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Most deep clustering methods despite utilizing complex networks to learn better from data, use a shallow clus-
teringmethod. Thesemethods have difficulty infinding good clusters due to the lack of ability to handle between
local search and global search to prevent premature convergence. In other words, they do not consider different
aspects of the search and it causes them to get stuck in the local optimum. In addition, the majority of existing
deep clustering approaches perform clustering with the knowledge of the number of clusters, which is not prac-
tical in most real scenarios where such information is not available. To address these problems, this paper pre-
sents a novel automatic deep sparse clustering approach based on an evolutionary algorithm called Multi-Trial
Vector-based Differential Evolution (MTDE). Sparse auto-encoder is first applied to extract embedded features.
Manifold learning is then adopted to obtain representation and extract the spatial structure of features. After-
ward,MTDE clustering is performedwithout prior information on the number of clusters tofind the optimal clus-
tering solution. The proposed approachwas evaluated on various datasets, including images and time-series. The
results demonstrate that the proposedmethod improvedMTDE by 18.94% on average and compared to themost
recent deep clustering algorithms, is consistently among the top three in the majority of datasets.

© 2023 Published by Elsevier B.V.
1. Introduction

Clustering is a fundamental technique in the fields of machine learn-
ing, pattern recognition, computer vision, and data compression [1]. The
purpose of clustering is to find distinct groups in a dataset. Groups are
created in such a way that the data points of one group are similar
and those of different groups are different. Clustering can be used in a
variety of applications including customer segmentation [2,3], image
Segmentation [4,5], anomaly detection [6,7], activity discovery [8], rec-
ommender systems [9,10] and network analysis [11–13].

Most clusteringmethods have problems handling large data [1] due
to ineffectiveness of the criteria used to find similarities between data
points. To address the issue with high dimensional data sets, linear di-
mension reduction and feature extraction methods such as principal
component analysis (PCA) [14], linear discriminant analysis (LDA)
[15] and non-linear methods such as Kernel PCA [16] and T-
distributed Stochastic Neighbor Embedding (t-SNE) [17] have been
used. Thesemethods project data points into a feature space that is eas-
ier to classify. However, due to the complex structure of the data, it is
), daphne.lai@ubd.edu.bn
still challenging and time-consuming to find useful features that pro-
duce good clustering performance [1].

Deep neural networks learn features to represent data effectively
without any specialized knowledge of data [18]. Networks such as
Auto-Encoder (AE) learns data representation completely unsuper-
vised. An AE consists of two parts, encoder and decoder. In the encoder
part, the inputs are compressed and the decoder part tries to regenerate
the received input by decoding the compressed representation of the
data. The goal here is to reproduce the received input [19], thereby
learning the most effective representation of the data.

One problemwith a fully connected AE is that in some neurons, after
a few epochs, it copies the input as it is, unable to learn and extract es-
sential features [19]. To prevent this, a sparse constraint is used on the
activation function of each neuron in the network to disable neurons
that have no effect on learning. Another problem of AE is losing the in-
formation of distances between features in the representation. This is
addressed by applying manifold learning that maintains this informa-
tion in the representation. Many have proposed combining clustering
with deep learning to represent discriminative data features [20–26].
However, most use simple clustering algorithms such as k-means to
cluster data points. Also, the majority of deep clustering methods re-
quire prior information on the number of clusters which makes them
not applicable in many real scenarios. Moreover, conventional
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clustering techniques suffer from getting stuck in local optima, early
convergence, low accuracy, and time-consuming [1]. In addition, vari-
ous techniques have been proposed to estimate the number of clusters.
However, thesemethods are time-consuming andhave low accuracy. In
this paper, we propose a novel Automatic Deep Sparse clustering tech-
nique based on an evolutionary algorithm called Multi-Trial vector-
basedDifferential Evolution (ADSMTDE) to address the aforementioned
drawbacks. This algorithm has a high ability to reach the optimal solu-
tion due to the use of different search strategies. These strategies main-
tain a balance between exploration and exploitation in search space and
avoid getting stuck in local optimization and early convergence. An
incremental technique is also applied to perform clustering without
requiring information about the number of clusters.

The main contributions can be summarized as follows:

• To the best of our knowledge, this is the first deep clustering method
that uses an evolutionary algorithm. We propose an end-to-end deep
clustering based on the MTDE algorithm that benefits from different
search strategies and the appropriate distribution of populations
between strategies to find the final solution.

• To improve the extracted features, we apply sparse constraint to AE to
minimize redundant information.

• A manifold learning is adopted in AE to preserve distances between
extracted features and maintain important ones.

• Incremental technique is employed to perform clustering automati-
cally without requiring prior information about the number of
clusters.

• Extensive experiments on seven challenging datasets have shown the
benefits of ADSMTDE over a wide range of state-of-the-art deep clus-
tering techniques.

In the rest of this paper, the relatedworks on clustering are reviewed
in Section 2. The proposedmethod is introduced in Sections 3 and 4. The
experiments and results are shown in Section 5. Finally, the conclusion
is given in Section 6.

2. Related works

2.1. Evolutionary approaches

Classical clustering can be categorized as hierarchical [27],
distribution-based [28], density-based [29], learning network clustering
[30], and partition clustering [31]. Since clustering is an NP-hard prob-
lem, a vast majority of evolutionary clustering methods have been pro-
posed to solve clustering due to their strength in optimization [32].
Hadikhani et al. [33] proposed a hybrid particle swarm optimization
with k-means. They applied a Gaussianmutation to produce diverse so-
lutions. Lei et al. [34] designed a fuzzy clustering for image segmenta-
tion. They adopted morphological reconstruction and membership
filtering in fuzzy clustering for robustness in dealing with noise and in-
creasing clustering speed. In [35], a novel framework utilized an adap-
tive evolutionary clustering to eliminate the faulty and uninteresting
pairings in analysis and processing of information which reduced com-
putation time. Li et al. [36] explored the segmentation problem on tex-
ture image and proposed an evolutionary algorithm based on quantum
theory. Although some of these works show good performance in small
datasets, they performed poorly on high-dimensional data because a
suitable data representation for clustering is not prepared [1].

The MTDE algorithm [37], which stands for Memory-based Tourna-
ment Differential Evolution, is a variant of the Differential Evolution
(DE) algorithm [38] that uses historical data to search for the best per-
forming regionwithin the solution space. In traditional DE, a population
of candidate solutions is evolved over multiple generations to find the
best solution. However, in MTDE, the historical data from previous gen-
erations is also used to guide the search towards the best performing re-
gion, resulting in faster convergence and better performance. TheMTDE
2

algorithm also employs three search strategies to balance exploration
and exploitation in the search space.

