
Evolutionary Simulated Annealing for Transfer
Learning Optimization in Plant-Species

Identification Domain
Gusti Ahmad Fanshuri Alfarisy

School of Digital Science
Universiti Brunei Darussalam

Brunei Darussalam
20h8562@ubd.edu.bn

Owais Ahmed Malik
School of Digital Science

Universiti Brunei Darussalam
Brunei Darussalam

owais.malik@ubd.edu.bn

Ong Wee Hong
School of Digital Science

Universiti Brunei Darussalam
Brunei Darussalam

weehong.ong@ubd.edu.bn

Abstract—The reuse of the pre-trained deep neural network
models has been found successful in improving the classification
accuracy for the plant species identification task. However, most
of these models have a large number of parameters, and layers
and take more storage space which makes them difficult to
deploy on embedded or mobile devices for real-time classification.
Optimization techniques, such as Simulated Annealing (SA), can
help to reduce the number of parameters and the size of these
models. However, SA can easily get trapped into local optima
when dealing with such complex problems. To solve this problem,
we propose a new technique, namely Evolutionary Simulated
Annealing (EvoSA), which optimizes the process of transfer
learning for the plant-species identification task. We incorporate
the genetic operators (e.g., mutation and recombination) on SA to
avoid the local optima problem. The technique was tested using
the MNetV3-Small as a pre-trained model due to its efficiency
on mobile for two plant species data sets (MalayaKew and UBD
botanical garden). As compared to the standard SA and Bayesian
Optimization techniques, the EvoSA provides the least cost value
with a similar number of objective evaluations. Moreover, the
EvoSA produces approximately 14x and 6x less cost compared to
SA for MalayaKew and UBD botanical data sets, respectively. The
results show that the EvoSA can generate solutions with higher
test accuracy than typical transfer learning with a competitive
number of parameters.

Index Terms—transfer learning, evolutionary algorithm, sim-
ulated annealing, plant-species identification

I. INTRODUCTION

Plant biodiversity plays an important role in prolonging
human life. A variety of plants contribute to our nutritional
needs and medicinal materials. In the short-term effect, the
exposure to biodiversity in the urban areas could mitigate
pollution-related problems and improve human health both
physically and mentally [1]. Unfortunately, plant species are
at risk of extinction and human overexploitation has been
proven to aggravate the situation [2]. Conserving biodiversity
in plants becomes necessary to provide similar benefits for our
descendants.

In order to achieve effective conservation, a monitoring
system has become essential to maintain biodiversity, which

could give a critical signal with regard to the ecological
conditions. With this system, humans can make a decision to
manage it. One of the important bioindicators is the species
metrics that measures the number of species and their diversity
in a community [3]. Therefore, species identification is the first
step to achieving this objective.

Manual identification of plant species needs meticulous
observations from the experts and is a much more difficult task
for non-experts. Morphological and morphometric analyses
are used by experts to understand the characteristics of plants
and to distinguish them, which makes the identification of a
single plant a laborious task. On the other hand, automating
plant species identification is a promising trend. It can reduce
the gap between experts and non-experts, which may trigger
seamless communication between them in order to achieve the
same objective, i.e., identifying plant species. Furthermore, it
also stimulates cross-disciplinary research between computer
science and ecology that could accelerate the common goal of
biodiversity monitoring [4].

In existing computer vision approaches for the automatic
identification of plant species, feature extraction plays an
essential role in deriving important characteristics from plant
images. The most commonly used features for plant species
identification are shape, color, texture, and vein of leaves [4].
The problem with traditional deterministic machine learning
is the need for feature engineering as one of the main com-
ponents of the plant species identification pipeline. It requires
human experts to identify and extract the important features
of a specific family/species of plants. The process may need
modification when applied to a different set of species or for
different settings of the environment used during the image
acquisition stage. Thus, using hand-crafted features may not
be an ideal approach for plant species identification.

