version of program

• Interpreted programs generally run much slower than 
machine code programs (compiled or assembled)
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Summary

• PC and CPU are electronic devices

• CPU only understands 0s and 1s, i.e. Machine Code

• AL is low-level programming that has one-on-one 
correspondence with Machine Code

• AL is machine-specific (CPU-specific)

• AL is closest to the hardware (c.f. HLL) and allow 
efficient control of the hardware

• Some insight into PC and CPU hardware

• All programming languages require translation into 
Machine Code
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