2.2. Deep learning approaches

Deep clustering combines representation learning with clustering
algorithms. Yang et al. [21] introduced a combination of deep learning
with k-means to enhance the clustering performance. The goal of their
workwas tomap data representation to latent space for reducing the di-
mension and finding the distinct features.

Guo et al. [39] presented a deep clustering that jointly clusters data
and learns embedded features by considering simultaneously the clus-
tering loss in the latent layer to disperse the embedded features and
the reconstruction loss to ensure that the data’s local structure is pre-
served in embedded space. They also utilized KL divergence loss to en-
hance the produced features. Menapace et al. [40] proposed a deep
clustering method to solve domain adaptation settings. They utilized
data from several unlabeled source domains and use a semantic predic-
tor that cluster data from multiple unlabeled source domains. Mutual
informationmaximization and batch normalizationwere utilized to ob-
tain stable features. Van et al. [41] suggested a two-step approach to
cluster data. First, they extracted meaningful features in a self-
supervisedmanner. Afterward, a learnable clustering approachwas em-
ployed to group the data. Astorga et al. [42] used GAN for learning from
data and applied Matching Priors and Conditionals to cluster data. Zhao
et al. [43] disentangled the data representation into category part and
style part by using augmentation-invariant loss. In addition, prior prob-
ability was employed to ensure degenerate solutions are avoided. Niu
et al. [44] proposed a clustering approach with a Gaussian attention
layer to learn discriminative features. Huang et al. [45] developed a
deep clustering algorithm based on partition confidence maximization.
They applied partition uncertainty index to assess the overall confi-
dence in the clustering solution. Moreover, they introduced a transfor-
mation of the partition uncertainty index in order to facilitate the
formulation of the deep learning loss function. Li et al. [46] introduced
a novel deep clustering approach based on specified contrastive learn-
ing, where contrastive learning is conducted both at the instance-level
and cluster-level to determine suitable representations for clustering.
Sadeghi et al. [47] introduced a new contrastive loss function to learn
a more distinctive representation space while employing instance-
level representation to find related samples. They used a learned latent
representation to find similarities between samples and trained their
network to bring comparable cases that improve the clustering.
Mcconville et al. [48] investigated different manifold learning to apply
to AE for preserving the local structure of data and also proposed a
new way for deep clustering.

In the case of combining subspaces clustering with deep learning,
methods such as using k-subspace in deep clustering to reduce the pos-
sibility of reconstruction error [49], applying a self-expressive layer be-
tween the encoder and the decoder in AE to make use of the self-
expressiveness features of subspaces [50], using linear time and space
complexity to overcome large-scale subspace clustering [51], and map-
ping data into the eigenspace by employing spectral clustering as part of
a deep learning methodology [52] have been proposed. Although these
methods provide a good network to find the hidden structure of data,
their problem lies with the use of shallow clustering methods like
k-means that easily get stuck in the local optimization or subspace clus-
tering which does not have a specific strategy for dealing with different
situations.

This paper adopts sparse and manifold learning techniques to ex-
tract better features. These techniques have been used in various ma-
chine learning and data analysis applications. However, the way these
techniques are incorporated into the deep clustering problem is unique
and innovative. In traditional deep clusteringmethods, features are typ-
ically extracted from the input data using pre-trained neural networks.
However, this approach can result in insufficient feature extraction,
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leading to suboptimal clustering results. To address this limitation, the
ADSMTDE method adopts sparse and manifold learning techniques to
extract better features that capture the underlying structure of the
data. L1 regularization encourages the feature extraction process to pro-
duce sparse representations of the input data. This can help to reduce
the dimensionality of the feature space and remove noisy or irrelevant
features, resulting in more informative features that are better suited
for clustering. On the other hand, UMAP aims to capture the underlying
structure of the data bymapping the input data to a lower-dimensional
manifold. This can help to overcome the curse of dimensionality and im-
prove the quality of the feature representations, making them more
suitable for clustering.

2.3. Determining number of clusters

One important problem in clustering is determining the number of
clusters. Many methods have been proposed using cluster validity
methods to estimate the number of clusters, but these methods are
time-consuming and perform inconsistently in estimating the number
of clusters. A deep clustering method without knowing the number of
clusters was proposed by [53]. They used a recurrent neural network
to perform clustering and applied a covariance matrix to estimate the
number of clusters.

Different from previous approaches, our proposed method uses
sparse constraint in AE to improve the performance of AE in learning
the representation of data and manifold learning is applied to preserve
the local structure of the data. In the clustering part, our proposed
method uses an evolutionary algorithm that performs well in explora-
tion and exploitation. Unlike the use of covariance matrix in [53],
which is sensitive to the volatility among data points andmakes inaccu-
rate estimation in the presence of outliers, an incremental technique is
used to find the number of clusters. In this technique, unlike the com-
mon methods that try to estimate the number of clusters, it looks for
suitable clusters through an iterative process. This technique is adopted
to dynamically update the clustering results as new data points are
added to the dataset over time. This allows the clustering algorithm to
adapt to changing conditions and to avoid reprocessing the entire
dataset each time new data is added, as detailed in Section 4.3.

This is a significant innovation because many existing clustering
methods require prior knowledge of the number of clusters, which
can be difficult to determine in practice. The proposed method avoids
this limitation and provides a fully unsupervised clustering framework
that can be applied to growing datasets in real-time.

3. Automatic Deep Sparse clustering technique based on an
evolutionary algorithm called Multi-Trial Vector-based Differential
Evolution (ADSMTDE)

We propose a fully unsupervised deep clustering. Our method has
two novelties: one is the high-quality and small-sized extracted feature
set and the other is providing a completely unsupervised clustering
framework that does not require any prior information of the number
of clusters.

We are not using supervised methods since they require labels for
the training. Data labeling is a manual, tedious, and expensive process,
and there are no labels in growing data. Consequently, supervised
methods are impractical to use in real scenarios. Also, they are not scal-
able because these methods have been trained based on a specific con-
dition and need to be trained again for new conditions.

Thus, the main motivation of this paper is to propose a method that
can group images in real-time and automatically in growing data.

To present an efficient clustering framework, we develop two algo-
rithms. In the first algorithm, we extract the features and in the second,
images are automatically clustered.