Currently, utilizing a pre-trained model for solving down-
stream tasks has become a gold standard for real-world prob-
lems [5]. It preserves the parameters that implicitly act as a
knowledge trained on a large number of images from data sets
like ImageNet [6]. It also alleviates the overfitting problem
since the trained weights have knowledge of general images



resulting in better accuracy at the target task.
The knowledge in the pre-trained model is transferred to

the target task by fine-tuning the hyper-parameters or merely
learning the connections between the last layer and the clas-
sification layer. Many studies in plant species identification
have used the same technique where the parameters/layers
were frozen for extracting the features using the pre-trained
models [7], [8]. However, when the parameters for the previous
layers are frozen and cannot be trained, some of the important
information that needs to be adjusted may be lost. Moreover,
most of the literature uses a large network with a high number
of parameters. In [9], the features derived from MobileNet and
DenseNet121 are concatenated to predict the plant species. The
complexity of the networks was increased by adding more
parameters. In [10], Inception-ResNet-v2 is employed with
more than 50 million parameters. Furthermore, approximately
138 million parameters are used in [11] by using VGG16.

In this research, we developed an Evolutionary Simulated
Annealing (EvoSA) method for finding the optimal archi-
tecture from the feature extractor to the output layers. We
improved the Simulated Annealing (SA) with a search strategy
inspired by an evolutionary algorithm. Mutation and recom-
bination were employed without sacrificing the performance
of SA. Furthermore, one layer in the pre-trained model was
selectively chosen that could improve the performance.

To the best of our knowledge, this is the first study in
optimizing transfer learning in CNNs using the meta-heuristic
approach with a selective trainable layer for plant species
identification. The rest of the paper is organized as follows.
Section II describes our proposed methodology, section III
presents the empirical analysis and results, and section 4
concludes the paper.

II. THE PROPOSED METHODOLOGY

In this section, we propose a novel technique named Evolu-
tionary Simulated Annealing (EvoSA) for optimizing transfer
learning using MobileNetV3-Small.

A. MobileNetV3-Small

MobileNetV3-Small is a CNN model from Google with
roughly 2.5 M parameters that was designed for mobiles. It
is the extension of MobileNetV2 with the Squeeze-and-Excite
technique employed in the residual block [12]. The hard swish
activation has been introduced for non-linearity in the network
that decreases the latency cost [13].

B. Representation of Candidate Solution

The solution is represented by an 8 dimensional vector with
real values denoted as s = (s1, . . . , s8) as shown in Figure 1.
The first three elements (s1−s3) are the number of neurons in
each layer while the next three elements (s4−s6) represent the
activation function for each layer. For instance, the third layer
has 115 neurons with the activation function at index zero
which is the Elu activation. The seventh element (s7) shows
the patience level of the early stopping mechanism. The final
element (s8) shows the selective trainable layer index from

the pre-trained models. This candidate solution is projected to
generate a deep neural network with its corresponding hyper-
parameters.

Fig. 1. Illustration of the representation

C. Cost Function

To steer the proposed algorithm into an optimal solution,
the cost function is defined by accounting for the mean test
accuracy of the k-fold cross-validation, the number of param-
eters of the networks, the average latency, and the availability
of neurons on the classification part. This cost function will be
minimized to compute the best solution. To represent the cost
function we used the following notations: X is a set of images
such that X = {x1, . . . , xi, . . . , xN}, N is the total number
of images, Y is a set of target labels associated with X such
that Y = {y1, . . . , yi, . . . , yN}, D is the set of supervised data
points, where D = {(x1, y1), . . . , (xi, yi), . . . , (xN , yN )}, p
denotes the total parameters of the network, m denotes the
number of times the latency is calculated using one particular
image, and s is the candidate solution of the hyper-parameters
that are being optimized. Then cost function can be defined
as shown in (1).