First, we present a method that can extract high-quality features in
an unsupervised way which we consider two important aspects:
3

1) the extracted features should represent salient characteristics of im-
ages, 2) the feature dimension should be small to facilitate the cluster-
ing task (a larger dimension confuses the clustering process [54]). To
the best of our knowledge, the existing algorithms do not perfectly con-
sider these two aspects and this research addresses this problem.

To cover thefirst aspect, contrary to N2D [48]which only uses a sim-
ple auto-encoder, we add a sparsity constraint into the auto-encoder to
exploit and extract more representative and essential features for the
input. This is done because without the sparsity constraint an
autoencoder would have too many degrees of freedom and then
would be very prone to overfitting. Thus, this regularization tries to pre-
vent the overfitting of the model.

Moreover, in a simple auto-encoder, some nodes will copy the input
data exactly to the network’s output, which creates redundancy in the
extracted features and has a detrimental effect on clustering perfor-
mance. We prevent this problem and extract effective features by
using sparsity constraint.We employ amanifold learningmethod to ad-
dress the second aspect, reduce dimensionality, andmake the extracted
feature more clusterable while high-importance features are kept.

We present an automatic clustering based on the MTDE and Incre-
mental Technique (IT) combination in the second algorithm. In N2D,
k-means and GMM are used for clustering, but the disadvantage of K-
means clustering with different data representations is different results
and it can easily get stuck into the local optimum. The drawback of
GMM is that there are many parameters to fit, and it usually requires
a lot of data and many iterations to get good results. However, the
MTDE has better intelligence than K-means and GMM because it uses
historical data to search for the best performing region within the solu-
tion space.

In addition,MTDE has three search strategies for finding the best an-
swer. These strategies maintain a balance between exploration and ex-
ploitation in the search space. Therefore, our method has a much lower
possibility of falling into the local optimum than N2D. The other novelty
of this research is that the method discovers the number of clusters
using ITwhile state-of-the-art methods such as N2D require knowledge
of the number of clusters in advance.

The challenge of finding the number of clusters is that many
methods use a cluster validity index to estimate the number of clusters,
but they are very time-consuming and inaccurate because selected clus-
ters are not evaluated.We solve this problem by applyingMTDEwith IT
during clustering. Thus, our method can discover high-quality clusters
automatically in a time-efficient process by checking the quality of the
selected cluster. To the best of our knowledge, this is the first deep clus-
tering method done from beginning to end without any previous
knowledge and is completely unsupervised.

3.1. Sparse auto-encoder along with manifold learning

An AE is a three stage neural network that receives its inputs in the
first stage, sending these inputs through the hidden layer, and rebuild-
ing them again in its output stage [19]. Training an AE consists of two
phases: encoding and decoding. In the first phase, the AE receives its

input in the form of a d-dimension tensor x and encodes it into a d′-
dimensional tensor y. The encoding of the input data is formulated as
follow:

y ¼ f w� xþ bð Þ, x ∈ Rd and y ∈ Rd′ ð1Þ

f is the activation function, where the ReLU function is used in this
paper. w and b are the weight and bias of the encoder network
respectively.

In the next phase, the encoded data (y) is converted to x′ in the out-
put layer, which rebuilds the x input. This phase is called decoding as
formulated in Eq. (2).
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x′ ¼ f w′ � yþ b′
� �

, y ∈ Rd′and x′ ∈ Rd ð2Þ

w′ and b′ are the weight and bias of the decoder network, respectively.
To minimize the reconstruction error (distance between x and x′

tensors) and optimize the AE parameters, AE is trained with mean
square error (MSE) loss function in the Eq. (3) to determine the values
of w and b of the network. These parameters are found by minimizing
the reconstruction error (distance between x and x′ tensors).

LossMSE x, x′
� � ¼ ‖x′ � x‖2 ð3Þ

After a few epochs, the AE merely replicate the input to the output
[19]. To prevent this so that important features are learned, L1 Regular-
ization, as sparse constraint is added to the activation function of the
hidden neurons. This result in the weight of some neurons that are
not effective becoming zero and the extracted features being more ro-
bust to noise [55]. By adding L1 ¼ λ∗∑jwij where w is the activation
weights and λ is the regularization parameter, the loss function and
the final cost is calculated by Eq. (4).

Cost ¼ LossMSE þ L1 ð4Þ

Although the AE performs well to obtain latent features, it suffers from
maintaining the distances within data points in the features. To address
this problem and improve the quality of features, a manifold learning
technique called UMAP is applied to determine the nearest neighbor
points from embedded features using a k-neighbour based graph
method. UMAPfirst creates aweighted k-neighbor graph and then com-
putes a lowdimensional layout from this graph. Based on cross-entropy,
this low-dimensional arrangement is tuned to have a fuzzy topological
representation as close to the original features as feasible. There are var-
ious manifold learning techniques such as Isomap and t-SNE. However,
their performance in large datasets drop sharply [48]. Recently, Uniform
Manifold Approximation and Projection (UMAP) has been introduced
byMcInnes et al. [56]. This method not only increases the speed of clus-
tering but also performs much better in maintaining the hidden data
structure compared to other methods such as t-SNE [56].

4. MTDE clustering

MTDE is an improved DE algorithm [37]. In DE, each member of a
swarm (called a vector) represents a potential solution. To produce
new solutions in DE, a trial vector is used. The trial vector is obtained
from crossover and mutation of two random vectors. The performance
of DE strongly depends on how the trial vector is calculated. As it does
not examine other dimensions of search and does not establish any bal-
ance between global and local search, DE encounters problems in high-
volume data [37].

To solve this,MTDE uses three strategies: Representative-based Trial
Vector Producer (R-TVP), Local random-based Trial Vector Producer
(L-TVP), and Global best History-based Trial Vector Producer (G-TVP).
R-TVP enhances the diversity of solutions, L-TVP provides a proper bal-
ance of exploration and exploitation as well as rapid convergence, and
G-TVP helps to escape from local optima.

MTDE also stores previous inferior solutions that have information
about visited places in a repository called lifetime archive to transfer
the experience to the next generation. This repository is used by the
trial vector to generate diverse solutions and prevent premature con-
vergence. The size of the repository is equal to the size of the population
of vectors, and new inferior solutions replace the old ones if the reposi-
tory is full.
4

4.1. Population distribution and search strategies

MTDE uses a population distribution mechanism called “winner-
based distributing” to balance between exploration and exploitation.
This mechanism divides the population between strategies such that a
strategy that performed better has a larger population than the rest to
increase its impact on the solutions. Initially, due to a lack of evaluation
in the strategies’ performance, one is randomly selected as the best
strategy and in later iterations, the strategy with the highest improved
rate (IR ¼ IVx

Nx
) value is selected as the best strategy. Nx is the number

of population assigned to strategy x and IVx is the number of improved
vectors by strategy x. After selecting the best strategy in the current it-
eration, vectors are distributed into the strategies randomly based on
Nx such that if the population of R-TVP or L-TVP have the highest IRx,
the population of superior strategy (Nwin) is calculated based on
Nwin ¼ 0:6� N and the population of other two strategies are calculated
based on Nlose ¼ 0:2� N where N is the total number of vectors. Other-
wise, if G-TVP have the highest IRx,Nwin ¼ 0:2� N and Nlose ¼ 0:4� N.

In R-TVP strategy, the target vector (xi) first mutates (viR�TVP
) with a

random vector in lifetime archive xlife and two vectors xibest and xiworst

that have the best and worst fitness values among the NR�TVP based on
Eq. (5). The trial vector (uiR�TVP

) is then obtained by calculating the cross-

over of two transformationmatricesM and its binary inverseMwith the
target vector and the mutant target vector, respectively. M with di-
mensions N � D is generated by reproducing the square matrix
with dimensions D� DN

D times in MN�D, which is a lower triangular
matrix with values of one. The remaining MN�D rows are filled with
the first rows of the square matrix. Rows ofMN�D are then permuted
randomly.M is obtained by substituting the inverse Boolean value of
each element in M.

viR�TVP
¼ xi þ f i � xibest � xi

� �þ f i � xiworst � xi
� �þ α1 � xlife � xi

� � ð5Þ

uiR�TVP
¼ xi �M þ vi �M

� � ð6Þ

α1 ¼ 2� iter � 2
MaxIter

� �
ð7Þ

Where f is a scaling factor derived from the Cauchy distribution [57],
and α1 is a coefficent derived from Eq. (7).

The global best vector xgb is modified in the G-TVP strategy using
two random vectors from the NG�TVP (population of G-TVP). In this
strategy, the trial vector (uiG�TVP

) is created in the same way as R-TVP is
created in Eq. (9).

viG�TVP
¼ xgb þ α2 � xr1 � xr2ð Þ ð8Þ

uiG�TVP
¼ xi �M þ vi �M

� � ð9Þ

Unlike the other two strategies, the trial vector (uiL�TVP
) in the L-TVP ap-

proach is produced by individual learning rather than evolution. There-
fore, there is no requirement for crossover, and it is computed as
follows:

uiL�TVP
¼ xi þ f i � xr1 � xr2ð Þ þ α2 � xlife � xi

� � ð10Þ

α2 ¼ initial� finalð Þ � MaxIter � iter
MaxIter

� �μ

ð11Þ

where xr1 and xr2 are two random vectors from the population of L-TVP,
xlife is a randomvector from the lifetime archive, andα2 is the coefficient
obtained by Eq. (11). Furthermore, initial and final are the initial and fi-
nal values of the user-defined control parameter α2, and μ is the vector
dimension.

The population is updated in the selection phase by comparing the
trial vectors produced in each strategy to their corresponding target
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vectors. The target vector is replaced by the trial vector if the trial vector
has a higher fitness value, and the target vector is saved in the lifetime
archive. Finally, the global vector xgb is chosen as the final optimal solu-
tion after reaching the termination condition.

Algorithm1: ADSMTDE Cluster Algorithm

4.2. Clustering

In clustering, each vector xi in MTDE represents k cluster centroids,
and the structure of each xi is Ci1, . . . ,Cij,⋯,Cik

� �
.WhereCij is the jth clus-

ter centroid in the ithMTDE vector (xi). A fitness function computed from
Sum of Square Error (SSE) is utilized to evaluate the clustering quality of
each vector. SSE is a statistical measure that determines the total devia-
tion of the data points inside a cluster. It estimates the variance inside a
cluster by calculating the difference between each data point and its clus-
ter means [58]. The following equation is used to compute SSE.

SSE ¼ ∑
k

j¼1
∑

∀yi∈C j

‖yi � C j‖
2 ð12Þ

Where the data points yi belong to the cluster C j. Each vector is assessed
based on SSE at each iteration of clustering and the lowest value being
selected. In addition, cluster centroids in each vector are updated by
one of the three strategies.

4.3. Incremental technique for determining number of clusters

One important problem in clustering is determining the number of
clusters. Most existing solutions are time-consuming and have low ac-
curacy. In this paper, instead of clustering all the data points at once,
high-quality clusters are individually identified over time. This solves
the problem of finding the number of clusters and greatly increases
the clustering speed. After receiving the dataset, the minimum number
of data points (MinPt ¼ n

kmax
) in each cluster is first calculated based

on the maximum number of clusters (kmax) and the number of data
5

points (n) to ensure the clusters have sufficient observations. kmax is
set to

ffiffi
n
2

p
to choose an appropriate value that shortens computation

time. For each k, clustering is performed and a cluster with the lowest
SSE is selected. If the number of data points in the selected cluster is
greater than or equal to MinPt, the cluster is selected as one of the
final clusters and its members are removed from the dataset. A new

value of k is then calculated based on
ffiffiffiffi
n∗
2

q
where n∗ is the pruned popu-

lation of the dataset. But if the number of data points in the selected
cluster is less than MinPt, that cluster is ignored and the value of k is
decremented. This process is repeated until k reaches 2. Finally, the
found clusters are aggregated and considered as the final solution. The
proposed method is shown in Fig. 1 and its pseudocode is shown in 1.

5. Experiments

The proposed method is evaluated based on metrics accuracy (AC)
[33] and NormalizedMutual Information (NMI) comparedwith the lat-
est State-Of-The-Art (SOTA)methods. These methods include 13 recent
deep and five conventional and well-known clustering algorithms that
they know about the number of clusters.

We compared our proposed method to several baseline
approaches, including k-means [59], Subspace Clustering (SC) [60],
and Gaussian Mixture Models (GMM) [61]. We also included DE
and MTDE as comparison algorithms because our proposed method
builds upon these approaches.

Deep clustering methods were compared with our method to show
how successful the proposed method is in improving recent methods.
Moreover, we compared our method with automatic methods, includ-
ing AMTDE, DPSO [62], PSOAC [63], KM [64] and DBSCAN [29] to show
the effectiveness of the incremental technique.