Algorithm 1 Evolutionary Simulated Annealing

Input: an initial temperature T0, a threshold mutation λ, a list
of lower bound (lb) and upper bound (ub) of solution

Output: the best encoded solution found so far s∗

1: s← initialize random solution
2: c← evaluate(s) using (1)
3: s∗ ← s (*best solution so far)
4: c∗ ← c (*best cost so far)
5: T ← T0; time← 0
6: while stop condition is not meet do
7: r1, r2 ← random uniform ∈ [0, 1]
8: mutated← False
9: if r1 < λ then

10: s
′ ← mutate random position (s) using (8)

11: mutated ← True
12: end if
13: if r2 < λ then
14: s

′ ← mutate flip position (s) using (9)
15: mutated ← True



16: end if
17: if not mutated then
18: s

′ ← neighbour(s, δ) using (6)
19: s

′ ← clip s
′

using lb and ub
20: end if
21: update temperature using (7)
22: c

′ ← evaluate(s
′
) using (1)

23: if c
′
< c then

24: s← s
′
; c← c

′

25: if c
′
< c∗ then

26: s∗ ← s
′
; c∗ ← c

′

27: end if
28: else if e(c−c

′
) > rand() then

29: s←s
′
; c← c

′

30: end if
31: end while
32: parents, costs← initiate new parents based on the solution

s∗ using Algorithm 2
33: s∗ ← evolutionary process on the parents using Algo-

rithm 3
34: return s∗

cost(D, p, s) = α . costacc(D, s) + β . costparam(p)

+ γ . costlatency(s) + costnl(s)
(1)

The first term in the cost function shows the penalty of the
accuracy controlled by the pre-defined weight α. As shown
in (2), k(D, s) is a k-fold cross-validation function outputting
the mean test average accuracy. At first, the model was trained
by Adam optimizer with a learning rate of 0.001 using the
representation of s with early stopping. Then the pre-defined
number of k-fold is used to get the mean test accuracy.

costacc(D, s) = 1− k(D, s) (2)

The second term in the expression describes the penalty
of the parameters weighted by β. Since the MobileNetV3-
Small version has roughly 2.5 million parameters for ImageNet
classes (1000 output layer), it is divided by one million and
subtracted by σ to balance with other terms as shown in (3).

costparam(p) =
p

1, 000, 000
− σ (3)

In the third term, the average latency is calculated for m
times using a sample xa weighted by γ as shown in (4). Min-
max normalization is utilized for latency cost to balance the
value with other terms. In the final term, the penalty is given
when no layer is added before the output layer as shown in
(5). This will prevent the search algorithm from staying at the
typical transfer learning procedure, which may be considered
as local optima and strategically could provide a potential
search to find fewer parameters than the standard transfer
learning approach if the total classes are large such as in
the plant species domain. Further, adding more layers also
contributes to the accuracy of the trained models.

costlatency(s) =
1
m

∑m
i=1 latency(xa, s)−min

max−min
(4)

costnl(s) =

{
1 if no additional layer added
0 otherwise

(5)

D. Evolutionary Simulated Annealing for Transfer Learning

The proposed algorithm for optimizing the transfer learning
with selective trainable layers is presented in Algorithm 1.
SA is the main search algorithm that helped the evolutionary
process. Two simple mutation techniques are proposed for
avoiding the local optima. The first one is to randomly set the
position for all elements in the hyper-parameter representation.
The index in the representation is randomly selected, and a
random integer value within the lower and upper bound of
that index is generated to replace the current value. Another
mutation flips the neurons of the first three elements (number
of neurons) of the representation. This mutation is performed
when two uniform random numbers r1, r2 ∈ [0, 1] are less
than the predefined mutation threshold. When a mutation is
used to find the solution, the standard neighborhood search
is not used. The acceptance of a bad solution is determined
by a uniform random number ∈ [0, 1] as shown in Algorithm
1. The initiation of the neighbor of the solution is performed
by adding the current solution using some random value in
the range of [−δ, δ] as shown in (6). Each element of the
representation has its own δ value that is pre-defined by the
user. This gives the user control over the movement during the
search process. Afterward, the neighbor solution is clipped to
a pre-defined bound.

neighbour(si, δi) = si + r ∈ [−δi, δi] (6)

The temperature is decreased gradually using Boltzman
annealing (7) [14]. The lower temperature provides a low
probability that a bad solution is taken for the next solution,
mimicking the annealing process. Meanwhile, the higher tem-
perature permits SA to take a bad solution to avoid getting
stuck in local optima in the early phase. The initial temperature
is denoted as T0 while t is the current iteration.