Experiments were performed on seven datasets including two hand-
written digits, the MNIST [65] with 70,000 images of 28 × 28 pixels and
the USPS with 9298 images of 16 × 16 pixels of 10 different classes of
numbers, a challenging Fashion dataset consisting 70,000 clothing images
of 10 different classes and two time-series datasets, the Pendigits,
which consists of 10,992 sampled points from 10 different numbers
that were pressed on a pressure-sensitive tablet, HAR, which con-
sists of recording of 6 activities performed by 30 people using a mo-
bile phone and CIFAR-10 [66], which consists of 60000 32 × 32 color
images in 10 classes, with 6000 images per class and Tiny ImageNet
[67] with 100,000 64 × 64 colored images contains 200 classes and
each class has 500 images.

The reported results were obtained from an average of 30 runs. The
ground truth is only for evaluating the model provided by the method
and not for model selection. For model selection, no prior or labelled
information is used.

5.1. Experimental settings

The architecture and layer dimensions of AE were inspired by [48].
The dimensions of the encoder layers are as follows; input dimension,
500, 500, 2000, 10 while the dimensions of the decoder layers are in re-
verse order of the encoder. Reluwasused as the activation function in all
layers and Adam method was used to optimize the weights. Also, the
number of epochs for training the AE was set to 1000. In UMAP, several
parameters affect performance, including the number of neighbors used
to capture local structure and the feature dimension. For this work, we
set the number of neighbors to 10 and the feature dimension to 2. The
parameters in the MTDE clustering were set as follows: Maxiter =
200, initial= 0.001, final= 2, and number of vectors = 200.

5.2. Complexity

To use the algorithm in a real application, it is important how fast the
algorithm runs and how much memory it needs. Such predictions lead



Fig. 1. Illustration of the proposed clustering: After receiving input, features are extracted from the latent layer andUMAP is applied to them to preserve the local structure of data. Until the
number of clusters reaches kmin , solutions (vectors) are initialized and distributed into the three strategies to optimize them in differentways. Inferior solutions are kept in a repository for
sharing informationwith thenext generations. For each k value, a cluster of the best solution (xgb) is selected based on the SSE value if it satisfiesMinPt. Then, it is removed from the dataset
as one of the final clusters. The new number of clusters is then calculated for the size of the pruned dataset.
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to the implementation and propose an optimized and suitable algorithm
that in addition to increasing the accuracy of the algorithm, it makes the
algorithm reach the result in a short time. Moreover, it adapts easily
to different conditions. Thus, let B nð Þ be the time complexity of
ADSMTDE in the worst case where n is data points. Then, we have
B nð Þ ¼ n2 þ n2 þ n ¼ 2n2 þ n ¼ O n2

� �
. On the other hand, as the com-

plexity of GMM is Oðpdn3Þ[68] for p Gaussian components and d dimen-
sions, the auto-encoder is O n2

� �
and the complexity time of N2D is
6

Oðpdn3Þ þ O n2
� �

which shows that the complexity of ADSMTDE is less
than N2D.

5.3. Results

5.3.1. Comparison of clustering algorithms
A comparison of the proposed method with a set of clustering algo-

rithms on six datasets based on AC andNMImetrics is shown in Table 1.



Table 1
Comparison of our method in both automatic (has no prior information of cluster number) and non-automatic (has prior information of cluster number) modes with conventional clus-
tering algorithms and the latest deep clustering algorithms based on the best values of AC and NMI.

Types Methods MNIST USPS Fashion Pendigits HAR CIFAR10 Tiny
ImageNet

AC NMI AC NMI AC NMI AC NMI AC NMI AC NMI AC NMI

Conventional (Non-automatic) k-means [59] 53.2 45 66.8 62.6 47.4 51.2 66.6 68.1 59.9 58.8 22.9 8.7 2.5 6.5
SC [60] 68 75.9 65.6 79.6 55.1 63 72.4 78.4 53.8 74.1 24.7 10.3 2.2 6.3
GMM [61] 38.9 33.3 56.2 54 46.3 51.4 67.3 68.2 58.5 64.8 – –
DE [69] 41.41 28.53 56.4 46.9 47.83 42.74 68.33 63.5 64.53 64.07 – –
MTDE [37] 46.93 34.08 57.5 43.9 51.35 46.29 68.6 62.7 67.61 64.24 32.61 28.24 2.44 3.76

Deep (Non-automatic) DeepCluster [70] 79.7 66.1 56.2 54 54.2 51 – – – – – – – –
DCN [21] 83 81.0 68.8 68.3 50.1 55.8 72 69 – – – – – –
DEC [18] 86.3 83.4 76.2 76.7 51.8 54.6 70.1 67.8 56.5 58.4 – – – –
IDEC [39] 88.1 86.7 76.1 78.5 52.9 55.7 78.4 72.3 64.2 60.9 – – – –
SR-k-means [71] 93.9 86.6 90.1 91.2 50.7 54.8 – – – – – – – –
VaDE [23] 94.5 87.6 56.6 51.2 57.8 63 – – – – – – – –
ClusterGAN [72] 96.4 92.1 – – 63 64 77 73 – – – – – –
JULE [24] 96.4 91.3 95 91.3 56.3 60.8 – – – – 27.2 19.2 3.3 10.2
DEPICT [22] 96.5 91.7 89.9 90.6 39.2 39.2 – – – – – – – –
DBC [20] 96.4 91.7 – – – – – – – – – – – –
DAC [73] 97.8 93.5 – – – – – – – – 52.2 39.6 6.6 19.0
ASPC-DA [74] 98.8 96.6 98.2 95.1 59.1 65.4 – – – – – – – –
N2D [48] 97.9 94.2 95.8 90.1 67.2 68.4 88.5 86.3 80.1 68.3 – – – –
EDESC [51] – – – – – – – – – – 46.4 62.7 – –
DSMTDE 98.61 93.67 95.63 98.09 67.3 66.96 90.36 87.3 81.71 73.2 49.53 46.47 4.15 3.31

Conventional (Automatic) AMTDE 40.46 27.97 54.26 41.81 45.92 38.67 61.55 56.47 46.35 35.25 21.48 16.40 1.05 1.32
DPSO [62] 36.65 23.25 51.43 37.93 39.13 35.49 57.18 51.75 47.55 36.54 – – – –
PSOAC [63] 36.72 24.36 52.13 39.07 41.04 34.07 57.98 54.71 47.95 36.81 – – – –
KM [64] 36.19 20.98 48.46 37.31 40.64 32.80 56.14 50.28 45.26 30.67 – – – –
DBSCAN [29] 21.06 11.47 27.25 18.97 16.17 13.13 42.48 21.02 31.05 22.78 – – – –

Deep (Automatic) ADSMTDE 88.92 90.82 80.99 78.72 64.88 67.44 82.31 78.78 69.6 64.7 40.18 37.91 3.37 2.80

Fig. 2. The impact of distribution policy and strategies on convergence on USPS dataset.
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The compared results are either reported in relevant papers or
reproduced (k-means, SC, GMM, DE, MTDE, DSMTDE, KM, PSOAC,
DPSO, AMTDE, and DBSCAN) in this work to perform a comprehensive
comparison of our proposed clusteringmethod with existing automatic
and non-automatic clustering methods. Those with (-) do not have
results in the relevant dataset.

For comparison, we examine the proposed algorithm in two
versions. The first is Deep sparse Multi-Trial vector-based Differential
Evolution (DSMTDE), which is aware of the number of clusters and is
not automatic, and the second is Automatic Deep Sparse clustering
technique based on an evolutionary algorithm called Multi-Trial vector-
based Differential Evolution (ADSMTDE), which is completely unsuper-
vised and automatic.

The obtained results in Table 1 indicate that the DSMTDE is one of
the top three algorithms. In all compared deep clustering algorithms, al-
though they have a strong structure for finding hidden data representa-
tion, simple clustering methods such as k-means have been used for
clustering. Algorithms ASPCDA and N2D are among the top three algo-
rithms along with the proposed algorithm.

ASPC-DA uses two deep networks. First, an autoencoder is trained
and a second autoencoder is jointly trainedwith a clustering and recon-
struction loss. However, we use UMAP instead of second deep network
that has less complexity. Moreover, N2D uses a shallow clustering lead-
ing to an increase in the chances of premature convergence due to the
lack of balance between exploitation and exploration. However, the
proposed method combines various search strategies in clustering to
copewith different problems in search space and offers a better solution
than N2D because of the diversity among solutions. This has made the
DSMTDE superior.

In the DSMTDE, despite a simple AE for obtaining features, it ob-
tained excellent results by using different search strategies in MTDE
clustering, which have potential capabilities in global and local search.
Also, due to the benefit of a population distribution mechanism, it has
been able to balance the search strategies to prevent early convergence.
7

Moreover, when the proposed algorithm performs clustering
completely automatically using the incremental technique (ADSMTDE),
it outperformed all automatic clustering methods. ADSMTDE improved
the performance of MTDE clustering by 41.99% in MNIST, 23.49% in
USPS, and 13.53% in Fashion 13.71% in Pendigits, 1.99% in HAR, 7.57%
in CIFAR-10 and 0.93% in Tiny ImageNet.
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Compared to all conventional and deep clustering algorithms that
have prior knowledge of the number of clusters, in three datasets out of
seven datasets including Fashion, Pendigits, and HAR, ADSMTDE was
among the top three cluster approaches. It is worth mentioning that the
results obtained for CIFAR-10 and Tiny ImageNet datasets compared to
other datasets, the performance of ADSMTDE was weak. Although
Multi-Layer Perception (MLP) autoencoder is used to extract useful
features from input data, it may not be able to find suitable features
from a color image because it is a relatively simple model and may
not have the capacity or complexity to effectively process and ana-
lyze the multiple channels of color data. There are color images
with various categories in CIFAR-10 and Tiny ImageNet datasets
which require the use of a network such as a convolutional neural
network to obtain better results.

But in this paper, we focus on presenting a method that can per-
form clustering automatically. In other words, we focused on the
clustering part in order to develop a general clustering method for
various types of data with several strategies that can improve its
performance by considering various aspects of the search, including
exploration and exploitation. We also tried to solve the problem
of dependence of unsupervised methods on knowing the number
Table 2
Comparison of average error for detecting the number of clusters.

Dataset USPS Pendigits MNIST

Sill [76] 2.4 2.22 2.56
CH [77] 2.96 3.06 3.07
DB [78] 2.94 3.20 3.29
Dunn [79] 4.67 4.24 4.68
GAP [80] 4.58 4.5 5.71
Elbow [81] 3.7 4.43 4.44
Ha [82] 3.33 3.18 3.81
Incremental technique (Ours) 2.18 2.02 1.154

Fig. 3. Performance analysis components applied to AE

Table 3
Clustering accuracy comparisons for different data representation components on various
Autoencoder with UMAP, AE + sparse stands for Autoencoder with sparse, and AE + UMAP+

Dataset USPS Pendigits MNIST

AE 24.52 43.77 43.82
AE + UMAP 55.74 71.82 79.27
AE + sparse 29.46 45.65 47.52
AE + UMAP + Sparse 80.99 82.31 88.92

8

of clusters by presenting the incremental technique. If this
method is used specifically for image clustering, networks like
CNNs must be used and if it is used for sequential data, Recurrent
Neural Networks (RNN) should be used. These networks lead to
the extraction of more suitable features from images and sequences,
respectively.

5.3.2. Effect of MTDE strategies
Fig. 2 demonstrates the effect of threeMTDE strategies based on con-

vergence rates on USPS dataset. The combination of all three strategies
resulted in a good convergence with the lowest SSE value due to simul-
taneous global and local searches and maintaining a balance between
them.

Table 2 indicates the error in estimating the number of clusters using
different methods calculated based on [75]. Incremental technique has
outperformed allmethods in all datasets. In thismethod, insteadof clus-
tering all data points, the clusters are selected gradually based on the
degree of results improvement. But in cluster validity methods, not
only they performed poorly in detecting the number of clusters, but
one method was better than others in different datasets, which indi-
cates that their results are not stable.
HAR Fashion CIFAR10 Tiny ImageNet

2.63 3.31 3.8 9.78
3.31 2.98 4.69 12.37
3.15 4.07 4.66 21.77
5.19 4.6 6.12 12.75
4.62 5.07 6.30 19.54
5.07 4.64 6.33 16.64
4.57 3.37 5.19 14.98
2.64 1.414 3.46 8.61

based on (a) accuracy and (b) convergence rate.

datasets. AE stands for Autoencoder without sparse and UMAP, AE + UMAP stands for
Sparse stands for Autoencoder with UMAP and sparse.