temp(t) =
T0

log(1 + t)
(7)

Algorithm 2 Crossover-based Parents Initialization

Input: current best solution s∗ and current best cost value c∗

Output: list of solution s∗ and list of cost c∗

1: parents← s∗; costs← c∗

2: for i← 1 to 3 do
3: s← initialize random solution
4: ch1, ch2 ← crossover(s∗, s)
5: cost1 ← evaluate(ch1) using (1)
6: cost2 ← evaluate(ch2) using (1)
7: if cost1 < cost2 then
8: parents← parents ∪ ch1



9: costs← costs ∪ cost1
10: else
11: parents← parents ∪ ch2

12: costs← costs ∪ cost2
13: end if
14: end for
15: return parents, costs

E. Mutation Techniques

The mutation is employed in SA to replace the neighbor
selection with a small probability. The first type of mutation
is performed by randomly selecting index j of the candidate
solution S and replacing it with a value between the lower and
upper bounds as presented in (8). The second type of mutation
is performed by flipping the value of neuron representation as
shown in (9) where η is the maximum number of neurons in
a particular layer. The value is flipped between zero and a
non-positive value.

sj = round(r ∈ [lbj , ubj ]) (8)

sj =

{
0 sj > 0
round(r ∈ [1, η]) otherwise

(9)

F. Crossover-based Parents Initialization

Once SA is terminated based on a stopping condition, new
individuals act as the parent for the later evolutionary search
and are initialized based on the best solution found so far.
The details can be seen in Algorithm 2. We only initiate three
new parents to make the evolution process faster since the
evaluation of the objective function is expensive. Hence, the
total number of individuals in a population is only four.

Algorithm 3 Recombination Process

Input: parents, costs
Output: best solution s∗

1: for i← 1 to ϕ do
2: for j ← 1 to 2 do
3: p1, p2 ← pick two random individuals from parents
4: ch1, ch2 ← crossover(p1, p2)
5: cost1 ← evaluate(ch1) using (1)
6: cost2 ← evaluate(ch2) using (1)
7: children← children ∪ ch1 ∪ ch2

8: ccost← ccost ∪ cost1 ∪ cost2
9: end for

10: population← population ∪ children
11: pcost← pcost ∪ ccost
12: population, pcost← elitism(population, pcost)
13: end for
14: return best solution from population (s∗)

For each iteration, a random solution is generated. This non-
optimal solution is then recombined with the best solution
from SA that produces two children using the extended inter-
mediate crossover operation [15]. The best child is selected as
the new parent.

G. Evolutionary Process

The standard evolutionary process has been followed in the
proposed model. Using the solution from Algorithm 2, two
random parents are chosen, then an extended intermediate
crossover is performed on them to produce two children [15].
The details are shown in Algorithm 3. In our case, we set ϕ
to 10, which contributes to the 40 objective evaluations.

III. EMPIRICAL ANALYSIS

A. Data sets

We experimented with two plant species data sets namely
MalayaKew [16] and UBD botanical garden [17]. MalayaKew
data set contains 44 species collected in Kew, England. This
data set consists of only the leaves’ data without any back-
ground. The suggested split of train and test sets was used.
Since our approach used an early stopping mechanism, 10%
of the train set was used as the validation set. The other
data set (UBD botanical garden) contains data for 45 plant
species found in the Borneo region. This data set is divided
into training (80%), validation (10%), and the remaining 10%
for testing.

B. Experimental Settings

We used 10-fold cross-validation to compute the perfor-
mance of the models. The train and test subsets were combined
as a single set for each data set, while the validation sets were
utilized for the early stopping mechanism. For parameters in
our objective function, σ was set to 1.5, which is approx-
imately the number of the smallest possible parameters in
MobileNetV3-Small in TensorFlow 2.4.1. The value of m was
set to 10 and η set to 2000. The preference of each component
of the main objective function, α, β, and γ was set to 0.5, 0.25,
and 0.25, respectively. These parameters may depend on the
problem at hand and should be adjusted based on the user’s
preference. For min-max normalization in the latency function,
we set the minimum value to 1×10−5 and the maximum value
to 2. The experiments were run on two machines with GPUs
(RTX 2060 for UBD botanical garden and RTX 2080 super
for MalayaKew). We ensured that the experiments for each
data set were run on the same machine for a fair comparison.
For stopping criteria, we used 100 iterations for SA followed
by 10 iterations of the evolutionary process.