HAR Fashion CIFAR-10 Tiny ImageNet

41.37 37.83 16.07 1.24
44.63 58.59 27.71 3.06
42.42 40.02 24.80 1.91
69.60 64.88 40.18 3.37



(a) F-Score for all classes in HAR (b) F-Score for all classes in MNIST

(c) F-Score for all classes in FASHION (d) F-Score for all classes in Pendigits

(e) F-Score for all classes in CIFAR (f) F-Score for all classes in USPS

Fig. 4. The average f-score for all classes in six datasets, obtained by different methods based on our proposed deep clustering.
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Fig. 5. The comparison of clustering time between five methods MTDE, AE + MTDE,
SAE + MTDE, AE + UMAP+ MTDE and SAE + UMAP + MTDE (ADSMTDE).

Fig. 6. Confusion matrices of the two methods ADSMTD
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5.3.3. Data representation performance
Fig. 3(a) shows the effect of sparse constraint and UMAP based on

obtained accuracy for each dataset. This figure shows that by using
sparse constraint and UMAP in AE, the accuracy has been improved an
average of 45%, 41%, and 7% in comparison with Simple AE, sparse AE,
AE + UMAP respectively. Moreover, Fig. 3b shows the convergence
rate of AE with and without using sparse constraint. Comparing the
two methods, AE with sparse constraint has better convergence than
Simple AE. This improvement is due to disabling nodes that copied
input to output AE. This has led to the discovery of more important fea-
tures. In addition, although AE has a great ability to find important fea-
tures of data, it is weak in recognizing local data representation such as
the distance between data points [48]. Since UMAP is very efficient in
finding these types of features [48], applying it to the latent space has
significantly increased clustering performance.

Table 3 presents a comprehensive comparison of the clustering per-
formance achievedby different data representation components on var-
ious datasets. The table shows that each component alone has a positive
E and MTDE on two datasets, HAR and Pendigits.



Table 4
The pretest results of tuning the parameter final when the initial value was 0.001.

Datasets Methods initial = 0.001

final = 0.1 final = 1 final = 2 final = 5 final = 10

MNIST Fitness 0.9158 0.7720 0.7857 0.7857 0.8858
Sensitivity 99.94 99.94 99.94 99.94 99.94
Specificity 99.94 99.98 99.98 99.98 99.92

USPS Fitness 0.8297 0.7562 0.7499 0.8397 0.8499
Sensitivity 70.63 70.49 70.63 70.49 70.49
Specificity 100 100 100 100 100

Fashion Fitness 0.6158 0.6743 0.6158 0.7158 0.6843
Sensitivity 75.911 75.911 70.773 76.076 60.052
Specificity 84.495 83.912 78.519 84.348

Pendigits Fitness 0.7884 0.7584 0.6584 0.7756 0.8135
Sensitivity 97.542 97.586 97.619 97.642 97.617
Specificity 97.437 97.751 97.403 97.576 97.246

HAR Fitness 0.6652 0.6300 0.6300 0.6952 0.7052
Sensitivity 97.481 97.556 97.433 97.501 97.360
Specificity 92.394 92.136 92.298 92.270 91.712

CIFAR10 Fitness 0.9607 0.8955 0.9229 0.9327 0.9327
Sensitivity 84.49 83.91 78.51 84.34 66.78
Specificity 60.23 60.14 56.05 60.98 47.24

Tiny ImageNet Fitness 0.7177 0.7352 0.7580 0.6665 0.7123
Sensitivity 68.34 73.64 82.61 71.68 83.89
Specificity 68.28 68.09 69.91 69.38 66.28
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impact on the clustering performance, but combining all three compo-
nents yields the best results. Using UMAP embedding in combination
with AE helps in finding a better clusterable representation of data,
while incorporating sparse constraints prevents the extraction of re-
dundant features, leading to better clustering accuracy. The improve-
ment achieved by the combination of these components is particularly
significant onmost datasets. However, the results show that the perfor-
mance of the approach varies across different datasets. For instance, the
Table 5
The pretest results of tuning the parameter initial when the final value was 2.

Datasets Methods

initial = 0.001 initial

MNIST Fitness 0.6565 0.7419
Sensitivity 97.56 97.69
Specificity 97.71 97.37

USPS Fitness 0.6986 0.8386
Sensitivity 97.34 97.57
Specificity 91.86 92.71

Fashion Fitness 0.6208 0.7403
Sensitivity 84.153 84.204
Specificity 60.652 60.892

Pendigits Fitness 0.7454 0.6454
Sensitivity 97.34 97.57
Specificity 91.86 92.71

HAR Fitness 0.6394 0.7059
Sensitivity 97.56 97.69
Specificity 97.71 97.37

CIFAR10 Fitness 0.9051 0.9665
Sensitivity 62.48 60.80
Specificity 94.37 94.65

Tiny ImageNet Fitness 0.6742 0.7582
Sensitivity 75.94 72.40
Specificity 79.03 72.04
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MNIST dataset achieves a higher clustering accuracy than the other
datasets when using all three components. This result may be due to
the simplicity of the dataset’s images, which are grayscale and have a
low resolution. On the other hand, the Tiny ImageNet dataset, which
comprises color images, achieves the lowest clustering accuracy across
all four configurations. This result may be due to the complexity of the
dataset’s images, which have a high dimensionality and a more diverse
range of classes and images, making it more challenging to find a good
final =2

= 0.01 initial = 0.1 initial = 1 initial = 2

0.8900 0.8454 0.7454
97.44 97.46 97.56
97.08 97.16 97.77

0.6986 0.8286 0.7986
97.44 97.56 97.577
92.20 92.11 92.445

0.6658 0.6958 0.7142
83.809 84.234 83.969
59.776 59.132 60.860

0.6454 0.7857 0.7754
97.44 97.56 97.57
92.20 92.11 92.44

0.6059 0.6059 0.6794
97.44 97.46 97.56
97.08 97.16 97.77

0.9838 0.8914 0.9371
60.41 60.35 58.93
94.95 94.79 94.50

0.7139 0.7309 0.8141
72.19 72.22 72.72
78.41 75.86 79.77
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clustering solution. Therefore, more complex network architectures
may be required to improve the clustering performance on color
image datasets.

Fig. 4 shows the effect of each component in the proposed method,
which includes sparse constraint and UMAP, based on obtained F-
score for each class of the different datasets. This figure shows that by
using sparse constraint and UMAP in AE (Auto-encoder), the
f-score of each class has been improved an average of 45%, 41%,
and 7% in comparison with Simple AE, sparse AE, AE + UMAP. This
improvement is due to disabling nodes that copied input to output
AE. This has led to the discovery of more important features. In addi-
tion, although AE has a great ability to find important features of
data, it has a weakness in recognizing local data representation
such as the distance between data points [48]. Since UMAP is very
Fig. 7. llustration of comparing convergence with different population sizes of ADSM

12
efficient in recognizing local data representation which AE is poor
at these types of features [48], applying it to the latent space has sig-
nificantly increased clustering performance.