EvoSA was compared with standard Simulated Annealing
(SA) and Bayesian Optimization (BO) algorithms. Both SA
and BO searched for the optimal solution using 150 iterations
to have a roughly similar number of objective function eval-
uations as for EvoSA. A batch size of 32 was used with 100
epochs. Due to the stochastic nature of the algorithm, we run
all algorithms for 10 trials for a fair comparison. Furthermore,
we compare the performance of the best solution found using
EvoSA with a typical transfer learning-based method where a
pre-trained model is connected directly to the output layers.
Furthermore, to provide more insight about the cost function
results, EvoSA was re-run with a higher value of α (EvoSA∗)
as α = 0.9, β = 0.05, and γ = 0.05.



TABLE I
PERFORMANCE COMPARISON OF DIFFERENT HYPER-PARAMETER OPTIMIZATION TECHNIQUES

Data set Metrics EvoSA SA BO
MalayaKew Cost 0.058 ± 0.004 0.799± 0.500 0.072± 0.012

Top-1 Train 99.655± 99.655% 98.893± 0.817% 99.587± 0.962%
Top-1 Val 94.367± 0.768% 94.432± 1.351% 94.721± 1.802%
Top-1 Test 94.148± 0.798% 93.691± 1.139% 93.935± 1.960%
Top-5 Train 100% 99.996± 0.006% 99.998± 0.007%
Top-5 Val 99.983± 0.023% 99.930± 0.055% 99.991± 0.028%
Top-5 Test 99.668± 0.105 99.772± 0.053% 99.768± 0.075%
Parameters 1.577± 0.019 M 4.533± 1.992% M 1.626± 0.029 M

Latency 0.075± 0.002 s 0.077± 0.003% s 0.079± 0.007 s
UBD Botanical Cost 0.099± 0.025 0.569± 0.364 0.134± 0.016

Top-1 Train 99.865± 0.202% 99.954± 0.133% 99.919± 0.150%
Top-1 Val 85.078± 1.515% 86.172± 2.212% 84.609± 2.126%
Top-1 Test 88.287± 1.144% 88.869± 2.352% 87.521± 1.933%
Top-5 Train 99.993± 0.013% 100± 0% 99.999± 0.003%
Top-5 Val 97.227± 0.558% 97.063± 0.615% 96.977± 0.556%
Top-5 Test 98.108± 0.412% 97.283± 0.467% 97.873± 0.328%
Parameters 1.626± 0.099 M 3.517± 1.450 M 1.748± 0.066 M

Latency 0.070± 0.003 s 0.072± 0.004 s 0.076± 0.007 s

C. Results and Discussion

Table I presents a comparison of EvoSA with standard
Simulated Annealing (SA) and Bayesian Optimization (BO)
techniques based on different metrics for both data sets. It
can be noticed that EvoSA provides the smallest cost for
both MalayaKew and UBD botanical garden data sets. For the
MalayaKew data set, the most stabilized results were generated
from EvoSA as indicated by the standard deviation value of
the cost metric. In contrast, for UBD botanical garden data
set, BO offers more stabilized performance than the EvoSA.
The other scores (e.g., train accuracy) were not compared as
the cost function considers only the test accuracy, a number of
parameters, latency, and a number of layers in the optimization
computation. For the running time, EvoSA took roughly 4.6
and 5.3 days for 10 times running on UBD botanical and
MalayaKew data sets, respectively. Meanwhile, for one run,
EvoSA took roughly 11.2 hours on UBD botanical and 12.7
hours on MalayaKew.