Fig. 5 shows the comparison of clustering time between five
methods MTDE, AE + MTDE, SAE + MTDE, AE + UMAP + MTDE and
SAE + UMAP + MTDE (ADSMTDE). The clustering time varies widely
across the different methods and datasets. The MTDE generally has
the shortest clustering time. This is likely because MTDE is a relatively
simple clusteringmethod compared to the others, and does not involve
any additional preprocessing steps like auto-encoding or UMAP. The
AE + MTDE and SAE + MTDE methods have longer clustering times,
respectively. This is likely due to the additional step of training an
auto-encoder or sparse auto-encoder before applying theMTDE cluster-
ing algorithm. These methods can be more computationally intensive
TDE vs. MTDE on datasets, HAR, MNIST, Fashion, Pendigits, CIFAR10 and USPS.
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due to the added complexity of training neural networks.
AE + UMAP + MTDE has a lower clustering time than AE + MTDE
and SAE + MTDE. The reason for this is attributed to the added step of
applyingUMAP to reduce the dimensionality of thedata before applying
the MTDE clustering algorithm. SAE + UMAP + MTDE (ADSMTDE) in-
cludes both the sparse auto-encoder and UMAP steps, which can make
it more computationally intensive than MTDE alone. However, it still
has a relatively short clustering time compared to the other methods,
likely due to the time efficiency gained from the use of UMAP.

Overall, the clustering time results suggest that MTDE is the most
computationally efficient clustering method among those considered,
while the other methods have longer clustering times due to additional
preprocessing steps. However, it is important to note that ADSMTDEhas
been shown to achieve better results, as indicated in Table 1. Our study
shows thatMTDE, despite spending less time on clustering compared to
ADSMTDE, performs poorly in clustering due to its inability to extract
meaningful information from the data. As indicated in Table 1, MTDE
has the worst clustering results among all the algorithms considered
in Fig. 5. Hence, we maintain that our proposed method, ADSMTDE, is
more time-efficient than other methods while still achieving competi-
tive clustering performance.

5.3.4. Comparison of ADSMTDE and MTDE
Fig. 6 shows a comparison of the confusion matrix between

ADSMTDE and MTDE in two datasets HAR (Fig. 6 and Pendigits
(Fig. 6c and d). From the figure, it can be seen that by using AE for learn-
ing the data representation inMTDE, the confusion between the clusters
was drastically reduced. Moreover, ADSMTDE compared to MTDE has
obtained these results without prior knowledge of the number of clus-
ters which shows that the incremental technique has performed well
in identifying clusters.

5.3.5. Parameter tuning in proposed algorithm
One of the important issues in obtaining the best results is adjusting

the parameters used in the proposed algorithm. Thus, we conducted
pretests to fine-tune the variables of final and initial in Eq. (11) where
results are shown in Tables 4 and 5, respectively. The findings are
made up of themean values of various qualitativemeasures, such as fit-
ness, sensitivity and specificity.

Fitness is a measure of the quality of a solution, whichwe defined as
the objective function value (SSE in Eq. (12)) that represents the accu-
racy of the proposed algorithm in solving the optimization problem.
Sensitivity and specificity measure the proportion of true positive and
true negative results, respectively. To fine-tune the variables of our pro-
posed algorithm, we evaluated its performance on seven datasets for
each combination of final and initial values and recorded the fitness
score, sensitivity, and specificity.We repeated this process for several it-
erations to obtain reliable estimates of themean values of thesemetrics.
We then analyzed these results to identify the optimal combination of
final and initial values that produced the highest fitness score and the
highest values of sensitivity and specificity. Using these results, we
fine-tuned the variables of the proposed algorithm, which led to better
performance and improved convergence rates. The results of the pre-
tests demonstrate that the values 2 and 0.001 used for final and initial
can be sufficiently adjusted.

Additionally, Fig. 7 depicts the convergence of the proposed algo-
rithm on different datasets with various population size. From the ob-
tained results, it can be seen that the proposed algorithm converges
better when the population size is 200.

Oneway to assess the convergence of theproposed algorithm is by an-
alyzing the trend of the fitness curve over the iterations. In Fig. 7, the fit-
ness curve for each population size is plotted against the number of
iterations. By observing the graph, it becomes apparent that the fitness
curve for a population size of 200 exhibits faster convergence and
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achieves a lower value compared to the other population sizes. This ob-
servation suggests that the proposed algorithm performs better with a
population size of 200. Additionally, this finding is consistent with prior
research [83] that has demonstrated how a smaller population size can
result in improved convergence rates and more diverse solutions.

6. Conclusions

A new automatic deep clustering method based on an evolutionary
algorithm has been presented. The proposed method applied sparsity
and manifold learning on AE to enhance feature learning and retain
the local structure of data. An evolutionary algorithm that excelled in
exploring and exploiting was used for clustering. To solve the problem
of determining the number of clusters, an incremental method is em-
ployed to cluster data without knowing the number of clusters. Experi-
ments on a variety of datasets, including image and time-series datasets,
were carried out to show the performance of the proposed method in
comparison with recent SOTAmethods. The results show that applying
both sparse constraint and UMAP to AE increased the clustering effi-
ciency and improved the clustering performance by 45% compared to
simple AE. It was validated that the proposed approach was among
the top 3 current SOTA clustering methods in the majority of datasets
when the number of clusters was known. Also, promising results were
obtained when clustering was done automatically and outperformed
many SOTA clustering methods.

As future work, complex networks like Convolutional Neural Net-
works (CNNs) can be used to better represent color images. One of
the essential steps to getting a good representation of the input pat-
terns for clustering is feature extraction. The proposed method is a
general clustering method that has adopted an artificial neural net-
work with clustering. If it is to be used for image or video clustering,
CNNs should be used to better extract the features of the images and
videos. Moreover, if it is to be used for sequential data such as geno-
mic data, RNNs should be used. CNNs and RNNs can extract informa-
tive characteristics from images and sequence data respectively.
These networks minimize the high dimensionality of data without
sacrificing any information that is useful for clustering. Moreover,
the effect of multi-objectives on the performance of clustering can
be investigated.
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