The resulting consistency of EvoSA may depend on the data
set and the inability of SA to avoid local optima. The smaller
and imbalanced data sets may contribute to the difficulty of the
search space for EvoSA. Moreover, if the candidate solution
is trapped far from global optima, the evolutionary process
through recombination may not be capable of reaching near
the desired solution. Additional techniques for recombination
may be needed to help EvoSA jump out from the local optima
with a more stabilized solution (the solution with a reduced
standard deviation score).

The best solution found by EvoSA was compared with
the results of the standard transfer learning met hod without
a trainable pre-trained layer as shown in Table II. EvoSA∗

represents the EvoSA with a higher value of α. EvoSA− is the
same model as EvoSA, but it does not use a selective trainable
layer in the pre-trained part found during the search process.
EvoSA produces a solution that picks one of the pre-trained
layers to be trained. In contrast, EvoSA− freezes all the layers

and uses the same architecture and other hyper-parameters.

Fig. 2. Cost value over time

Increasing the value of α in the cost function (EvoSA∗) can
provide higher test accuracy by sacrificing small space in the
parameter size. For the MalayaKew data set, it only increased
the parameters by 0.1 million. As compared to EvoSA−, the
accuracy for both data sets experienced a consistent drop for
EvoSA∗ model. The best solution found by EvoSA without the
selective trainable layer did not provide higher accuracy than
the standard transfer learning model. In contrast, the EvoSA
solution provided higher accuracy with fewer parameters com-
pared to the standard transfer learning model for both data sets.
These results exhibit the potential savings on the parameters
using a selective trainable layer. By unfreezing a particular
layer for the pre-trained model, this layer’s parameters are
updated to the target task, requiring minor adjustments through
the classification layer’s parameters. Hence, it will require
fewer neurons during the optimization phase.



TABLE II
COMPARISON TO TYPICAL TRANSFER LEARNING

Data set Metrics EvoSA EvoSA∗ EvoSA− Standard
MalayaKew Top-1 Train 99.549% 99.936% 97.535% 98.613%

Top-1 Val 94.716% 95.502% 93.144% 93.625%
Top-1 Test 95.013% 95.439% 92.229% 93.004%
Top-5 Train 100% 100% 99.966% 99.991%
Top-5 Val 100% 100% 99.956% 100%
Top-5 Test 99.691% 99.923% 99.614% 99.614%
Parameters 1.569 M 1.628 M 1.569 M 1.575 M

Latency 0.075 s 0.075 s 0.029 s 0.027 s
UBD Botanical Top-1 Train 99.960% 100% 99.336% 99.618%

Top-1 Val 84.531% 88.281% 83.438% 86.016%
Top-1 Test 88.399% 91.938% 86.416% 87.311%
Top-5 Train 100% 100% 100% 100%
Top-5 Val 97.5% 98.594% 96.797% 97.109%
Top-5 Test 98.007% 98.822% 97.464% 97.914%
Parameters 1.561 M 2.324 M 1.561 M 1.576 M

Latency 0.072 s 0.069 s 0.069 s 0.068 s

The effectiveness of EvoSA in avoiding local optima is
depicted in Figure 2. It clearly shows that SA is easily trapped
in local optima and hardly jumps out from the local solution.
Little improvement was observed at 100 iterations. In contrast
with EvoSA, which starts with a much worse solution, the
proposed mutation could help EvoSA to avoid local optima
that are shown in a lower cost value during its movement. In
addition, recombination in EvoSA (above the 100 iterations)
could find a lower-cost value.

IV. CONCLUSION

A combination of simulated annealing and genetic operators
along with a selective trainable layer in the representation
was found to be helpful to find the optimal architecture
for the plant species identification task. We compared the
proposed approach with Simulated Annealing and Bayesian
Optimization techniques and showed that EvoSA produced
the least cost evaluation value with fewer parameters and
reduced latency for transfer learning. In addition, we presented
the importance of selectively choosing the layers for the pre-
trained models during the training phase that can enhance the
performance of the searched model.

REFERENCES

[1] R. Aerts, O. Honnay, and A. V. Nieuwenhuyse, “Biodiversity and
human health: mechanisms and evidence of the positive health
effects of diversity in nature and green spaces,” British Medical
Bulletin, vol. 127, no. 1, pp. 5–22, Jul. 2018. [Online]. Available:
https://doi.org/10.1093/bmb/ldy021

[2] A. C. de Souza and J. A. Prevedello, “The importance of protected
areas for overexploited plants: Evidence from a biodiversity hotspot,”
Biological Conservation, vol. 243, p. 108482, Mar. 2020. [Online].
Available: https://doi.org/10.1016/j.biocon.2020.108482

[3] J. Niemelä, “Biodiversity monitoring for decision-making,” 2000.
[4] J. Wäldchen and P. Mäder, “Plant species identification using

computer vision techniques: A systematic literature review,” Archives of
Computational Methods in Engineering, vol. 25, no. 2, pp. 507–543, Jan.
2017. [Online]. Available: https://doi.org/10.1007/s11831-016-9206-z

[5] X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, L. Zhang,
W. Han, M. Huang, Q. Jin, Y. Lan, Y. Liu, Z. Liu, Z. Lu, X. Qiu,
R. Song, J. Tang, J.-R. Wen, J. Yuan, W. X. Zhao, and J. Zhu,
“Pre-trained models: Past, present and future,” AI Open, Aug. 2021.
[Online]. Available: https://doi.org/10.1016/j.aiopen.2021.08.002

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 248–255, 2009.

[7] M. Lasseck, “Image-based plant species identification with deep convo-
lutional neural networks,” in CLEF, 2017.

[8] M. M. Ghazi, B. Yanikoglu, and E. Aptoula, “Plant identification using
deep neural networks via optimization of transfer learning parameters,”
Neurocomputing, vol. 235, pp. 228–235, Apr. 2017. [Online]. Available:
https://doi.org/10.1016/j.neucom.2017.01.018

[9] A. P. S. S. Raj and S. K. Vajravelu, “DDLA: dual deep learning
architecture for classification of plant species,” IET Image Processing,
vol. 13, no. 12, pp. 2176–2182, Sep. 2019. [Online]. Available:
https://doi.org/10.1049/iet-ipr.2019.0346

[10] J. Krause, K. Baek, and L. Lim, “A guided multi-scale
categorization of plant species in natural images,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). IEEE, Jun. 2019. [Online]. Available:
https://doi.org/10.1109/cvprw.2019.00320

[11] G. He, Z. Xia, Q. Zhang, H. Zhang, and J. Fan, “Plant species
identification by bi-channel deep convolutional networks,” Journal of
Physics: Conference Series, vol. 1004, p. 012015, Apr. 2018. [Online].
Available: https://doi.org/10.1088/1742-6596/1004/1/012015

[12] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. IEEE, Jun. 2018. [Online]. Available:
https://doi.org/10.1109/cvpr.2018.00745

[13] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen, M. Tan,
G. Chu, V. Vasudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le,
“Searching for MobileNetV3,” in 2019 IEEE/CVF International
Conference on Computer Vision (ICCV). IEEE, Oct. 2019. [Online].
Available: https://doi.org/10.1109/iccv.2019.00140

[14] N. Siddique and H. Adeli, “Simulated annealing, its variants
and engineering applications,” International Journal on Artificial
Intelligence Tools, vol. 25, no. 06, p. 1630001, Oct. 2016. [Online].
Available: https://doi.org/10.1142/s0218213016300015

[15] H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive models for
the breeder genetic algorithm i. continuous parameter optimization,”
Evolutionary Computation, vol. 1, no. 1, pp. 25–49, Mar. 1993.
[Online]. Available: https://doi.org/10.1162/evco.1993.1.1.25

[16] S. H. Lee, C. S. Chan, P. Wilkin, and P. Remagnino, “Deep-plant:
Plant identification with convolutional neural networks,” in 2015 IEEE
International Conference on Image Processing (ICIP). IEEE, Sep.
2015. [Online]. Available: https://doi.org/10.1109/icip.2015.7350839

[17] O. A. Malik, M. Faisal, and B. R. Hussein, “Ensemble deep learning
models for fine-grained plant species identification,” 2021 IEEE Asia-
Pacific Conference on Computer Science and Data Engineering (CSDE),
pp. 1–6, 2021.


